東京大学大学院新領域創成科学研究科 先端生命科学専攻

## 平成 30 年度

## 修士論文

コラーゲンとアパタイトの同位体比を用いた マクロ栄養素モデルの構築と 日本先史時代人による雑穀摂取の検出

> A macronutrient-based model using isotope ratios in collagen and enamel reveals millet consumption by prehistoric Japanese populations

> > 2019年1月15日提出 指導教員 米田 穣 教授

> > > 山口晴香

# 目次

| I. 序論                           |    |
|---------------------------------|----|
| 1. 炭素・窒素安定同位体比による食性分析と古人骨コラーゲン  | 1  |
| 2. アパタイト安定同位体比測定による古人骨食性分析      | 2  |
| 3. 縄文時代晩期から弥生時代にかけての農耕の伝播と雑穀栽培  |    |
| 4. 弥生人・縄文人の人骨同位体比測定による食性分析      | 7  |
| 5. 雑穀摂取の検出に向けたマクロ栄養素モデルの構築      | 9  |
| 6. 本研究の目的                       | 10 |
| II. 材料と方法                       |    |
| 1. マクロ栄養素モデル                    | 13 |
| 2. 人歯・人骨・動物骨資料とその出土遺跡           | 16 |
| 3. 歯根象牙質・骨コラーゲンの炭素窒素安定同位体比測定    | 19 |
| 4. 歯冠エナメル質アパタイトの炭素安定同位体比測定      | 20 |
| 5. 放射性炭素年代測定                    | 20 |
| Ⅲ. 結果                           |    |
| 1. マクロ栄養素モデルの検証                 | 23 |
| 2. 放射性炭素年代                      | 25 |
| 3. コラーゲン炭素窒素安定同位体比              | 26 |
| 4. アパタイト炭素安定同位体比                | 27 |
| 5. 結果のまとめ                       |    |
| IV. 考察                          |    |
| 1. マクロ栄養素モデルを用いた縄文~弥生時代の食性変化の評価 | 30 |
| 2. 縄文~弥生時代の雑穀寄与率の時代変化           | 32 |
| 3. 本研究における課題と今後の展望              |    |
| V. 結語                           |    |
| 謝辞                              |    |
| 引用文献                            |    |

図表

## I. 序論

1. 炭素・窒素安定同位体比による食性分析と古人骨コラーゲン

食物連鎖の研究において、摂取された食料源の同定と動物の栄養段階の推定 に炭素や窒素の安定同位体比の測定が盛んに行われている(Kelly, 2000; Peterson & Fry, 1987)。炭素・窒素の安定同位体比(<sup>13</sup>C / <sup>12</sup>C および <sup>15</sup>N / <sup>14</sup>N)は標準物質 におけるそれとの偏差である「デルタ値」で表現する。偏差はごく僅かである ため、単位には千分率 (‰: パーミル)を用いる。炭素・窒素のデルタ値は、 それぞれ以下のように計算される。

 $\delta^{13}C (\%_0) = ({}^{13}C/{}^{12}C_{sample} - {}^{13}C/{}^{12}C_{PDB}) / ({}^{13}C/{}^{12}C_{PDB}) \times 1000$ 

 $\delta^{15}N$  (‰) = ( ${}^{15}N/{}^{14}N_{sample} - {}^{15}N/{}^{14}N_{AIR}$ ) / ( ${}^{15}N/{}^{14}N_{AIR}$ ) × 1000

PDB は炭素同位体比の標準物質として使われる、米国サウスカロライナ州 Pee Dee 層より産出するベレムナイトという軟体動物の化石であり、AIR は窒素同 位体比の標準物質として使われる大気中の窒素を指す。

 $\delta^{13}$ C は、一次生産者を構成する植物間で光合成経路や生息場所により大きく 異なる。また、動物の $\delta^{13}$ C、 $\delta^{15}$ N が動物と餌との間でほぼ一定の割合で高くな ることが経験的に知られており、特に $\delta^{15}$ N は栄養段階が異なる生物間で値が大 きく変動するため、栄養段階の推定に多く用いられる(DeNiro & Epstein, 1978, 1981; Minagawa & Wada, 1984)。

陸上植物が示する<sup>13</sup>C 値は光合成経路により大きく異なる。C3 植物は気孔から 取り込んだ二酸化炭素を葉肉細胞内の葉緑体でリブロース 1,5-ビスリン酸 (RuBP)と組み合わせフォスフォグリセリン酸(PGA)を生成する。この反応 はリブロース 1,5 ビスフォスフェート・カルボキシラーゼ・オキシゲナーゼ (Rubisco)によって触媒されるが、Rubiscoは炭素の同位体分別が著しい酵素で <sup>13</sup>CO<sup>2</sup>よりも<sup>12</sup>CO<sup>2</sup>との親和性が高く、~-25‰の同位体分別が起きる。この際に 生じる同位体分別は、葉肉細胞内外の二酸化炭素が比較的自由に交換されるた め、生成される PGA や炭水化物の同位体比に直接影響する。一方、C4 植物は葉 肉細胞内で炭素の同位体分別をほとんどしないフォスフォエノールピルビン酸 カルボキシラーゼ (PEPCase)により二酸化炭素中の炭素がフォスフォエノール ピルビン酸 (PEP)との反応でオキサロ酢酸としていったん固定される。固定さ れた炭素は維管束鞘細胞にて脱炭酸され再び二酸化炭素となり、Rubisco で再固 定されるが、維管束鞘細胞は細胞外との二酸化炭素の交換が少ない構造になっており、脱炭酸で生じた二酸化炭素のほぼすべてが同化されるため、経路全体として炭素の同位体分別が少ない。その結果、C3 植物は $\delta^{13}$ C がおよそ-37~-22‰の範囲の値をとるのに対し、C4 植物は-15~-9‰という比較的高い $\delta^{13}$ C 値を示す(Codron et al., 2005; Farquhar et al., 1989; Kohn & Cerling, 2002; O'Leary, 1988; 寺島, 2013)。C3 植物と C4 植物の中間的な $\delta^{13}$ C 値をとる植物としてサボテンなどの多肉植物を含む CAM 植物が挙げられるが、夜温が低く温度日較差の大きい高温乾燥地帯に多く分布し、先史時代の日本における食用例は報告されていないため、本論文では取り扱わない(O'Leary, 1988; 長谷川, 1979)。

食物連鎖にしたがって高次消費者ほど重い同位体が一定の割合で動物組織に 濃縮する現象は、動物の体外に排出される窒素に軽い同位体が多いことからも たらされる(南川 & 吉岡, 2006)。窒素代謝系の異なるさまざまな動物について 餌と動物組織のδ<sup>15</sup>N を比較した研究で、餌と動物の間の同位体効果が脊椎動 物・無脊椎動物を問わず平均 3.3‰であることが示された(Minagawa & Wada, 1984)。この同位体分別は動物の体内での脱アミノ反応などの代謝に起因してい ると考えられている。

炭素・窒素安定同位体比を用いた食性分析の古人骨への応用として、代表的な ものに人骨コラーゲンが挙げられる(Makarewicz & Sealy, 2015)。乾燥骨におよそ 30%含まれる有機成分のうち、85-90%がコラーゲンである。骨コラーゲンは周り の無機成分との密接な構造関係により数千年保存される場合があり、質量の 35%が炭素、11-16%が窒素であるため、古人骨では炭素・窒素の同位体比が測定 可能であり、それに基づき過去の食性が復元されている(Katzenberg & Saunders, 2007; Van Klinken, 1999)。

古人骨に対する初の炭素・窒素安定同位体比測定による食性分析は、北米の人 骨コラーゲンに対して行われ、C3 植物を一次生産者とする生態系(C3 生態系) に暮らす集団が C4 植物であるトウモロコシの導入・摂取を始めたことがる<sup>13</sup>C の上昇により検出された(Vogel & Van Der Merwe, 1977)。Vogel らの研究を皮切り に窒素同位体比も含め骨コラーゲンによる古人骨の食性分析が進んだ(Ambrose, 1990; Katzenberg & Harrison, 1997; Larsen, et al., 1992)。

2. アパタイト安定同位体比測定による古人骨食性分析 コラーゲンは埋没環境により経時劣化しやすいため、生物が生前に摂取した炭 素を反映する別の組織の分析が模索され、骨やエナメルの無機成分の大半を占 めるヒドロキシアパタイトに対する炭素安定同位体比測定を行うことが提案さ れた(Krueger & Sullivan, 1984)。ヒドロキシアパタイトは Ca10(PO4)6OH2の化学式 で表され、バイオアパタイト(生物由来のヒドロキシアパタイト)ではリン酸塩 (PO<sub>4</sub><sup>3-</sup>)の 2-5%が炭酸塩 (CO<sub>3</sub><sup>2-</sup>) に置換されているため、炭酸塩に含まれる炭 素の安定同位体比測定が可能である(Lee-Thorp, 1989)。放射性炭素年代測定の研 究ではバイオアパタイト中の炭酸塩について続成作用が指摘されており議論が 続いたが、生体外部から取り込まれバイオアパタイトの結晶表面などに吸着し た炭酸塩(「吸着炭酸塩」)を除去し、バイオアパタイトの結晶構造の内部に存在 する「構造炭酸塩」を取り出せば、安定同位体比は食性分析の対象として使用で きる可能性が示唆された(Krueger, 1991; Lee-Thorp & van der Merwe, 1991; Schoeninger & DeNiro, 1982)。バイオアパタイトから炭酸塩分画を分離する方法 は Lee-Thorp らによって確立された(Lee-Thorp, Sealy, & van der Merwe, 1989; Lee-Thorp, 1989)。この方法では、骨・エナメル試料を粉末状にした後、有機物によ る汚染を除去するために次亜塩素酸ナトリウムに浸け、さらに埋蔵環境中から 取り込まれた炭酸塩を酢酸によって除去する。リン酸と反応させ結晶構造中の 炭酸塩を二酸化炭素として回収し、炭素(および酸素)の安定同位体比を測定す ることができるとしている。

Krueger and Sullivan, Lee-Thorp らは陸生草食・肉食・雑食動物のコラーゲンお よびバイオアパタイトの $\delta^{13}$ C (それぞれ $\delta^{13}$ C<sub>collagen</sub>、 $\delta^{13}$ C<sub>apatite</sub> と表す)を分析 し、 $\delta^{13}$ C<sub>collagen</sub> と $\delta^{13}$ C<sub>apatite</sub>、およびこれらの値の差( $\delta^{13}$ C<sub>apatite</sub>- $\delta^{13}$ C<sub>collagen</sub>)であ る $\Delta^{13}$ C<sub>apatite-collagen</sub> が食性および栄養段階によって異なることを示した(Krueger & Sullivan, 1984; Lee-Thorp et al., 1989)。 $\Delta^{13}$ C<sub>apatite-collagen</sub> は草食動物と比べて肉食動 物において小さく、その背景にある原理のモデルは研究によって細かい違いは あるものの、食料源を構成する栄養素とそれらの同位体比の違いによる影響で 説明しているという点においては一致している。例えば、Krueger & Sullivan (1984)では $\delta^{13}$ C<sub>collagen</sub> は食料中のタンパク質の同位体比を主に反映し、 $\delta^{13}$ C<sub>apatite</sub> は「エネルギー成分」である炭水化物と脂質の同位体比を反映すると提唱した。 草食動物肉の脂質の $\delta^{13}$ C はタンパク質のそれよりもおよそ 6‰小さく、肉食動 物は草食動物経由で脂質を摂取するため、脂質を反映する $\delta^{13}$ C<sub>apatite</sub> と、主にタ ンパク質を反映する $\delta^{13}$ C<sub>collagen</sub>の差である $\Delta^{13}$ C<sub>apatite</sub>-collagen が肉食動物では小さく なるとされている(Ambrose & Norr, 1993; DeNiro & Epstein, 1978; Piasentier et al., 2003)。

これらの研究に触発され、餌に含まれる各栄養素の $\delta^{13}$ C 値と割合をコントロ ールしたラットなどに対する複数の給餌実験が行われた(Ambrose & Norr, 1993; Tieszen & Fagre, 1993)。給餌実験において、 $\delta^{13}$ C<sub>collagen</sub>は食料中のタンパク質の 同位体比よって変化するということが改めて示されたが、 $\delta^{13}$ C<sub>apatite</sub>については、 エネルギー成分よりも食事全体の炭素同位体比を直接的に反映するということ が分かってきた。

こうした知見を活かし、古人骨のコラーゲンとアパタイト両方の炭素同位体比 を用いて人類集団による C4 植物の利用に関する研究が行われるようになった。 例えば、オンタリオ湖南部で骨のコラーゲンとアパタイトを両方分析した結果、 コラーゲンと比べアパタイトの炭素同位体比にはトウモロコシの摂取の影響が より早い時期から現れることが示された(Harrison & Katzenberg, 2003)。このよう に、アパタイトの炭素同位体比を測定することによって、摂取が少ない段階にお いても C3 生態系から構成された食性への C4 植物の導入の検出が期待できる。

3. 縄文時代晩期から弥生時代にかけての農耕の伝播と雑穀栽培

本研究では、狩猟採集から農耕という大きな生業の転換が起きた縄文時代晩期 から弥生時代にかけて、アワなどの C4 植物に含まれる雑穀(以下「C4 雑穀」 とする)が利用されていたという考古学の仮説を人骨の同位体分析により検証 し、その摂取量を定量的に評価する。

以下、放射性炭素年代測定によって得られた較正年代については、数値の後に cal BP と表記する。較正年代とは放射性炭素(<sup>14</sup>C)の大気中の濃度を一定と仮 定して計算した放射性炭素年代を、過去の<sup>14</sup>C 濃度の変化を考慮して補正したも ので、年代の数値の後に cal (calibrated years の略)をつける。BP(Before Present ないし Before Physics の略)は、西暦 1950 年を基準としてそれより何年前という 意味である。放射性炭素年代測定の原理については「II-6. 放射性炭素年代測定」 で後に詳述する。

縄文時代は沖縄を除いた日本列島の各地における 16,000-2800 cal BP ごろの時 代を指し、この頃日本列島に居住していた人々のことを縄文人と呼ぶ(Nakamura et al., 2001;大貫, 2017;藤尾, 2013)。縄文人は文化的には縄文式土器の利用で特 徴づけられ、主に狩猟採集で天然の動物・植物を得ていたことが分かっている (石川, 2010)。弥生時代は、地域ごとにその開始と終焉について時期差があるが、

