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Abstract

Machine learning is a process of discovering important hidden structures or patterns from
data. Recently, machine learning methods have been widely adopted in various real world ap-
plications including medical diagnosis and automatic driving technologies. In spite of tremen-
dous progress in machine learning, making wrong predictions is an inevitable issue. Making
mistakes in prediction can be costly and dangerous, or sometimes even life-threatening.

To cope with this problem, a framework called learning with rejection has gained much
attention recently. This is a framework where a learner is given additional option to reject
the data, or to refrain from making a decision if it is unsure about the correctness of its
prediction. In this thesis, we give a comprehensive study on learning with rejection under
multiclass classification setting from two approaches.

First, we consider the separation-based approach, where the roles of the classifier and the
rejector are separated, and both models are trained simultaneously. Although previous work
revealed that calibration is achievable, that is, Bayes-optimal rejection and classification can
be obtained in the binary case, we show that extensions of this approach to the multiclass
case leads to failure in achieving calibration.

Secondly, we focus on the confidence-based approach, where the rejector is determined
after training a classifier. We analyze this approach for the well-known losses, including the
one-versus-all loss and the cross-entropy loss. We prove that both losses are calibrated to
the Bayes-optimal solution by providing excess risk bounds.

In summary, we give a broad investigation into multiclass classification with rejection, and
reveal the possibility and impossibility of achieving calibration from two different approaches.
We conclude that these methods, especially the confidence-based method, can be a good
baseline for this problem, and worth a further study.
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