北海道・沖縄を除いた日本列島の各地における 2800-1700 cal BP ごろの時代を指 す(石川, 2010;藤尾, 2013)。縄文時代晩期から弥生時代にかけては、「渡来系弥生 人」と呼ばれる集団がユーラシア大陸から日本列島に移住し、穀物栽培や金属器 をもたらした。他方で弥生時代の日本列島には縄文人の子孫である「縄文系(在 来系)弥生人」も暮らしていた。埴原らは人骨の形態解析から現代日本人の起源 を縄文系と渡来系の 2 集団の混血で説明し(「二重構造説」)、この説は近年のゲ ノム研究によって集団の起源地については部分的に改変されつつも広く受け入 れられている(Hanihara, 1991; Jinam et al., 2015; Omoto & Saitou, 1997)。渡来系弥 生人の集団の起源地に関しては、現代の本土日本人は朝鮮半島集団、ついで他の 東・北東アジア集団の影響が最も強いなどの研究がある(Jinam et al., 2012; Nakaoka et al., 2013)。

渡来系弥生人が持ち込んだ文化がどのように受け入れられ、伝播していったか については様々な研究が行われている。その一つが食料資源の利用戦略に関す る研究で、特に「渡来系の人々が持ち込んだ穀物栽培がどのように拡散したか」 は主要なテーマである。本研究では、水田稲作に先行して拡散した可能性が考古 学的証拠から指摘されている C4 雑穀に注目した。

弥生時代開始の指標として、多くの研究者が水田稲作を挙げてきたが、植物遺 存体や土器圧痕などの研究により、弥生時代早期から水田稲作と同時にアワや キビといった C4 雑穀の栽培も行われていたことが指摘されている(藤尾, 1988)。 具体的な植物遺存体や耕作遺構の検出例としては、佐賀県唐津市菜畑遺跡で縄 文時代晩期後半・弥生時代前期初頭と推定された地層からアワの炭化種実が確 認されている(笠原, 1982)。また、徳島県庄・蔵本遺跡では弥生時代前期の水田 遺構と畠遺構が検出されており、畠遺構では雑穀種子類の出土量がイネを凌駕 していたため、灌漑水田稲作が本格化する弥生前期であっても相当の雑穀類を 生産していたとされている(中村豊, 2009, 2010)。炭化種実の検出例としては、大 阪府東大阪市鬼虎川遺跡で弥生時代中期の層から炭化した稲穂や炭化米ととも にアワの炭化種実が出土しており、神奈川県大井町中屋敷遺跡の土坑からもイ ネの他に 2540-2350 cal BP ごろのアワやキビ類の炭化種実が出土している(笠原, 1984; 佐々木, 2008)。

日本には弥生時代に伝播した雑穀栽培は、黄河流域で新石器時代に始まり、黄河中流域東部低地で約 7670–7610 cal BPの栽培キビやアワの種子が出土している(Zhao, 2011)。7000-4000 年前の中国黄河・淮河流域の人骨コラーゲン・アパタ

イトの同位体分析した研究では、C4 雑穀主体の食性を示す高い $\delta^{13}$ C 値が得られている(Pechenkina et al., 2005)。

一方、イネの利用は 10000-7000 cal BP に長江流域で開始され、水田による稲作 は中国の長江中下流域で 6300-6000 cal BP には既に行われていた(Cohen, 2011)。 水田稲作と雑穀の畠作を複合的に行う農業形態は、最古のもの(5800 cal BP)が 中国・湖南省城頭山遺跡で見られ(Nasu et al., 2007)、3400 cal BP には朝鮮半島に も伝播しており(Lee, 2011)、これらの地域から日本に伝わったと考えられる。

しかし、日本の弥生時代遺跡から検出される穀類の植物遺存体ではコメが圧倒 的多数を占める(安藤, 2009)。土壌に含まれるアワやキビといった細かい雑穀を 検出するのは、0.2mmのメッシュ篩を用いたフロス・フローテーションが有効 であるが、このような処置が取られた発掘調査は少なく、粒径の小さい雑穀では 取りこぼしの危険性がある(Zhao, 2011)。また、遺物の地層間での移動がしばし ばみられるため、植物遺存体を用いた研究には、直接の年代測定が行われた場 合、あるいは遺構等との関係性が明らかな場合を除き、常に混入を疑わなければ ならないという問題がある(安藤, 2009)。

近年、土器に残された種実圧痕をシリコンで型取りし、走査型電子顕微鏡 (SEM) で確認・同定していくレプリカ法が急速に普及し、縄文時代晩期から弥生時代に かけての雑穀利用について確度の高い情報が飛躍的に増加している(工藤, 2018)。 レプリカ法を用いた研究では、縄文時代晩期に朝鮮半島から北九州や山陰地方 に 2800-2700 cal BP に伝わったイネの水田栽培とアワ、キビの畠栽培は、その後 近畿地方、中部地方、関東地方、東北地方へと東に伝わり、各地で環境条件に合 わせて選択的に受容されたという仮説が唱えられている(中沢, 2014)。西関東地 方の 14 遺跡で 115 のレプリカを SEM 観察した調査では、イネ籾は 4 標本に限 られたのに対し、6 つの遺跡の土器からアワの果実・種子の圧痕が 17 標本、キ ビの種子・果実の圧痕が 32 標本から検出された(設楽・高瀬, 2014)。中部日本で は縄文時代晩期後葉において稲作に先行してアワ・キビ栽培が開始されていた という推定があり、山梨県中道遺跡(縄文時代晩期末葉)では検出された植物種 子圧痕のうち 74%がアワ・キビもしくはその近似種とされた(遠藤・高瀬, 2011; 中山・閏間、 2012)。 長野県で実施された土器の種実圧痕調査からも、縄文晩期 末に雑穀栽培が選択的に受容され、のちにイネと複合的に栽培されるようにな ったとされている(馬場・遠藤, 2017)。

さらに、土器付着炭化物の同位体分析を行った研究を行った研究では、長野県

松原遺跡から出土した栗林式土器1個体からC4植物の存在を示す炭素・窒素安 定同位体比が得られている(西本編,2009)。土器付着物は、内面についているも のは調理に際して付着したおこげと考えられており、調理・加工された食材の同 位体比の特徴を反映するといわれている(Hastorf & DeNiro, 1985)。ただしこの研 究では試料数がわずか1点であったことが課題として指摘された。西日本では、 滋賀県竜ヶ崎A遺跡にて形態からキビと同定された長原式土器(縄文晩期~弥 生早期)の土器付着炭化物から安定同位体分析でもC4植物の炭素・窒素安定同 位体比が得られている(宮田ら,2007)。

以上のように日本の初期農耕における C4 雑穀の存在は実証されつつあるが、 実際に C4 雑穀が縄文晩期~弥生時代の人々によってどの程度摂取されていた かについては評価が難しく、未だ明らかになっていない。

4. 弥生人・縄文人の人骨同位体比測定による食性分析

人骨のコラーゲンで測定された炭素・窒素同位体比によれば、弥生人の食性に は遺跡間で差が見られる。弥生人の食性の集団差は、遺跡に住む集団の文化の違 いと、遺跡が位置する地域の生態系の違いに由来すると考えられる。例として、 先行研究の炭素・窒素安定同位体比測定による食性分析結果を挙げると、長崎県 深堀遺跡出土人骨からは高い海産物の利用が示唆される一方、同じく沿岸地域 にある山口県土井ヶ浜遺跡出土人骨からは海産物・淡水資源だけでなく、δ<sup>13</sup>C が低くδ<sup>15</sup>N が高い食糧源の利用も示唆され、この食糧源の候補として水稲が挙 げられている(米田, 2004, 2014)。内陸に位置する岩手県アバクチ洞穴遺跡出土人 骨からは、C3 植物、あるいは C3 植物を摂取した陸獣がタンパク資源として重 要であった可能性が高い(米田, 1999)。鹿児島県南種子町の広田遺跡では、弥生 ~古墳時代の人骨 5 体についてややδ<sup>13</sup>C が高い傾向が見られたため、C4 植物 もしくは海生貝類を食べていた可能性が指摘されている(米田, 2007)。上記に挙 げた先行研究の弥生人骨のコラーゲン炭素・窒素安定同位体比を【図1】に示す。

土器圧痕や植物遺存体から指摘されているような縄文晩期~弥生時代の人々 による C4 雑穀の利用は、食事中のタンパク質を主に反映する人骨コラーゲンの 炭素・窒素安定同位体比からは未だ明らかになっていない。また、日本では江戸 時代以降に帰化した植物を除き 165 種の C4 植物が確認されているが、C4 雑穀 を除いて縄文晩期~弥生時代に植物遺存体から摂取が指摘されているものはな い(奥田・古川, 1990)。C4 雑穀が利用されていた場合、人が飼っていた動物に与

えた可能性も考えられるが、例えば縄文時代晩期の土器からアワ・キビの土器圧 痕が検出されている徳島県三谷遺跡のイヌの動物骨コラーゲンの同位体比は C3 生態系の食料源を利用する動物の範囲に収まり、C4 雑穀食の傾向は見られなか った(遠部慎, 私信; 中沢ら, 2012)。C4 雑穀は C3 植物と炭素同位体比で区別でき る。縄文時代に食料資源として利用されていたことが植物遺存体の研究から指 摘されている堅果類(ドングリ類・クルミ・クリ・トチノキなど)や球根類(ヤ マノイモなど)、弥生時代に伝わったイネはすべて C3 植物に属しδ<sup>13</sup>C はおよそ -22~-37‰の範囲にある。これに対し、C4 植物のδ<sup>13</sup>C はおよそ-15~-9‰の範囲 である(Codron et al., 2005;工藤・国立歴史民俗博物館, 2014)。したがって、C4 雑 穀の摂取が増加した場合、人骨ではδ<sup>13</sup>C の上昇が期待できる。ただし、コラー ゲンの同位体比は主に食事中のタンパク質を反映するため、タンパク質の含有 量が他の栄養素と比べ少ない植物の摂取を評価するのには問題がある。また、上 述の広田遺跡の例のように、C4 雑穀の摂取は海産物の摂取との区別が難しい。 日本の先史時代人の食性復元にコラーゲンだけでなく、全栄養素を反映するア パタイトの同位体比を両方用いた研究例は未だに数少ない。東海地方と山陽地 方の沿岸地域にある遺跡から出土した縄文時代人の骨コラーゲンと歯エナメル 質の炭素同位体比を用いた食性推定では、骨コラーゲンでは海産物の食性への 寄与率が 51%と推定された集団で、エナメルからの海産物推定寄与率がわずか 14.3%となり、高い C3 生態系の陸上植物・動物利用が示唆された(Kusaka et al., 2015)。ただし、各食料源の食性への寄与推定率を計算する上で C3 草食動物と 海生魚類の線形混合を用いており、これは縄文人が C3 植物と海生魚類を直接食 べていたことを仮定した食性評価となっているため、C3 植物を直接食べずに、 C3 草食動物を食べた場合の栄養素含有率の違いによるコラーゲン・アパタイト 同位体比への影響までは考慮していない。また、コラーゲンとアパタイトの同位 体比測定試料として骨と歯という別の器官を利用しているため、高齢の個体で は反映されている食性の時期が数十年ずれている点には注意が必要である。歯 冠エナメル質と歯根象牙質はほとんど代謝が起きないため、食性は組織形成当 時のものを示す(Beaumont et al., 2013; Dean, 2017)。Kusaka et al. (2015)で用いられ た第三大臼歯は現代人においては9歳~13歳の間に形成される。これに対し、 骨は最期の 10-25 年の食性を示す(Hedges et al., 2007)。

#### 5. 雑穀摂取の検出に向けたマクロ栄養素モデルの構築

食事中の全栄養素を反映するアパタイトの炭素同位体比を測定することによって、摂取が少ない段階においても C3 生態系から構成された食性への C4 植物 の導入の検出が期待できる。しかし、C4 植物だけでなく海産物も利用できる環 境にあった人類集団の食性を評価する場合、海産物は C4 植物と同様に高いる <sup>13</sup>C を有するため、両者の影響を何らかの方法で区別する必要がある。一般的に 海産物は $\delta^{15}$ N が高いことで識別できるが、魚類と比べ $\delta^{15}$ N が低い海生貝類が 摂取されていた場合や、C4 植物・海産物の寄与が少量の場合には区別が容易で はない。C3 植物の $\delta^{13}$ C、 $\delta^{15}$ N はおよそ -37~-22‰、-2.2~10.6‰ の範囲を取 る。一方、C4 植物の $\delta^{13}$ C、 $\delta^{15}$ N はおよそ -15~-9‰、-1.3~3.6‰ の範囲を取 り、海生貝類は -17.7~-12.5‰、5.5~12.9‰ の範囲を取る(Codron et al., 2005; 下 条, 1989)。このように、C4 植物と海生貝類は「 $\delta^{13}$ C は C3 植物よりも高いが、  $\delta^{15}$ N は C3 植物の分布範囲と重なる」という同位体比の特徴が共通しているた め、C3 生態系に C4 植物が少量導入された場合、少量の海生貝類の摂取と区別 するのは困難である。

Kellner と Schoeninger は給餌実験および野生の陸生動物に対して行われた研究 を参照し、タンパク質源が C3 生態系・C4 生態系・海洋生態系の食料源で構成 された食性別に、エネルギー源として C4 植物が導入された場合の $\delta^{13}$ Coollagen と  $\delta^{13}$ Capatite の変化を線形モデルで示し、人骨の食性評価に応用した(【図 2】、 Kellner & Schoeninger, 2007)。しかし、C3 生態系と C4 生態系の線形モデルの間 に海洋生態系の線形モデルが存在するため、主な食料源の由来が C3 生態系から C4 生態系へと移行する過程の初期段階では、海洋生態系の食料源の導入との区 別が難しい。Kellner & Schoeninger (2007)では、C3 生態系と C4 生態系の線形モ デルからのずれが見られた場合、その要因について海生魚類・淡水魚類・雑穀を 与えられた家畜など、同位体比そのものではなく、分析した人骨が出土した遺跡 の地理的環境や考古遺物を参照して説明を変えている。C4 植物とその他の食料 源の摂取を区別するためには、 $\delta^{15}$ N、 $\delta^{13}$ Coollagen や $\delta^{13}$ Capatite だけでなく、 $\Delta$ <sup>13</sup>Capatite-collagen など他の指標を用いたモデルの構築とその有効性の検討が必要で ある。

本研究では、C4 雑穀と海生貝類の両方を利用できる環境にあった人類集団に おける C4 雑穀摂取の検出に向けて、C4 雑穀と海生貝類のマクロ栄養素(炭水 化物・脂質・タンパク質)の組成に大きな違いがあることに注目した。コラー

ゲンは主に食事中のタンパク質を反映するのに対し、アパタイトは炭水化物や 脂質を含む全栄養素を反映する。したがって、C4 雑穀と海生貝類に含まれる マクロ栄養素の含有率の違いがある場合、同じ摂取量でもアパタイトの炭素同 位体比とコラーゲンの炭素・窒素同位体比への影響の及ぼし方は異なると期待 される。【表 1】に食品成分データベース(文部科学省)を参照した C4 雑穀と海 生貝類のマクロ栄養素の含有率を示す。C4 雑穀の例として、複数の縄文晩期 〜弥生時代の遺跡から出土した植物遺存体ならびに土器圧痕において報告され ているアワを挙げた。海生貝類の例としては、関東の縄文時代後期の貝塚遺跡 でその殻が多く出土しているハマグリを選んだ(樋泉, 2014)。乾燥重量中の質 量%をみるとアワは圧倒的に炭水化物の割合が高い(82%)のに対し、ハマグ リはタンパク質が主要な栄養素である(72%)。よって、C4 雑穀は全栄養素を 反映するアパタイト、海生貝類はコラーゲンを主に反映するコラーゲンにより 大きな影響をもたらすことが予想される。

Fernandes らは、先行研究でマウス・ラット・豚に対して行われた給餌実験の 結果をまとめ、コラーゲン・アパタイトと各動物に与えられた餌の炭素同位体 比の間に以下の線形な関係式が成り立つことを示した(Fernandes et al., 2012)。

 $\delta^{13}C_{\text{collagen}} = 0.74 \times \delta^{13}C_{\text{protein}} + 0.26 \times \delta^{13}C_{\text{energy}} + 4.8$ 

 $\delta^{13}C_{\text{apatite}} = \delta^{13}C_{\text{diet}} + 10.1$ 

 $\delta^{13}C_{diet}$ 、 $\delta^{13}C_{protein}$ 、 $\delta^{13}C_{energy}$ はそれぞれ食事全体、タンパク質、エネルギー成 分(炭水化物と脂質)の炭素同位体比である。この関係式は野生動物の実測デ ータでもよく適合する結果を得られた。これらの式に基づけば、例えば主に C3 植物から構成される食性に C4 雑穀あるいは海生貝類が少量導入された場 合、炭水化物の含有率が大きい C4 雑穀では先に $\delta^{13}C_{collagen}$ と比べ $\delta^{13}C_{apatite}$ が より大きく上昇する一方、タンパク質の割合が大きい海生貝類では $\delta^{13}C_{collagen}$ がより大きく上昇すると考えられる。

6. 本研究の目的

本研究では、マクロ栄養素の組成に大きな違いがある C4 雑穀と海生貝類が C3 生態系ベースの食性に導入された場合、 $\delta^{13}$ C<sub>collagen</sub>、 $\delta^{13}$ C<sub>apatite</sub>、 $\Delta^{13}$ C<sub>collagen</sub>apatite、 $\delta^{15}$ N といった同位体指標にどのような変動をもたらすかを Fernandes ら (2012)の関係式に基づき計算し「マクロ栄養素モデル」を構築することで、 C4 雑穀と海生貝類の摂取の区別が可能かを理論的に検討する。 次に、縄文時代~弥生時代の遺跡から出土した人歯資料の歯根象牙質コラー ゲンの炭素・窒素同位体比および歯冠エナメル質アパタイトの炭素同位体比を 測定し、上記のマクロ栄養素モデルを用いて C4 雑穀の摂取を評価すること で、考古学的証拠に基づき推定された縄文・弥生移行期における C4 雑穀の利 用を人歯の同位体比から検証する。歯根象牙質のコラーゲンは主にタンパク質 を反映するのに対し、歯冠エナメル質のアパタイトは炭水化物や脂質を含む全 栄養素を反映するため、これらの同位体比を比較することで C4 雑穀の食性に 対する寄与を評価できると考えられる。δ<sup>13</sup>Cの上昇が確認された場合、それ が C4 雑穀によるものなのか、海生貝類によるものなのか、観測されたコラー ゲンとアパタイトの同位体比をマクロ栄養素モデルによって得られた結果と比 較し考察する。さらに、C4 雑穀の摂取量についても定量的な評価を試みる。

また、遺物は地層間を移動した可能性があるので、コラーゲンの放射性炭素年 代測定を行うことによって各資料の正確な年代を求め、時代による食性の変化 を定量的に議論する。

分析対象には、関東地方内陸部(群馬県)および中部高地(長野県)における 縄文時代~弥生時代の遺跡から出土した人歯ならびに人骨を用いた。これらの 地域はレプリカ法を用いた研究で雑穀の検出報告数が多く、選択的に雑穀が受 容された可能性が指摘されている(設楽・高瀬,2014;馬場・遠藤,2017)。C4 雑穀 は C3 植物およびそれを食す動物より *δ*<sup>13</sup>C が高いため、縄文晩期から弥生時代 にかけて C4 雑穀の摂取量が増えた場合は古人骨資料において*δ*<sup>13</sup>C の上昇が期 待される。遺跡はすべて内陸にあり、海産物の食性への影響は少ないと考えられ るが、装飾品としては群馬県岩津保洞窟遺跡にて海生貝類(オオツタノハガイ) の貝輪が弥生時代の人骨と共伴して出土している(岩津保洞窟遺跡調査団,2015)。 また、縄文時代の遺跡では当時の海岸線付近に位置する東京都中里遺跡から「干 し貝加工場」と推定される木枠付土坑が検出されており、海岸から離れた台地上 にある東京都七社神社前遺跡からも同時期に貝層が検出されている(阿部,2014)。 したがって、沿岸の遺跡で採取・加工された海産物が内陸まで輸送されていた可 能性がある。

関東地方と中部高地を含む中部地方は、縄文時代の人口密度が最も高かった 地域で、弥生時代にかけて人口がさらに増加したと推定されている(Koyama, 1978)。これらの地域では、狩猟採集を主業とする縄文人の子孫集団による農耕 の受容が想定され、狩猟採集から農耕に完全に移行するのか、部分的に農耕を

取り入れるにとどめるかなどの選択肢があったと考えられる。ゆえに関東地方 と中部高地における弥生人の食性を調べることは、「狩猟採集民が多く住む地 域に移住民の農耕文化がどう伝播したか」という、新石器時代のヨーロッパな ど世界中の多くの地域で起こった現象を理解する上で重要な手がかりとなる。 しかし、これらの地域の弥生人骨は出土数が少なく、さらに資料の状態が良好 であることは希で、同位体分析の報告自体が非常に少なかった。弥生時代の人 骨・歯に対してコラーゲンと炭酸塩両方の同位体分析を行うのは本研究が初め てである。

### II. 材料と方法

1. マクロ栄養素モデル

本研究では縄文〜弥生時代の関東内陸部および中部高地における C4 雑穀摂取 の検出に向けたマクロ栄養素モデルを構築するにあたり、当時の食性として可 能性のある以下の6通りの2食料源間混合を計算した。

①C3 植物-C4 雑穀

②C3 植物-海生貝類

③C3 植物-C4 草食動物

④C3 草食動物-C4 雜穀

⑤C3 草食動物-海生貝類

⑥C3 草食動物-C4 草食動物

本研究において C3 草食動物・C4 草食動物とは、それぞれ食料源がすべて C3 植物・C4 雑穀である動物を指す。前者は C3 生態系における野生動物、後者は 家畜化され人間より C4 雑穀を与えられた動物を想定している。加えて、本研 究で扱った中国の新石器時代の資料、およびマクロ栄養素モデルの検証に用い る先行研究の人骨の食性として推定される以下の2通りの2食料源間混合を計 算した。

⑦C3 植物-海生魚類

⑧C4 植物-C4 草食動物

食性への各食料源の寄与率は食事全体で乾燥重量にて占める割合で表される。 マクロ栄養素モデルでは食料源の寄与率を20%ごとに変化させた。

【表2】に、マクロ栄養素モデルの計算に用いた食料源における各マクロ栄養素の含有率と同位体比を示す。C3 植物、海生貝類、海生魚類の炭素・窒素の全体同位体比およびコラーゲン同位体比の代表値はすべて下条(1989)の測定結果を参照しており、関東地方縄文遺跡で出土し同定された C3 植物の現生種の 平均、千葉県古作貝塚から出土したマダイの骨コラーゲン、関東の縄文時代後期の貝塚遺跡でその殻が多く出土しているハマグリの現生種の可食部の同位体比の平均を採用した。C3 草食動物については本研究で分析したシカの歯根象 牙質コラーゲンを参照した。C4 雑穀の炭素・窒素の全体同位体比は神奈川県 中屋敷遺跡から出土した炭化アワの同位体比を参照した(米田穣, 私信)。動物 コラーゲンから筋肉の同位体比を推定する際に、ラットおよびマウスに対して 給餌実験を行った先行研究を参照し、以下の関係式を用いた(Ambrose, 2000; Tieszen & Fagre, 1993)。

 $\Delta^{13}$ C<sub>collagen-muscle</sub> = 2.4‰

 $\Delta^{15}$ N<sub>collagen-muscle</sub> = 0.8‰

各マクロ栄養素の含有質量比は、植物・草食動物・海生貝類・海生魚類につい てはそれぞれ文部科学省食品成分データベースのアワ・シカ・ハマグリ・マダ イのデータを参照し、全重量から水分と灰分(カルシウム・鉄・ナトリウムな どのミネラル)の重量を取り除いた重量中の割合を計算した。各マクロ栄養素 の炭素含有質量比はタンパク質・炭水化物・脂質でそれぞれ 0.524,0.444, 0.768 とした(Morrison et al., 2000)。食料源に含まれる栄養素の含有質量比と炭 素含有質量比の積を、全栄養素のそれで除し、食料源におけるその栄養素の

「C 質量比」とした。窒素は Fernandes et al. (2012) に従いすべてタンパク質に 由来するとした。参照資料の同位体比データは【表 1】に記載している。

植物における全体( $\delta^{13}C_{bulk}$ )とタンパク質( $\delta^{13}C_{protein}$ )、脂質( $\delta^{13}C_{lipid}$ )、 炭水化物( $\delta^{13}C_{carbohydrates}$ )の炭素同位体比のオフセットはイネ科の植物につい て栄養素ごとに同位体比を測定した先行研究を参照し、以下のオフセットを設 けた(Tieszen, 1991)。

 $\delta^{13}$ C<sub>bulk</sub> -  $\delta^{13}$ C<sub>protein</sub> = 2‰

 $\delta^{13}C_{\text{bulk}}$  -  $\delta^{13}C_{\text{lipid}}$  = 4‰

 $\delta^{13}C_{\text{bulk}} - \delta^{13}C_{\text{carbohydrates}} = -0.5\%$ 

哺乳類のコラーゲンとタンパク質の $\delta^{13}C(\delta^{13}C_{collagen} \cdot \delta^{13}C_{protein})$ および筋肉と脂質の $\delta^{13}C(\delta^{13}C_{muscle} \cdot \delta^{13}C_{lipid})$ のオフセットは、ヒツジおよびマウスに対して給餌実験を行った先行研究に基づき、以下のように定めた(Piasentier et al., 2003; Tieszen & Fagre, 1993)。

 $\delta^{13}$ C<sub>collagen</sub> -  $\delta^{13}$ C<sub>protein</sub> = 2.5‰

 $\delta^{13}C_{\text{protein}}$  -  $\delta^{13}C_{\text{lipid}}$  = 6.0%

海生貝類、海生魚類においては、これらのオフセットについて適切なデータが 現在ないため、哺乳類に倣って値を定めた。また、海生貝類に質量%で20%ほ ど含まれる炭水化物の同位体比に関しては、全体の炭素同位体比とのオフセッ トが不明のため、全体の炭素同位体比をそのまま採用した。

コラーゲンとアパタイトの $\delta^{13}$ C ( $\delta^{13}$ C<sub>collagen</sub>、 $\delta^{13}$ C<sub>apatite</sub>)、コラーゲンとタンパ ク質の $\delta^{15}$ N ( $\delta^{15}$ N<sub>collagen</sub>・ $\delta^{15}$ N<sub>protein</sub>)は以下に示した関係式を用いて算出した (Ambrose, 2000; Fernandes et al., 2012).

 $\delta^{13}C_{\text{collagen}} = 0.74 \times \delta^{13}C_{\text{protein}} + 0.26 \times \delta^{13}C_{\text{energy}} + 4.8$ 

 $\delta^{13}C_{\text{apatite}} = \delta^{13}C_{\text{diet}} + 10.1$ 

 $\delta^{13}C_{energy} = \{(炭水化物のC質量比) \times \delta^{13}C_{carbohydrates}$ 

+(脂質のC質量比)× $\delta^{13}$ Clipid}

/{(炭水化物のC質量比)+(脂質のC質量比)}

 $\delta^{13}C_{diet} = (炭水化物のC質量比) \times \delta^{13}C_{carbohydrates}$ 

+ (脂質のC質量比)×δ<sup>13</sup>Clipid

+ (タンパク質のC質量比) ×  $\delta^{13}$ Cprotein

 $\delta^{15}N_{collagen} = \delta^{15}N_{protein} + 3.3\%$ 

マクロ栄養素モデルが適切に食性の違いを検出できるかを検証するため、先 行研究における人骨の実測値と比較をした。【表 3】に用いた先行研究のデータ とその出典を示した。以下、それぞれの集団の食性について詳述する。

C3 生態系の食料源で構成された食性に C4 植物(トウモロコシ)が取り入れ られた食性として、北米の遺跡から出土したネイティブアメリカン集団である Cahokia の人骨コラーゲン・アパタイトの同位体比を参照した(Ambrose et al., 2003)。Cahokia 集団では、トウモロコシの農耕が始まってからもタンパク質源 として C3 生態系の食料源の利用が続いたこと、低い地位の人は C4 植物を多く 摂取、高い地位の人は C3 生態系の動物肉を多く摂取していたことが考古学的 証拠と同位体比より指摘されている(Ambrose et al., 2003)。

C4 植物と、それを与えられた家畜を食べていた集団として、中国・新石器時 代の仰韶文化期の集団(Yanghshao)の人骨コラーゲン・アパタイトの同位体比 を採用した。この集団を扱った研究では人々が雑穀を摂取していたことが植物 考古学と同位体生態学の両分野から指摘されているほか、同文化期の豚や犬も 同位体分析されており、コラーゲンの炭素・窒素安定同位体比から家畜に雑穀 が与えられていたことが示唆されている(Pechenkina et al., 2005)。

C3 生態系と海産物が両方利用されている集団として、東海地方と山陽地方の 沿岸地域にある遺跡から出土した縄文時代人の骨コラーゲンと歯エナメル質の 同位体比データを参照した(Kusaka et al., 2015)。この研究では、同位体比のデー タから C3 生態系の食料源と海産物の摂取が示唆されている。

#### 2. 人歯・人骨・動物骨資料とその出土遺跡

古人骨の食性復元の多くはコラーゲン、アパタイトともに人骨資料から試料 を採取しているが、アパタイトのδ<sup>13</sup>Cを陸上動物の同一個体の骨と歯冠エナ メル質について分析したところ、歯冠エナメル質の方が信頼できる値を示した という研究が複数ある(Lee-Thorp & van der Merwe, 1991; Lee-Thorp, 1989; Zazzo et al., 2004)。歯冠エナメル質は特に構造が密であり、孔が少なく、有機成分が 質量%にして2%のみである。結晶性が高く安定であるため、死後新たな結晶 成長が起きたり、溶出することも少ない。これらの特性により、骨と比べて続 成作用を受けづらい(Lee-Thorp, 1989)。そこで本研究では、続成作用が少ない ことが指摘されている歯冠エナメル質を選択した。また、反映する食性の時期 がコラーゲンとアパタイトで大きく異なるのを避けるため、コラーゲンの値は 可能な限り同じ歯の歯根象牙質から採取した。骨は最期の10-25年の食性を示 す(Hedges et al., 2007)。一方、永久歯の歯冠エナメル質形成開始と歯根象牙質完 成の時期差は、各歯種での平均が 6.3-10.4 年である(【表 4】を参照)。したが って、骨コラーゲンではなく歯根象牙質コラーゲンを用いることで、歯冠エナ メル質のアパタイト成分が反映する時期との差を最小限に抑えられると考えら れる。本研究で用いた歯種はほとんどが永久歯であり、0 才~18 才時の食性を 示す(Nanci, 2018; White & Folkens, 2005)。

同位体食性分析に用いる食料源データは、食性分析対象の生物と可能な限り 同時代・同地域の資料を用いることが求められる(Phillips et al., 2014a)。本研究 では、分析した人歯・人骨資料の大部分を占める岩津保洞窟遺跡で出土した動 物骨からコラーゲンを抽出し、炭素・窒素同位体比を測定した。マクロ栄養素 モデルにおいて用いた C3 草食動物のデータは、岩津保洞窟遺跡で出土したシ カ象牙質コラーゲンから推定したものである。また、弥生時代に C4 植物が動 物により摂取されたことを示唆する先行研究の事例は未だにないが、本研究で も動物による C4 植物の摂取がないかを確認するために同時代の動物骨を分析 した。

同位体分析に供する試料を採取した人歯・人骨資料については、形態情報の 保存のため写真撮影をし、さらに人歯資料については歯科用ゴム質弾性印象材 と付加型精密シリコン印象材で雌型を取った後、石膏で模型を作成した。脆く なっており型の作成が困難であった資料については東京大学総合研究博物館に て CT 撮影を行った。

分析した人歯・人骨・動物骨資料の点数を遺跡別に【表 5】に示す。また、各 遺跡の所在地を【図 3】で示す。以下、各遺跡についてその背景と性質、用い た資料の出土状況とサンプリング方針を説明する。

i) 群馬県岩津保洞窟遺跡

群馬県多野郡神流町に所在する。伊豆諸島産の可能性が高い多数のオオツタノ ハ製貝輪を含む多くの海生貝類製の装飾品、東北地方南部にも関連する型式の 土器が出土したことにより、広い地域との活発な交流が示唆されている。1980年 から1982年にかけて行われた3次にわたる発掘調査で合計8体の人骨と、74点 の遊離人歯(歯槽骨から抜け落ちた状態で見つかる歯)が出土した。

出土した人骨のうち、6 体の人骨(1-3、5-7 号)については、2、5-7 号と伴出 した野沢式の土器から弥生時代中期前葉のものと推定された(岩津保洞窟遺跡調 査団, 2015)。5-7 号は合葬であった。4 号人骨と8 号人骨は出土状況より縄文早 期に属するとされている。弥生時代中期前葉のものと推定された6 体の人骨(1-3、5-7 号)については、①加熱痕が見られる(6 体全て)、②下肢を強く折り曲 げた屈葬である(1-3、5、7 号)、③オオツタノハの貝輪が出土している(1、2、 5-7 号)などの特徴を共有している(岩津保洞窟遺跡調査団, 2015)。また、1 号人 骨と2 号人骨については、形態学的特徴に縄文人的形質が色濃く見られる(海部, 1992)。

遊離人歯は、弥生時代に属すると推定された人骨の 30-60cm 上に 8 割の歯が集 中していたことから、出土地点は弥生時代の地表面付近であり、弥生時代に由来 すると推定された(岩津保洞窟遺跡調査団, 2015)。遊離歯の他に 15 点以上の遊離 人骨も出土しており、洞窟は遺体を骨化させる場所として用いられ、別の場所に 再葬する際に遺体から歯や人骨が外されて撒かれたのではないかと考えられて いる。

遊離人歯 74 点の歯種を藤田(1962)の基準に基づいて同定した。この際、本研究 の試料を既に同定していた先行研究(岩津保洞窟遺跡調査団,2015;海部陽介同 定)および佐宗亜衣子の私信を参考にした。同歯種の歯は1個体につき1点の み存在すること、今回同定された永久歯と乳歯の形成年齢から推定される個体 年齢の領域が重ならないため、歯種同定から判定した最小個体数は7個体とな った。同位体分析に供する資料には、最小個体数を判定する根拠となった歯種を 中心に26点の歯を選んだ。これに加え、出土状況より縄文早期に属するとされ ている4号人骨と8号人骨の人骨2点、4号人骨に付随した歯を1点分析した。

同位体分析を行った資料の歯種同定結果は、【表 6】の「歯種・骨種」に記載した。

動物骨資料として、縄文時代の地層から出土したとされ、武蔵野美術大学民俗 資料室に保管されていたものを借用した。種同定は明治大学黒耀石研究センタ ーの樋泉岳二氏が形態学的特徴に基づき行った。これらの資料のうち、ニホンジ カ、イノシシ、ツキノワグマ、ニホンノウサギ、カモシカと同定された骨のコラ ーゲンを同位体分析した。

ii) 長野県石神遺跡

長野県小諸市の遺跡で、縄文・平安時代の住居遺構が検出されている(小諸市 教育委員会, 1994)。出土した人骨は、それぞれ石棺 (SX02・03・07)と土坑墓 (SK55・102・181・520)に埋葬されており、SX07の2個体の合葬を含めて計 8個体分あった。石棺、土坑墓ともに遺跡内の一地点にやや集中的に位置し、 その年代は堀之内2式期を中心とする縄文時代後期に属するものが大半である と推定された。埋葬の様式としては、上肢とともに下肢を強く屈曲させた屈葬 位が多い。第3号土坑墓 (SK181)、第5号土坑墓 (SK520)出土の人骨には縄文 時代中期末から弥生時代中期末にかけて各地で行われた抜歯の痕跡が認められ ている。本研究では石棺に埋葬された1個体 (SX02)、土坑墓に埋葬された4 個体 (SK55・102・181・520)の歯を1点ずつ、合わせて5点の歯を分析し た。コラーゲンが抽出できない、もしくは得られたコラーゲンの質が悪かった 個体については、人骨から抽出したコラーゲンのデータを参照した。

iii) 長野県生仁遺跡

長野県千曲市(発掘時は更埴市)の遺跡で、縄文晩期終末、弥生時代~近世 の遺構・遺物が出土した。縄文晩期終末の遺物としては氷式土器が出土してい る(長野県更埴市教育委員会,1969)。弥生時代の遺構としては、集落跡があり、 住居跡からト骨が出土している。また、弥生式の土器片 (栗林式・吉田式・箱 清水式)が出土している。千曲川の自然堤防上にあり、弥生時代~平安時代の 自然流路、平安時代~近世の水田跡が検出されている(更埴市教育委員会, 2001)。昭和44年に行われた発掘おいて弥生時代後期(箱清水式期)の土器群と 共に抜歯の行われた上顎・下顎骨が検出されており、歯冠と上下顎骨の形態分 析の結果、渡来系弥生人の可能性が高いという所見が得られている(西沢,1982; 近藤修,私信)。本研究ではこの頭骨の右上顎第三大臼歯からエナメルをサンプ リングした。コラーゲンの炭素・窒素安定同位体比と放射性炭素年代は頭骨か ら抽出されたコラーゲンのデータを参照した。

iv) 中国河北省・姜家梁(Jiangjialiang) 遺跡

中国新石器時代後期(小河沿文化)のおよそ 5300-5000 cal BP の遺跡である。 人骨コラーゲンに対して行われた先行研究では $\delta^{13}$ C、 $\delta^{15}$ N がそれぞれ平均 -7.0±0.3‰、8.8±0.4‰であり、雑穀・雑穀食動物の摂取が示唆されている(Liu, et al., 2017)。本研究では、雑穀を食べていた集団の人歯の参照データとして、3 個体の歯をそれぞれ 1 点ずつ分析した。

3. 歯根象牙質・骨コラーゲン炭素窒素安定同位体比測定

歯根象牙質・緻密骨をディスクカッターで 40-500µg 切り出し、氷冷しながら 純水中で超音波洗浄した後、0.2M 水酸化ナトリウム溶液に一晩漬けて土壌有機 物(植物由来のフミン酸、フルボ酸など)を除去した。純水で中性に戻した 後、凍結乾燥してから粉砕した。粉末状になった試料をセルロースチューブに 入れ、1.2M 塩酸に一晩漬けて無機成分であるヒドロキシアパタイトを溶解した (脱灰)。その後純水で中性に戻し、セルロースチューブの内容物を遠心分離 して、上澄みを取り除いた。沈殿した試料を凍結乾燥した後、90℃で 12 時間 加熱し、ゼラチンのみを熱変性によって可溶化し(ゼラチン化)、再び遠心分 離をかけてその他の成分と分離した。その後、ゼラチンが溶けた溶液をガラス フィルターで吸引ろ過し、凍結乾燥した試料をコラーゲン分析試料とした。 一部試料については、純水中で超音波洗浄後、以下の別プロトコルでコラー ゲンを抽出した。0.4 M 塩酸で 2 晩脱灰後、中性に戻して上澄みを遠心分離で 除去した。0.1M 水酸化ナトリウムを入れ、中性に戻した。pH4(0.0001M)塩酸 を加え 90℃で 2 晩加熱し吸引ろ過でゼラチン分画を回収した。この方法では前 述の方法と比べ弱酸で長時間脱灰し、ゼラチン化にもより時間をかけており、

本研究室で行われた予備的実験にてコラーゲン回収率の向上と、前述の方法と の同位体分析値の互換性が保証されている。

ゼラチン約 0.4mg を錫箔に包み、元素分析-同位体比質量分析計(EA-IRMS, 元素分析計 Thermo Scientific FLASH 2000 と同位体比質量分析計 Thermo Scientific DELTA V Advantage を連続フローインターフェース Thermo Scientific ConFloIVで繋いだもの)を用いて $\delta^{13}$ C 値と $\delta^{15}$ N 値を測定した。標準試料には 昭光サイエンス株式会社によって配布されたアラニンとヒスチジンを用いた。 アラニン(保証値  $\delta^{13}$ C: -19.6±0.2‰)の測定結果から計算した $\delta^{13}$ C と $\delta^{15}$ N

の測定における標準偏差はそれぞれ 0.01-0.16‰、0.05-0.24‰だった。元素分析 計では炭素・窒素の存在比が測定できるので、これをもとにコラーゲンの保存 状態の評価指標となる%C と%N(ともに質量%)、C/N比(%C と%Nより計算 した原子比)を求めた。

4. 歯冠エナメル質アパタイトの炭素安定同位体比測定

歯冠エナメル質試料は、タングステン・カーバイド製ドリルにて歯冠の表面の 汚れ・セメント質・エナメル質表層を除去した後、20mgを粉末状に採取・秤量 した。試料を 2ml マイクロチューブに移した後、1ml 超純水を加え転倒撹拌する ことで粉末の表面を洗った。遠心分離をし、上清を除去した後、有機物を除去す るために 1ml 2.5%次亜塩素酸ナトリウムに浸け 1 晩反応させ、1ml 超純水で 3 回洗った。さらに埋蔵環境中から取り込まれた炭酸塩を除去するため、1ml 0.1M 酢酸バッファー(pH 4.4)を加え懸濁させ、4 時間反応させた。再度超純水にて 3 回洗浄し、上清除去後、60 ℃乾熱オーブンで一晩乾燥させた。

以上のような前処理が施された歯冠エナメル質アパタイトの炭素安定同位体 比は国立科学博物館地学研究部の自動炭酸塩前処理装置-同位体比質量分析計

(自動炭酸塩前処理装置は Thermo Scientific KIEL IV、同位体比質量分析計は Thermo Scientific MAT253)、および総合地球環境学研究所のガスベンチ-同位 体比質量分析計(GasBench-IRMS,同位体比質量分析計は Thermo Scientific DELTA V Plus)で測定した。いずれの装置を用いた測定でも、歯冠エナメル 質アパタイト 700-900  $\mu$ gをリン酸と反応させアパタイト結晶構造中の炭酸塩を 二酸化炭素として回収し、炭素(および酸素)の安定同位体比を測定してい る。標準試料として、NBS19(白大理石),NBS18(火成炭酸塩岩),JLs-1(石 灰岩),JCp-1(サンゴ)を用いた。2つの質量分析計において、NBS19(保証 値  $\delta^{13}$ C: 1.95‰)の測定結果から計算した $\delta^{13}$ Cの測定における標準偏差はと もに 0.02‰であった。

#### 5. 放射性炭素年代測定

まず、放射性炭素年代測定の原理について説明する。炭素の放射性同位体で ある<sup>14</sup>C は、宇宙線の作用でつくられた中性子が大気中の<sup>14</sup>N と核反応を起こ すことによって生じる。天然の<sup>14</sup>C は約 5730 年の半減期でベータ壊変して<sup>14</sup>N に戻るため、宇宙線の照射の条件が一定であれば、大気中の<sup>14</sup>C は生成量と壊 変量が等しくなるところで一定値をとる。大気中の<sup>14</sup>C は植物によって同化さ れ、生態系の炭素循環に取り込まれる。生物は生存中、大気との炭素の交換を 繰り返すため、<sup>14</sup>Cの割合は大気のそれと平衡が保たれる。一方、死後は外界 との炭素交換が行われないため、生体中の<sup>14</sup>Cの割合は死後時間が経過すると ともに減少する。大気中の<sup>14</sup>C濃度がほぼ一定であることと、<sup>14</sup>Cの半減期が 既知であることを利用して、死後に閉鎖系となった生体に残存する<sup>14</sup>Cの割合 から生物が死んだ年代値を計算するのが、放射性炭素年代測定の原理である(兼 岡, 2008)。

<sup>14</sup>C は 1947 年に Libby らによってその存在が確認され、その直後から生物体 試料を対象とする年代測定に利用されるようになった(Anderson et al., 1947; Libby, 1954)。放射性炭素年代測定は年代測定範囲として現在から 5~6 万年前 の試料に対して適用でき、1970 年代半ばに加速器質量分析計を用いた測定法が 開発されることによって測定精度が相対誤差として 0.5%まで高まった(Muller, 1977)。

未較正の放射性炭素年代(<sup>14</sup>C年代)は、原水爆実験や化石燃料の使用のため <sup>14</sup>C量が激変した1950年以前の大気中<sup>14</sup>C濃度を基準とし、半減期はLibbyに よって測定法が開発された当時に定められた5568年を用いて計算される。 1950年を基準として放射性炭素年代を表記する際は数値の後に BPと表記す る。しかし、後続の研究にて<sup>14</sup>C半減期の平均値は5730年となった。また、大 気中の<sup>14</sup>C濃度は経年変化することが分かってきた(Suess, 1967)。そこで、暦年 代(実際の年代)に近づける努力として、暦年代が判っている樹木年輪等の資 料を放射性炭素年代測定法で測定し、既知の暦年代と放射性炭素年代測定で計 算された年代を軸にした較正曲線IntCalが作成された(Beck et al., 1998)。較正 曲線を用いて較正された年代は数値の後に cal と付記する。さらに、測定の対 象となる生物が大気中の二酸化炭素から炭素を取り込む際の同位体分別を補正 する必要があるため、測定試料の<sup>13</sup>C/<sup>12</sup>Cの測定値から<sup>14</sup>C/<sup>12</sup>Cの同位体分別の 程度を推定し、補正が行われる。

炭素・窒素安定同位体比測定で C/N 比より生体由来のコラーゲンが抽出でき たことが確認され、1mg 以上のコラーゲンが確保できた資料については、放射 性炭素年代測定のためにグラファイト化を進めた。コラーゲンを約 2.5mg 分取 し、真空にした二重石英ガラス封菅内で酸化銅、サルフィックスとともに 850℃ に加熱し、二酸化炭素を得た(Minagawa et al., 1984)。これを真空ラインで精製し た後、水素と鉄粉を入れた石英ガラス製反応容器に封入し、650℃でグラファイ

トに還元した(Kitagawa et al., 1993)。

グラファイト試料(300-500µg)の放射性炭素存在比を東京大学総合研究博物 館放射性炭素年代測定室の加速器質量分析計(AMS, National Electrostatics Corporation 製 CAMS 500)で測定した。標準試料として、アメリカ国立標準技 術研究所配布のシュウ酸標準物質である SRM4990C、和光純薬工業株式会社の 特級シュウ酸二水和物 159-00425、IAEA-C4(半化石化木材)、IAEA-C6(スクロ ース)、IAEA-C8(シュウ酸)を用いた。測定結果はOxCal4.2 にて IntCal13 を用 いて暦年較正を行った(Ramsey, 2009; Reimer et al., 2013)。

#### III. 結果

1. マクロ栄養素モデルの検証

【図 4】に、マクロ栄養素モデルで想定した各食性における $\delta^{13}$ C<sub>collagen</sub>, $\delta^{15}$ N,  $\delta^{13}$ C<sub>apatite</sub>, $\Delta^{13}$ C<sub>apatite-collagen</sub>の関係性を示した。左には今回計算したすべての食 性を表示し、右には本研究で主に検討する、C3 植物もしくは C3 草食動物と合 わせて C4 雑穀・海生貝類が 0-60%摂取された場合の食性のみ表示した。図(4a)で、C3 草食動物-C4 雑穀の混合を示した曲線が C4 雑穀の寄与率が 20-80%で  $\delta^{13}$ C<sub>apatite</sub> が $\Delta^{13}$ C<sub>apatite-collagen</sub> と正の相関を持っている。図(4-b)の $\delta^{13}$ C<sub>collagen</sub> と $\Delta^{13}$ C<sub>apatite-collagen</sub>の関係性でも同様の現象が見られた。他の食性ではこのような傾 向が見られず、狩猟活動をする集団による少量の雑穀摂取を検出するのには大 変有効な指標だと考えられる。

図(4-a)、図(4-b)では、マクロ栄養素の組成が類似する C3 植物-C4 雑穀、C3 草 食動物-海生貝類、C3 草食動物-C4 草食動物の混合においては、 $\Delta^{13}$ Capatite-collagen がほぼ一定であるのに対し、コラーゲンとアパタイトの $\delta^{13}$ Cのみがそれぞれ C4 雑穀、海生貝類、C4 草食動物の寄与率とともに増加した。一方、マクロ栄 養素の構成が大きく異なる C3 植物-海生貝類、C3 植物-海生魚類、C3 植物-C4 草食動物の混合では、海生貝類、海生魚類、C4 草食動物の寄与率が 0-40%の場 合 $\Delta^{13}$ Capatite-collagen は減少し、40-100%と多く摂取されるようになると増加し た。マクロ栄養素の組成は異なるが、炭素同位体比が異なる C4 雑穀-C4 草食 動物の混合では $\delta^{13}$ C、 $\Delta^{13}$ Capatite-collagen ともに変動が 1.2‰以内に収まった。

 $\delta^{15}$ N と $\Delta^{13}$ Capatite-collagenの関係を示した図(4-c)では、C3 草食動物-C4 雑穀の混合においては C4 雑穀 0-80%の範囲で C4 雑穀の寄与率とともに $\delta^{15}$ N が 1.1%減少するのに対し $\Delta^{13}$ Capatite-collagen が 3.5%増加し、C4 雑穀 80-100%の範囲ではほぼ変動しない。一方、C3 植物-海生貝類の混合では海生貝類 0-60%の範囲で海生貝類の寄与率とともに $\delta^{15}$ N が 4.2%増加するのに対し $\Delta^{13}$ Capatite-collagen は 2.5%減少し、海生貝類 60-100%の範囲では $\delta^{15}$ N は 1.4%、 $\Delta^{13}$ Capatite-collagen は 2.5%増加する。C3 植物-C4 草食動物の混合では C4 草食動物 0-40%で $\delta^{15}$ N が 2.1%増加するのに対し $\Delta^{13}$ Capatite-collagen が 3.6%増加する。C3 植物-C4 華食動物の混合では $\Delta^{13}$ Capatite-collagen が 3.6%が増加する。C3 植物-C4 雑穀、C3 草食動物の混合では $\Delta^{13}$ Capatite-collagen は -定で、 $\delta^{15}$ N の変動も 0.6%と少ない。C3 草食動物-海生貝類、C4 雑穀-C4 草食動物の混合では、それ

ぞれ海生貝類、C4 草食動物の寄与率ともに $\delta^{15}$ N が 2.3%、3.3%増加するのに対し、 $\Delta^{13}$ Capatite-collagen の変動は 0.5%、1.6%に収まる。C3 植物-海生魚類の混合では $\delta^{15}$ N の変動が全食性中で最も著しく、海生魚類の寄与に伴って 10.5%変動する。 $\Delta^{13}$ Capatite-collagen は海生貝類の寄与率が 0-40%の範囲で 3.9%減少し、それ以上の寄与率では 2.4%増加する。

図(4-d)、(4-e)の $\delta^{13}$ C と $\delta^{15}$ N の関係においては、C3 草食動物-C4 草食動物の 混合のみ負の相関がみられた。C3 植物-海生貝類、C3 植物-海生魚類の混合で は $\delta^{13}$ C が増加するとともに $\delta^{15}$ N が全体でそれぞれ 7.6‰、10.5‰と大幅に増 加する正の相関がみられた。C3 草食動物-海生貝類、C3 植物-C4 草食動物の混 合においては $\delta^{13}$ C が増加するとともに $\delta^{15}$ N がともに全体でそれぞれ 2.3‰、 3.9‰増加する。C3 植物-C4 雑穀、C3 草食動物-C4 草食動物の混合では $\delta^{15}$ N は ほぼ一定のまま $\delta^{13}$ C のみ C4 雑穀、C4 草食動物の摂取とともに 15.8‰変動す る。C4 雑穀-C4 草食動物の混合では $\delta^{13}$ C<sub>collagen</sub>、 $\delta^{13}$ C<sub>apatite</sub>の変動が全体で 1.5‰、0.4‰以内であるのに対し $\delta^{15}$ N は C4 草食動物の摂取とともに全体で約 3.3‰増加する。

 $\delta^{13}$ C<sub>collagen</sub> と $\delta^{13}$ C<sub>apatite</sub>の関係を示した図(3-f)では、C4 雑穀-C4 草食動物以外のすべての食性において正の相関が得られた。海生貝類・海生魚類に比べ、C 4 雑穀・C4 草食動物が混合された食性の方が $\delta^{13}$ C<sub>collagen</sub>、 $\delta^{13}$ C<sub>apatite</sub>ともに上昇幅が大きかった。

【図 5】ではマクロ栄養素モデルと同じグラフ上に先行研究の同位体比データ をプロットした。 $\delta^{13}$ Capatite と $\Delta^{13}$ Capatite-collagenの関係を示した図(5-a)で、C3 植物 由来のタンパク源と C4 雑穀であるトウモロコシの摂取割合が個体ごとに変わ っていたと考えられる Cahokia 集団の近似直線は正の傾きを持っており、C4 雑 穀の寄与率が 20-80%の場合の C3 草食動物-C4 雑穀の混合モデルと整合的であ った。

 $\delta^{13}$ C<sub>collagen</sub> と $\Delta^{13}$ C<sub>apatite-collagen</sub>の関係を示した図(5-b)では、Cahokia 集団のみ近 似直線にて顕著な正の傾きが得られ、C3 草食動物-C4 雑穀の混合モデルを示し た曲線が C4 雑穀の寄与率 20-80%の範囲で $\delta^{13}$ C<sub>collagen</sub> が $\Delta^{13}$ C<sub>apatite-collagen</sub> と正の 相関を持っているという特徴に合致した。タンパク質源としても C4 雑穀が摂 取されている Yangshao 集団の近似直線(傾き:-0.54、R<sup>2</sup> = 0.35)、海産物が C3 植物とともに摂取されている沿岸縄文集団の近似直線(傾き:-0.60、R<sup>2</sup> = 0.51)では負の傾きが得られた。

 $\delta^{15}$ N と $\Delta^{13}$ C<sub>apatite-collagen</sub>の関係を示した図(5-c)では Cahokia 集団、沿岸縄文集 団について近似直線が負の傾きを持っていた。C3 草食動物-C4 雑穀の混合モデ ルで C4 雑穀の寄与率が 20-80%のとき、C3 植物-海生魚類の混合モデルで海生 魚類の寄与率が 0-60%のとき、モデルでも負の相関関係が見られている。

Yangshao 集団では C4 雑穀-C4 草食動物の混合モデルの C4 雑穀が 0-80%占める 場合と整合的であった。

図(5-d)、(5-e)で示した $\delta^{13}$ Cと $\delta^{15}$ Nの関係では、海産物がC3植物とともに摂取されている沿岸縄文集団の近似直線において正の傾きが得られ、C3植物-海生魚類の混合モデルと整合的であった。他の集団の近似直線は負の傾きを持っていた。

 $\delta^{13}$ C<sub>collagen</sub> と $\delta^{13}$ C<sub>apatite</sub>の関係を示した図(4-f)では、Cahokia 集団にて高い正の 相関が得られた。他の集団の近似直線も正の傾きを持っていた。

各集団について考古学および同位体分析の先行研究より推定された食性を計 算したマクロ栄養素モデルは、同位体比指標間の相関関係において実測値と概 ね一致していた。ただし、Cahokia 集団のΔ<sup>13</sup>Capatite-collagen がモデルよりも~6‰ 大きい傾向があるなど、実測値とモデルの絶対値とが乖離するケースが多く見 られた。その原因としては、今回マクロ栄養素モデルを構築するにあたり想定 した食料源は日本産の食品データを参照しており、各地で実際に摂取された食 料源の同位体比と差があったことや、マクロ栄養素モデルでは2つの食料源の 混合のみを計算しているが、実際には3つ以上の食料源が摂取されていたこと が考えられる。

2. 放射性炭素年代

【表 6】に各試料の年代を示した。暦年較正前の放射性炭素年代(<sup>14</sup>C 年代)に 付随して表示した誤差の主要部は、<sup>14</sup>C の計数が n の場合に√nで与えられる計 数誤差の相対誤差(1/√n)のガウス分布 1 標準偏差分である(中村, 2001)。時代 区分は、較正年代の確率密度分布の最頻値の時代を採用し、先史時代について は石川(2010)、藤尾(2013)工藤・国立歴史民俗博物館(2014)、歴史時代につい ては日本史年表(早稲田大学図書館)に基づいて区分した。以下、遺跡別に結果 の説明をする。

i) 岩津保洞窟遺跡

人骨・人歯資料は、放射性炭素年代測定を行った試料 27 点のうち最も多い 18

点が弥生時代に比定された。うち14点が弥生中期の年代を示し、残りは弥生 後期であった。また、縄文時代の資料が2点あり、縄文早期と縄文前期末に比 定された。他に古墳時代(1点)、古代の飛鳥~奈良時代(2点)、平安時代(2 点)、室町時代(2点)に属する歯も検出され、縄文、弥生時代以外の遺物もあ るということが新たに判明した。すべて弥生時代に属するとされた遊離歯の一 部が縄文時代や古墳時代以降の時代に比定され、縄文早期に属するとされた 8 号人骨が弥生時代中期に比定されるなど、出土状況から推定された年代と異な る放射性炭素年代を示す資料が多く、先行研究で指摘されているより広い範囲 で地層の撹乱が起きていたと考えられる(岩津保洞窟遺跡調査団, 2015)。歯種同 定、人骨からの年齢推定の結果と照らし合わせると、最小個体数で縄文時代に 2個体、弥生時代に4個体、古墳時代に1個体、飛鳥~奈良時代に2個体、平 安時代に2個体、室町時代に1個体、すなわち異なる時代の個体の資料が12 個体以上分あることが分かった。同じ遺跡から出土した動物骨資料は縄文早期

(6点)、縄文晩期(2点)、古墳(1点)の年代を示した。動物骨資料は、放射 性炭素年代測定を行った試料9点中、6点が縄文早期、2点が縄文晩期、1点が 古墳時代に比定された。

ii) 生仁遺跡

人骨は縄文晩期終末の年代を示した。先行研究では共に出土した土器の型式 より弥生時代後期とされていたが、より古い年代の人骨であることが確認され た。同じ遺跡の別地点からは縄文晩期終末の型式の土器が出土しているため、 遺跡全体の遺物出土状況とは矛盾しない。

iii) 石神遺跡

人骨は2点中1点が土器型式から推定された通り縄文後期に比定された。発 掘調査書で所産期が明確でないとされた第一土坑墓から出土した SK55 は鎌倉 時代の値を示した。

iv)姜家梁遺跡

資料は3点とも較正年代が-5000-4500 cal BP の範囲に収まり、考古学的所見の 通り新石器時代中期に属すことが確認された。

3. コラーゲン炭素・窒素安定同位体比

【表 6】に各試料のコラーゲンの収率と C/N(原子比)を示した。コラーゲン 抽出を行なった試料 54 点のうち 50 点から EA-IRMS で炭素・窒素安定同位体 比を測定可能な分量(0.4mg)のゼラチンが得られ、うち 48 点は C/N 比が生体由 来コラーゲンの正常値の範囲(2.9-3.6)に収まったため、コラーゲンの変性あ るいは外部有機物の混入の可能性は少ない(DeNiro, 1985)。正常値の範囲を超え た試料 2 点については、今後の議論の対象から除外する。

各試料のコラーゲン炭素・窒素安定同位体比測定結果( $\delta^{13}$ C<sub>collagen</sub>,  $\delta^{15}$ N)の 数値を【表7】示し、【図6】にプロットした。今回の測定試料はすべて内陸遺 跡の資料に由来しており、 $\delta^{15}$ N は陸上資源寄りの低い値を示した(8.0± 1.1‰)。岩津保洞窟遺跡・生仁遺跡・石神遺跡の人骨・人歯における $\delta^{15}$ N は、 年代測定で縄文早期~後期に比定された試料では 7.6±1.2‰、縄文晩期~弥生 後期に比定された試料では 7.6‰±0.7‰であり、平均値は等しかった。また、 Mann-Whitney のU 検定で、棄却限界値を p=0.05 に設定し縄文早期~後 期、縄文晩期~弥生後期の試料間で $\delta^{15}$ N を比較したところ、p=0.79 となり有 意差は見られなかった。

一方、 $\delta^{13}$ C については時代・遺跡別に大きな差が見られた。岩津保洞窟遺跡・生仁遺跡・石神遺跡の人骨・人歯における $\delta^{13}$ C は、年代測定で縄文早期 ~後期に比定された試料(-19.9±0.2‰)と比べ、縄文晩期~弥生後期に比定された試料(-16.0‰±0.9‰)では平均値の差で 3.9‰の上昇が見られた。Mann-Whitney の U 検定で、棄却限界値を p=0.05 に設定し縄文早期~後期、縄文晩期~弥生後期の試料間で $\delta^{13}$ C を比較したところ、p=0.0013 となり有意差が見られた。雑穀・雑穀食動物の摂取が先行研究で指摘されている中国・姜家梁遺跡の新石器時代人歯では、さらに高い $\delta^{13}$ C (-7.0±0.5‰)が観測された。 岩津保洞窟遺跡の動物骨は $\delta^{13}$ C、 $\delta^{15}$ Nがともに C3 生態系の食料源を利用す

る動物の範囲に収まった( $\delta^{13}$ C:-21.4±1.5‰、 $\delta^{15}$ N:-3.1±0.8‰)。

4. アパタイト炭素安定同位体比

各試料のアパタイト炭素安定同位体比測定結果は【表 6】の δ<sup>13</sup>C<sub>apatite</sub> に示した。また、【図 7】にコラーゲン(黒)・アパタイト(赤)の炭素安定同位体比 を未較正の放射性炭素年代(<sup>14</sup>C 年代)に対してプロットした。歯の象牙質から生体由来のコラーゲンが抽出できなかった個体については、同じ個体の骨から抽出したコラーゲンの炭素安定同位体比・放射性炭素年代を採用している。 岩津保洞窟遺跡・生仁遺跡・石神遺跡の人歯エナメル質においてアパタイトのδ<sup>13</sup>C は、年代測定で縄文早期~後期に比定された試料(-14.1±0.6‰)と比 ベ、縄文晩期~弥生後期に比定された試料(-9.4±1.2‰)では平均値の差で 4.6‰の上昇が見られた。特に縄文晩期終末の生仁遺跡では高い $\delta^{13}$ C(-6.9‰) が確認された。Mann-Whitney のU 検定で、棄却限界値を p=0.05 に設定し 縄文早期~後期、縄文晩期~弥生後期の試料間で $\delta^{13}$ Cを比較したところ、p= 0.0015 となり有意差が見られた。中国・姜家梁遺跡の新石器時代人歯では、さ らに高い $\delta^{13}$ C(0.03±0.4‰)が観測された。

アパタイトとコラーゲンの炭素同位体比の差( $\Delta^{13}C_{apatite-collagen}$ )は草食動物に おいて肉食動物より大きい値が報告されており、植物食の度合いの目安とされ ている(Ambrose & Norr, 1993; Krueger & Sullivan, 1984; Lee-Thorp et al., 1989)。 $\Delta^{13}C_{apatite-collagen}$ は縄文早期~後期に比定された試料で 5.9±0.5‰、縄文晩期~弥 生に比定された試料で 6.4±1.2‰ であった。中国・姜家梁遺跡の新石器時代人 歯では 7.1±0.3‰であった。

5. 結果のまとめ

マクロ栄養素モデルの計算結果より、C4 雑穀あるいは海生貝類がC3 植物・C3 草食動物と合わせて少量摂取された場合、同位体比の指標は異なる挙動を示すことが分かった。また、マクロ栄養素モデルを先行研究の実測値と比較すると、同位体比指標間の相関関係について概ね両者は整合的であった。特にC3 生態系の食料源が食料の大部分を占めているときに $\delta^{13}$ Capatite、 $\delta^{13}$ Ccollagen が $\Delta^{13}$ Capatite-collagen と正の相関を持つのはC3 草食動物とC4 雑穀の混合の場合のみであり、狩猟活動をする集団による少量の雑穀摂取を検出するのには大変有効な指標だと考えられる。

【図 8】に、岩津保洞窟遺跡の縄文早期~弥生後期の試料、石神遺跡の縄文後 期の資料、生仁遺跡の縄文晩期の資料、姜家梁遺跡の新石器中期の資料につい て安定同位体比測定結果の箱ひげ図を示した。コラーゲンとアパタイト両方の  $\delta^{13}$ Cにおいて、放射性炭素年代測定で縄文早期~後期に比定された試料と比 ベ縄文晩期~弥生後期に比定された試料では有意な上昇が確認された。上昇幅 はアパタイトの方が平均で 0.7‰高かった。 $\delta^{15}$ N では縄文早期~後期と縄文晩 期~弥生後期の試料間に有意差はなかった。岩津保洞窟遺跡の動物骨は $\delta^{13}$ C、  $\delta^{15}$ N がともに C3 生態系の食料源を利用する動物の範囲に収まったので、時代 間の食性変化をもたらした食料源には $\delta^{13}$ C が高く、 $\delta^{15}$ N が低い別の食料源が 考えられる。考察では、 $\delta^{13}$ C の上昇が C4 雑穀によるものなのか、マクロ栄養

素モデルとの比較にて検討する。

#### IV. 考察

1. マクロ栄養素モデルを用いた縄文~弥生時代の食性変化の評価

【表8】に、岩津保洞窟遺跡の試料で測定された同位体比指標間の相関関係を 評価するため行った、2つの連続変数間の線形関係を評価するピアソンの積率 相関検定の結果を示した。棄却値をα=0.05 としたとき、岩津保洞窟遺跡(縄 文早期~弥生後期)のδ<sup>13</sup>C<sub>collagen</sub>-δ<sup>13</sup>C<sub>apatite</sub>間、δ<sup>13</sup>C<sub>apatite</sub>-Δ<sup>13</sup>C<sub>apatite</sub>-collagen</sub>間、岩 津保洞窟遺跡(弥生時代のみ)のδ<sup>13</sup>C<sub>apatite</sub>-Δ<sup>13</sup>C<sub>apatite</sub>-collagen</sub>間に有意な相関関係 が検出された。【図9】において、岩津保洞窟遺跡の縄文早期~弥生後期、石神 遺跡の縄文後期、生仁遺跡の縄文晩期、姜家梁遺跡の新石器中期の試料で実際 に観測された同位体比を、マクロ栄養素モデルに対してプロットした。

最も多い試料数を分析した岩津保洞窟遺跡の試料についてまず考察する。岩 津保洞窟遺跡の試料では、縄文~弥生時代の試料全体の近似直線と、弥生時代 の試料のみの近似直線を示しており、前者は時代間の食性の変化、後者は弥生 時代における食性の分布の観察を目的としている。ピアソンの積率相関検定で 有意な相関関係が得られたδ<sup>13</sup>Capatite、Δ<sup>13</sup>Capatite-collagen を示した図(9-a)を見る と、岩津保洞窟遺跡の試料は C3 草食動物の寄与率が 20-100%のときの C3 草食 動物と C4 雑穀の混合モデルに沿うような正の近似直線を描いた。縄文~弥生 時代の試料全体の近似直線は傾きが 0.32、R<sup>2</sup>値が 0.28、弥生時代の試料のみの 近似直線は傾きが 0.66、R<sup>2</sup>値が 0.39 であった。モデルと比較すると、縄文早 期~前期末の試料は C4 雑穀が 0-20%、弥生中期~後期の試料は 20-60%摂取さ れた場合の領域と類似する。

また、岩津保洞窟遺跡の縄文早期~弥生後期をまとめた試料群で有意な相関 関係が検出された $\delta^{13}$ C<sub>collagen</sub>、 $\delta^{13}$ C<sub>apatite</sub>をプロットした図(9-f)を見ると、縄文 ~弥生時代の試料全体では傾きが 0.93、R<sup>2</sup>値が 0.63 の近似直線が示された。 これは、縄文時代から弥生時代の試料での $\delta^{13}$ Cの変化がコラーゲンよりアパ タイトで大きかったことを示す。弥生時代の試料群の実測値を C3 草食動物と C4 雑穀の混合モデルのそれと比較すると、縄文早期~前期末の試料は C4 雑穀 が 0-20%、弥生中期~後期の試料は 20-60%摂取された場合の領域に存在した。

以上のように、統計検定で有意な線形の相関関係が見られた $\delta^{13}$ C<sub>collagen</sub> と $\delta^{13}$ C<sub>apatite</sub> と $\Delta^{13}$ C<sub>apatite</sub> と $\Delta^{13}$ C<sub>apatite</sub> のプロットをマクロ栄養素モデルと比較すると、岩津保洞窟遺跡の弥生集団がC3 草食動物とC4 雑穀を主に摂取し、C4

雑穀の寄与率がおよそ 20-60%であったことが示唆された。

次に、統計検定では有意な線形の相関関係が得られなかった岩津保洞窟遺跡試 料の同位体比指標間の関係についても図を考察する。δ¹5N とδ¹3C との関係を プロットした図 (9-c)、(9-d)、(9-e) では、C3 草食動物と C4 雑穀の混合モデル が示した曲線の傾向と大きくずれることはなかった。ただし、岩津保洞窟試料の プロットの分布領域は、モデルに対してδ<sup>15</sup>Nがおよそ2‰上にずれる現象が観 察された。【図 10】にて岩津保洞窟遺跡の弥生中期~後期試料群のδ<sup>15</sup>Nの歯種 別平均を、各歯種の歯根形成開始年齢に対して示した。第一乳臼歯については歯 根の形成開始年齢のデータがないため、歯冠形成が完了する年齢を参照した。近 似直線を引いたところ、傾きが-0.19、R<sup>2</sup>値が 0.87 となり、若い年齢で形成され る歯種ほどδ<sup>15</sup>Nが高い傾向にあることが分かった。出生後、乳児の組織の同位 体比は授乳者のそれに対し、2-3‰増加する現象が先行研究で指摘されている (Tsutaya & Yoneda, 2015)。また、歯根象牙質コラーゲンは組織形成時の食性を反 映する(Beaumont et al., 2013; Dean, 2017)。したがって、若い年齢で形成される歯 種ほどδ<sup>15</sup>N が高くなる傾向は授乳の影響であると考えられ、C3 草食動物・C4 雑穀の混合モデルと実測値との間にあるδ¹5N のずれにもこの影響があると推 察される。

 $\delta^{13}$ Ccollagen、Δ<sup>13</sup>Capatite-collagenの関係を示した図(9-b)のみ、C3 草食動物とC4 雑穀 の混合モデルとは異なる傾向が観察された。統計的に有意ではないものの、δ <sup>13</sup>Ccollagen とΔ<sup>13</sup>Capatite-collagen との間に負の相関が見られた。ただし、C3 マクロ栄養 素モデルにて同じようなδ<sup>13</sup>C の領域で負の相関を示すような食性は、C3 植物 と合わせて C4 草食動物、もしくは少量の海産物が摂取されていた場合である。 後者の場合、δ<sup>13</sup>Ccollagen、δ<sup>15</sup>N の関係を示した図(9-d)とδ<sup>13</sup>Capatite、δ<sup>15</sup>N の関係 を示した図(9-e)でモデルにて観察された強い正の相関に倣って少なくとも統計 的に有意な正の相関が得られると考えられるので、その可能性は低い。C4 草食 動物が少量摂取されていたケースは否定できないが、動物骨で C4 雑穀の摂取が 確認された例は本研究ではなかった。もう一つの可能性として、今回マクロ栄養 素モデルでは 2 つの食料源の混合のみを考えたが、同じ計算方法にて C4 雑穀の 寄与率を固定して C3 草食動物と C3 植物の寄与率を変化させた場合、δ<sup>13</sup>Ccollagen とΔ<sup>13</sup>Capatite-collagen の間に負の相関が見られる(【図 11】)。よって、実際には C3 草 食動物と C4 雑穀だけでなく、C3 植物も合わせて食されていたことが考えられ る。 次に、岩津保洞窟遺跡以外の縄文~弥生時代・新石器時代の試料について考察 する。生仁遺跡の試料では、本研究で分析した試料のうち最も高い $\delta^{13}$ Capatite と  $\Delta^{13}$ Capatite-collagen が観察された。 $\delta^{13}$ Capatite、 $\Delta^{13}$ Capatite-collagen を示した図(9-a)にてマ クロ栄養素モデルと比較すると、このような値を取り得るのは C4 雑穀と C3 植 物の混合のみであり、60%に近い C4 雑穀の寄与が考えられる。中国・新石器時 代中期の姜家梁遺跡の試料は炭素同位体比ではモデル上の 100%C4 植物の領域 付近に常に位置し、高い C4 植物の摂取が示唆された。石神遺跡は岩津保洞窟遺 跡の縄文時代試料と同様の傾向を示した。いずれの遺跡の試料でも、岩津保洞窟 遺跡の試料と同じく、授乳の影響と考えられる $\delta^{15}$ Nのモデル値に対する正のず れが見られた。ただし、これらの遺跡では分析可能な資料数が少なかったため、 集団における同位体比指標の変動から食性を推定することはできなかった。

2. 縄文~弥生時代の雑穀寄与率の時代変化

本研究で分析した関東地方内陸部および中部高地の縄文~弥生時代の資料に ついて、マクロ栄養素モデルと実測値を比較したところ、主に C3 草食動物と C4 雑穀、C3 植物の混合からなる食性が示唆された。そこで、食料源として C3 草 食動物・C4 雑穀・C3 植物を想定し、縄文~弥生時代の資料についてマクロ栄養 素モデルで用いた計算方法にて $\delta^{13}$ Ccollagen、 $\delta^{13}$ Capatite からそれぞれの食料源の寄 与率を算出した。 $\delta^{15}$ N はマクロ栄養素モデルとの比較において、試料によって は授乳の影響を顕著に受けており食料源自体の混合だけでは説明できないと考 えられるため、今回は $\delta^{13}$ C を計算に用いた。

計算結果を放射性炭素年代に対してプロットしたものを【図 12】に示す。C3 草 食動物とC3 植物の寄与率はまとめて「C3 植物+草食動物」として表示した。縄 文早期~後期の資料から算出されたC4 植物・C3 草食動物・C3 植物の寄与率は それぞれ9.8%、77.8%、12.4%であった。これに対し、縄文晩期~弥生後期の試 料から算出されたC4 植物・C3 草食動物・C3 植物の寄与率はそれぞれ 37.7%、 25.5%、36.9%であった。

したがって、本研究では縄文晩期~弥生後期には食事全体のおよそ40%を雑穀 が乾燥重量にて占めていた可能性が示唆され、考古学的証拠に基づいて立てら れた仮説が同位体分析でも支持される結果となった。さらに興味深いのは、この 時期における雑穀寄与率を見ると、縄文晩期の試料(生仁遺跡)では寄与率が高 く、岩津保洞窟遺跡の弥生時代試料では時代経過とともに寄与率が減少する可

能性が示唆されたことである(図(12-a)参照)。<sup>14</sup>C年代とC3植物の寄与率については、単調な増加傾向は認められなかったが、縄文早期~後期の試料と比べて 縄文晩期~弥生後期の試料ではC3植物の平均寄与率が12.4%から36.9%に増加している。長野県で実施された土器の種実圧痕調査からは、縄文晩期末に雑穀栽培が選択的に受容され、のちにイネと複合的に栽培されるようになったとされている(馬場・遠藤,2017)。イネはC3植物であるため、先に雑穀が摂取されるようになり、稲作が開始するとともに雑穀の寄与率が減少し、代わりにイネの寄与率が増加した可能性がある。しかし、C4雑穀の寄与率が縄文晩期~弥生後期にかけて統計的に有意な減少をするかどうかは、今回は分析していない弥生前期の資料を含め、さらなる資料の分析と時系列分析が必要である。

生仁遺跡の資料では歯冠と上下顎骨の形態分析の結果、渡来系弥生人の可能性 が高いという所見が得られた(近藤修,私信)。一方、岩津保洞窟遺跡の弥生人 骨では形態的特徴に縄文人的形質が色濃く見られた(海部,1992)。本研究で得ら れた同位体分析の結果を先行研究の知見と組み合わせると、雑穀栽培は縄文晩 期末に渡来系弥生人によって中部高地まで伝えられ、弥生時代には縄文系弥生 人が住む周辺の地域まで拡散し、イネと複合的に栽培されるようになったこと が考えられる。

3. 本研究における課題と今後の展望

本研究ではマクロ栄養素モデルを構築する際に、各栄養素の含有率について は文部科学省の食品成分データベースを参照した。また、海産物における組織 やマクロ栄養素間の同位体比のオフセットについては研究が十分に為されてい なかったため、哺乳類の給餌実験等のデータをもとに推定を行った。よって、 今後マクロ栄養素モデルの精度を高めるにあたり、食料源の各栄養素を抽出し その同位体比を測定することで、参照し得る食料源のデータを拡充することが 必要である。特に品種改良等により栄養素の含有率が変化したと考えられる食 料源については、可能な限り考古遺物の同位体比を測定する。また、本研究で は各食料源の平均値のみを用いて計算を行なったが、各食料源の栄養素含有率 と同位体比を複数試料測定し、計算に取り入れることによって、モデルの不確 かさを評価することが求められる。近年、不確かさを取り入れた同位体比によ る食性の評価については SIAR や FRUITS といったベイズ統計に則ったモデル が多数開発されており、こうしたモデルを用いて不確かさを評価することも可 能である(Fernandes et al., 2014; Parnell et al., 2010; Phillips et al., 2014)。ただし、 これらのモデルでは食料源のデータの平均と分散に基づき不確かさが評価され ているため、食料源のデータの拡充が必須となる。

マクロ栄養素モデルで算出された同位体比と古人骨資料における実測値との 比較では、同位体比指標間の相関関係は整合的である場合が多かったが、モデ ルの検証に用いた日本以外の遺跡から出土した古人骨資料では同位体比指標自 体の実測値がモデルと乖離するケースが多く見られた。また、マクロ栄養素モ デルに基づき計算した縄文早期~後期の試料群における C4 植物寄与率の平均 は9.8%となり、0%ではなかった。しかしながら、今回扱った資料が出土した 地域では、同時期における C4 植物の利用を示す植物遺存体や土器圧痕はな い。その原因として、今回マクロ栄養素モデルを構築するにあたり想定した食 料源の同位体比と実際に摂取された食料源の同位体比に差があることや、マク ロ栄養素モデルでは2つの食料源の混合のみを計算しているが、実際には3つ 以上の食料源が摂取されていたことが考えられる。そのため、より正確なマク ロ栄養素モデルを構築するには、遺跡ごとに出土した食料源になり得る遺物の 同位体比を測定し計算式に代入すること、2つの食料源の混合モデルとの比較

で主に摂取されていた食料源が同定できたら、3つ以上の食料源の混合も想定 し計算することが求められる。

本研究では関東地方内陸部および中部高地で出土した縄文~弥生時代の人歯 資料を中心に分析したが、縄文晩期から弥生時代における農耕の伝播は地域に 応じて異なる様相を呈する可能性があるため、同時期の他地域の遺跡から出土 した資料の分析を進める。

本研究で主に分析した器官である歯は、その一部が授乳期間に形成され、授乳 の影響と考えられる δ<sup>15</sup>N のモデル値に対する正のずれが見られた。授乳の影響 を完全に排除した食性を評価するためには、分析試料として 9 歳ごろから形成 が開始される第三大臼歯、もしくは成人人骨を選ぶのが望ましい(Hedges et al., 2007; White & Folkens, 2005)。また、分析可能な資料数が少なかった遺跡では、 集団における同位体比指標の変動をマクロ栄養素モデルと比較して食性を推定 することはできなかった。授乳の影響を正しく評価するため、および資料数が確 保できない場合に同じ資料内での同位体比の変動を利用して食性を推定するた めには、組織の形成方向に連続的に試料を採取する方法が考えられる(「連続的 サンプリング」)。授乳の影響を評価するには、若い年齢で形成される試料におい
てどれほど高いδ<sup>15</sup>Nが観察されるかを分析することが望ましい。また、季節単 位などで摂取する食料源が変化していた場合、同位体比指標が時系列に変動し、 マクロ栄養素モデルの各食性における同位体比指標の挙動と比較できる可能性 がある。

## V. 結語

マクロ栄養素モデルを用いた検討により、C4 雑穀と海生貝類といった同位体 比が類似している食料源でも、各栄養素の含有率の違いにより摂取した生物の コラーゲンとアパタイトの同位体比に与える影響が異なることが示された。特 に、Δ<sup>13</sup>C<sub>collagen-apatite</sub>の変化パターンに着目することで、C3 生態系で狩猟活動を 行う集団による少量のC4 雑穀摂取が理論的に検出可能であることが示唆され た。

縄文~弥生時代の関東地方内陸部と中部高地の遺跡から出土した資料の歯根 象牙質コラーゲンの炭素・窒素同位体比および歯冠エナメル質のアパタイトの 炭素同位体比を測定したところ、放射性炭素年代測定にて縄文早期~後期に比 定された試料と比べ、縄文晩期~弥生に比定された試料でコラーゲンとアパタ イト両方のδ<sup>13</sup>Cの上昇が確認された。マクロ栄養素モデルにて検証した結 果、縄文晩期~弥生に比定された試料でC4 雑穀の摂取が検出され、その寄与 率は約40%と推定された。

本研究で行われた人骨の同位体分析と新たな食性評価モデルの構築によって、 狩猟採集から農耕という大きな生業の転換が起きたとされる縄文時代晩期から 弥生時代にかけて、関東内陸部および中部高地において C4 雑穀が食事の 40%を 占めるほど重要な食料源として摂取されていたということが初めて示された。 C4 雑穀の寄与率は縄文晩期の資料で最も高く、弥生中期~後期と時代を経るに つれて減少する傾向が示唆された。これは土器の種実圧痕調査から提唱された、 縄文晩期末に雑穀栽培が選択的に受容され、のちにイネと複合的に栽培される ようになったという仮説を支持する。ただし、縄文晩期から弥生時代における農 耕の伝播は地域に応じて異なる様相を呈する可能性があるため、同時期の他地 域の遺跡から出土した資料の分析を進める。

今後はマクロ栄養素モデルの精度を高めるにあたり、食料源の各栄養素の同 位体比と含有率を測定すること、および可能な限り考古遺物の同位体比を測定 することで参照し得る食料源のデータを拡充することが必要である。また、同 じ試料内で組織の形成方向に連続的に試料を採取し、授乳の影響の評価や少な い資料数での食性推定を可能にすることを目指す。

## 謝辞

本研究で分析させていただいた数々の貴重な考古資料は、以下の方々のご協力・ご提供にてその分析が実現しました。

岩津保洞窟遺跡:東京大学総合研究博物館館長 諏訪元教授、東京大学大学院 理学系研究科 近藤修准教授、東京大学総合研究博物館 佐宗亜衣子氏、帝京大 学文学部 今村啓爾教授、武蔵野美術大学民俗資料室 沖田憲氏、武蔵野美術大 学民俗資料室 亀山沙希氏、武蔵野美術大学民俗資料室 松本美虹氏

石神遺跡:小諸市郷土博物館 高橋陽一氏、明治大学日本先史文化研究所 中沢 道彦氏

生仁遺跡:東京大学大学院人文社会系研究科 設楽博己教授 姜家梁遺跡:鳥取大学 岡崎健治助教

岩津保洞窟遺跡から出土した動物骨の種同定は、明治大学黒耀石研究センターの樋泉岳二氏、北海道大学総合博物館の江田真毅氏にご協力いただきました。

東京大学総合研究博物館で行なった試料の前処理、同位体比測定、放射性炭 素年代測定に関しては年代測定室においてに特任研究員の板橋悠氏、尾嵜大真 氏、大森貴之氏、学術支援職員の宮島史子氏、金澤礼雄氏、山崎孔平氏、上原 加津維氏、内田啓子氏、関根紀子氏、前・学術支援職員の畑山智史氏、山口絢 子氏にご指導・ご協力賜りました。

総合地球環境学研究所の GasBench-IRMS の使用に際しては総合地球環境学研 究所の陀安一郎教授、申基澈准教授、由水千景研究推進支援員、原口岳研究推 進支援員、および金沢大学の覚張隆史特任助教にご指導・ご協力いただきまし た。

また、米田研究室、東京大学総合研究博物館において次の方々から本研究に 関し様々なアドバイスをいただきました。ふじのくに地球環境史ミュージアム 日下宗一郎准教授、国立歴史民俗博物館 山田康弘教授、国立歴史民俗博物館 工藤雄一郎准教授、国立歴史民俗博物館 坂本稔教授、Chinese Academy of Sciences Professor Yaowu Hu、Lithuanian Institute of History Dr. Giedre Motuzaite Matuzeviciute、米田研究室 OG (山形大学) 瀧上舞氏、米田研究室 OB (JAMSTEC) 蔦谷匠氏、米田研究室 OB 椛澤貴行氏、米田研究室博士課程生 Farnaz Khatibi 氏、米田研究室修士課程生 松本眞明氏、米田研究室修士課程生

37

鵜野愛美氏、近藤研究室学部生本村航介氏、近藤研究室博士課程生石井理子氏、近藤研究室修士課程生Katherine Hampson氏、神流町恐竜センター学芸員 青塚圭一氏、遠藤研究室特任研究員工藤光平氏、遠藤研究室博士課程生吉田 将崇氏、遠藤研究室修士課程生上本真里亜氏、遠藤研究室修士課程生武田精 一郎氏、遠藤研究室修士課程 谷尾崇氏

両親をはじめとした家族には勉学をあらゆる面で支えていただきました。 最後に指導教員である米田穣教授には本研究を行うにあたって熱心なご指導を いただき、多くの場面でお世話になりました。

以上の方々に謹んで感謝の意を記し、御礼申し上げます。

引用文献

- Ambrose, S. H. (1990). Preparation and characterization of bone and tooth collagen for isotopic analysis. Journal of Archaeological Science, 17(4), 431–451.
- Ambrose, S. H. (2000). Controlled diet and climate experiments on nitrogen isotope ratios of rats. In S. H. Ambrose & M. A. Katzenberg (Eds.), Biochemical Approaches to Paleodietary Analysis (pp. 243–259). Kluwer Academic/Plenum Publishers New York.
- Ambrose, S. H., Buikstra, J., & Krueger, H. W. (2003). Status and gender differences in diet at Mound 72, Cahokia, revealed by isotopic analysis of bone. Journal of Anthropological Archaeology, 22(3), 217–226.
- Ambrose, S. H., & Norr, L. (1993). Experimental Evidence for the Relationship of the Carbon Isotope Ratios of Whole Diet and Dietary Protein to Those of Bone Collagen and Carbonate. In J. B. Lambert & G. Grupe (Eds.), Prehistoric Human Bone: Archaeology at the Molecular Level (pp. 1–37). Berlin, Heidelberg: Springer Berlin Heidelberg.
- Anderson, E. C., Libby, W. F., Weinhouse, S., Reid, A. F., Kirshenbaum, A. D., & Grosse, A. V. (1947). Natural radiocarbon from cosmic radiation. Physical Review, 72(10), 931–936.
- Beaumont, J., Gledhill, A., Lee-Thorp, J., & Montgomery, J. (2013). Childhood diet: A closer examination of the evidence from dental tissues using stable isotope analysis of incremental human dentine\*. Archaeometry, 55(2), 277–295.
- Beck, W., Spurk, M., Burr, G. S., Reimer, P. J., Stuiver, M., van der Plicht, J., ... Spurk, M. (1998). INTCAL98 radiocarbon age calibration 24,000-0 cal BP. Radiocarbon, 40(3), 1041–1083.
- Codron, J., Codron, D., Lee-Thorp, J. A., Sponheimer, M., Bond, W. J., de Ruiter, D., & Grant, R. (2005). Taxonomic, anatomical, and spatio-temporal variations in the stable carbon and nitrogen isotopic compositions of plants from an African savanna. Journal of Archaeological Science, 32(12), 1757–1772.
- Cohen, D. J. (2011). The Beginnings of Agriculture in China. Current Anthropology, 52(S4), S273–S293.
- Dean, C. (2017). How the microstructure of dentine can contribute to reconstructing developing dentitions and the lives of hominoids and hominins. Comptes Rendus Palevol, 16(5–6), 557–571.

- DeNiro, M. J. (1985). Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature, 317(6040), 806– 809.
- DeNiro, M. J., & Epstein, S. (1978). Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta, 42(5), 495–506.
- DeNiro, M. J., & Epstein, S. (1981). Influence of diet on the distribution of nitrogen isotopes in animal. Geochimica and Cosmochimica Acta, 45, 341–351.
- Farquhar, G., Ehleringer, J. R., & Hubick, K. T. (1989). Discrimination and Photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 40, 503–537.
- Fernandes, R., Millard, A. R., Brabec, M., Nadeau, M. J., & Grootes, P. (2014). Food reconstruction using isotopic transferred signals (FRUITS): A bayesian model for diet reconstruction. PLoS ONE, 9(2), 1–9.
- Fernandes, R., Nadeau, M. J., & Grootes, P. M. (2012). Macronutrient-based model for dietary carbon routing in bone collagen and bioapatite. Archaeological and Anthropological Sciences, 4(4), 291–301.
- Hanihara, K. (1991). Dual structure model for the population history of the Japanese. Japan Review, 2, 1–33.
- Harrison, R. G., & Katzenberg, M. A. (2003). Paleodiet studies using stable carbon isotopes from bone apatite and collagen: Examples from Southern Ontario and San Nicolas Island, California. Journal of Anthropological Archaeology, 22(3), 227– 244.
- Hastorf, C. A., & DeNiro, M. J. (1985). Reconstruction of prehistoric plant production and cooking practices by a new isotopic method. Nature, 315(6019), 489–491.
- Hedges, R. E. M., Clement, J. G., Thomas, C. D. L., & O'Connell, T. C. (2007).
  Collagen turnover in the adult femoral mid-shaft: Modeled from anthropogenic radiocarbon tracer measurements. American Journal of Physical Anthropology, 133, 808–816.
- Jinam, T. A., Kanzawa-Kiriyama, H., & Saitou, N. (2015). Human genetic diversity in the Japanese Archipelago: dual structure and beyond. Genes & Genetic Systems, 90(3), 147–152.
- Jinam, T., Nishida, N., Hirai, M., Kawamura, S., Oota, H., Umetsu, K., ... Saitou, N. (2012). The history of human populations in the Japanese Archipelago inferred

from genome-wide SNP data with a special reference to the Ainu and the Ryukyuan populations. Journal of Human Genetics, 57(12), 787–795.

- Katzenberg, M. A., & Harrison, R. G. (1997). What's in a bone? Recent advances in archaeological bone chemistry. Journal of Archaeological Research, 5(3), 265–293.
- Katzenberg, M. A., & Saunders, S. R. (2007). Biological anthropology of the human skeleton. John Wiley & Sons.
- Kellner, C. M., & Schoeninger, M. J. (2007). A simple carbon isotope model for reconstructing prehistoric human diet. American Journal of Physical Anthropology, 133, 1112–1127.
- Kelly, J. F. (2000). Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology. Canadian Journal of Zoology, 78(1), 1–27.
- Kitagawa, H., Masuzawa, T., Makamura, T., & Matsumoto, E. (1993). A batch preparation method for graphite targets with low background for AMS 14 C measurements. Radiocarbon, 35(2), 295–300.
- Kohn, M. J., & Cerling, T. E. (2002). Stable isotope compositions of biological apatite. Reviews in Mineralogy and Geochemistry, 48(1), 455–488.
- Koyama, S. (1978). Jomon subsistence and population. Senri Ethnological Studies, 2, 1–65.
- Krueger, H. W. (1991). Exchange of carbon with biological apatite. Journal of Archaeological Science, 18(3), 355–361.
- Krueger, H. W., & Sullivan, C. H. (1984). Models for carbon isotope fractionation between diet and bone. Stable isotopes in nutrition. American Chemical Society Symposium Series 258. Washington, DC: American Chemical Society.
- Kusaka, S., Uno, K. T., Nakano, T., Nakatsukasa, M., & Cerling, T. E. (2015). Carbon isotope ratios of human tooth enamel record the evidence of terrestrial resource consumption during the Jomon period, Japan. American Journal of Physical Anthropology, 158(2), 300–311.
- Larsen, C. S., Schoeninger, M. J., van der Merwe, N. J., Moore, K. M., & Lee-Thorp, J.
   A. (1992). Carbon and nitrogen stable isotopic signatures of human dietary change in the Georgia Bight. American Journal of Physical Anthropology, 89(2), 197–214.
- Lee-Thorp, J. A. (1989). Stable carbon isotopes in deep time: the diets of fossil fauna and hominids. University of Cape Town.
- Lee-Thorp, J. A., Sealy, J. C., & Van Der Merwe, N. J. (1989). Stable carbon isotope

ratio differences between bone collagen and bone apatite, and their relationship to diet. Journalof Archaeological Science, 16, 585–599.

- Lee-Thorp, J. A., & van der Merwe, N. J. (1991). Aspects of the chemistry of modern and fossil biological apatites. Journal of Archaeological Science, 18(3), 343–354.
- Lee, G.-A. (2011). The transition from foraging to farming in prehistoric Korea. Current Anthropology, 52(S4), S307–S329.
- Libby, W. F. (1954). Chicago Radiocarbon Dates V. Science. American Association for the Advancement of Science.
- Liu, X., Wang, T., Wei, D., & Hu, Y. (2017). Preliminary exploitation on human lifestyles during Xiaoheyan Culture Period: A case study of the Jiangjialiang site. Acta Anthropologica Sinica, 36(2), 280–288.
- Makarewicz, C. A., & Sealy, J. (2015). Dietary reconstruction, mobility, and the analysis of ancient skeletal tissues: Expanding the prospects of stable isotope research in archaeology. Journal of Archaeological Science, 56, 146–158.
- Minagawa, M., & Wada, E. (1984). Stepwise enrichment of <sup>15</sup>N along food chains: Further evidence and the relation between  $\delta^{15}$ N and animal age. Geochimica et Cosmochimica Acta, 48(5), 1135–1140.
- Minagawa, M., Winter, D. A., & Kaplan, I. R. (1984). Comparison of Kjeldahl and combustion methods for measurement of nitrogen isotope ratios in organic matter. Analytical Chemistry, 56(11), 1859–1861.
- Minami, H. (1995). The migration pattern of shearwater in the Pacific. Hokkaido University.
- Morrison, D. J., Dodson, B., Slater, C., & Preston, T. (2000). <sup>13</sup>C natural abundance in the British diet: implications for <sup>13</sup>C breath tests. Rapid Communications in Mass Spectrometry, 14(15), 1321–1324.
- Muller, R. A. (1977). Radioisotope dating with a cyclotron. Science, 196(4289), 489–494.
- Nakamura, T., Taniguchi, Y., Oda, H., & Tsuji, S. (2001). Radiocarbon dating of charred residues on the earliest pottery in Japan. Radiocarbon, 43(2B), 1129–1138.
- Nakaoka, H., Mitsunaga, S., Hosomichi, K., Shyh-Yuh, L., Sawamoto, T., Fujiwara, T.,... Inoue, I. (2013). Detection of Ancestry Informative HLA Alleles Confirms theAdmixed Origins of Japanese Population. PLoS ONE, 8(4).

Nanci, A. (2018). Ten Cate's oral histology: development, structure, and function (9th

editio). Elsevier.

Nasu, H., Momohara, A., Yasuda, Y., & He, J. (2007). The occurrence and identification of Setaria italica (L.) P. Beauv. (foxtail millet) grains from the Chengtoushan site (ca. 5800 cal B.P.) in central China, with reference to the domestication centre in Asia. Vegetation History and Archaeobotany, 16(6), 481–494.

O'Leary, M. H. (1988). Carbon isotopes in photosynthesis. Bioscience, 38(5), 328–336.

- Omoto, K., & Saitou, N. (1997). Genetic origins of the Japanese : A partial support for the dual structure hypothesis, 446(November 1995), 437–446.
- Parnell, A. C., Inger, R., Bearhop, S., & Jackson, A. L. (2010). Source partitioning using stable isotopes: Coping with too much variation. PLoS ONE, 5(3), 1–5.
- Pechenkina, E. A., Ambrose, S. H., Xiaolin, M., & Benfer, R. A. (2005). Reconstructing northern Chinese Neolithic subsistence practices by isotopic analysis. Journal of Archaeological Science, 32(8), 1176–1189.
- Peterson, B. J., & Fry, B. (1987). Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics, 18(1), 293–320.
- Phillips, D. L., Inger, R., Bearhop, S., Jackson, A. L., Moore, J. W., Parnell, A. C., ...
  Ward, E. J. (2014a). Best practices for use of stable isotope mixing models in.
  Canadian Journal of Zoology, 835(August), 823–835.
- Phillips, D. L., Inger, R., Bearhop, S., Jackson, A. L., Moore, J. W., Parnell, A. C., ... Ward, E. J. (2014b). Best practices for use of stable isotope mixing models in foodweb studies, 835(August), 823–835.
- Piasentier, E., Valusso, R., Camin, F., & Versini, G. (2003). Stable isotope ratio analysis for authentication of lamb meat. Meat Science, 64(3), 239–247.
- Ramsey, C. B. (2009). Bayesian Analysis of Radiocarbon Dates. Radiocarbon, 51(01), 337–360.
- Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., ... van der Plicht, J. (2013). IntCal13 and Marine13 radiocarbon age calibration curves 0– 50,000 years cal BP. Radiocarbon, 55(04), 1869–1887.
- Schoeninger, M. J., & DeNiro, M. J. (1982). Carbon isotope ratios of apatite from fossil bone cannot be used to reconstruct diets of animals. Nature. 297(5867), 577.

- Suess, H. E. (1967). Bristlecone pine calibration of the radiocarbon time scale from 4100 B.C. to 1500 B.C. Radioactive dating and methods of low-level counting. Proceedings of a Symposium, Monaco, 2-10 March 1967 Held by the IAEA in cooperation with the ICSU, 143–151.
- Tieszen, L. L. (1991). Natural variations in the carbon isotope values of plants: implications for archaeology, ecology, and paleoecology. Journal of Archaeological Science, 18, 227–248.
- Tieszen, L. L., & Fagre, T. (1993). Effect of diet quality and composition on the isotopic composition of respiratory CO2, bone collagen, bioapatite, and soft tissues. In Prehistoric Human Bone (pp. 121–155). Berlin, Heidelberg: Springer Berlin Heidelberg.
- Tsutaya, T., & Yoneda, M. (2015). Reconstruction of breastfeeding and weaning practices using stable isotope and trace element analyses: A review. American Journal of Physical Anthropology, 156(S59), 2–21.
- Van Klinken, G. J. (1999). Bone collagen quality indicators for palaeodietary and radiocarbon measurements. Journal of Archaeological Science, 26(6), 687–695.
- Vogel, J. C., & Van Der Merwe, N. J. (1977). Isotopic Evidence for Early Maize Cultivation in New York State. American Antiquity, 42(02), 238–242.
- Welch, D. W., & Parsons, T. R. (1993). δ13C-δ15N values as indicators of trophic position and competitive overlap for Pacific salmon (Oncorhynchus spp.).
  Fisheries Oceanography, 2(1), 11–23.
- White, T. D., & Folkens, P. A. (2005). The Human Bone Manual. Elsevier.
- Yoneda, M., Hirota, M., Uchida, M., Uzawa, K., Tanaka, A., Shibata, Y., & Morita, M. (2001). Marine Radiocarbon Reservoir Effect in the Western North. Radiocarbon, 43(2), 465–471.
- Yoneda, M., Shibata, Y., Morita, M., Hirota, M., Suzuki, R., Uzawa, K., ... Dodo, Y. (n.d., submitted). Radiocarbon marine reservoir effect on human remains and prehistoric dietary habit: Interspecies comparison of apparent radiocarbon ages. Nuclear Instruments and Methods in Physics Research B.
- Yoneda, M., Suzuki, R., Shibata, Y., Morita, M., Sukegawa, T., Shigehara, N., & Akazawa, T. (2004). Isotopic evidence of inland-water fishing by a Jomon population excavated from the Boji site, Nagano, Japan. Journal of Archaeological Science, 31(8), 97–107.

- Zazzo, A., Lécuyer, C., & Mariotti, A. (2004). Experimentally-controlled carbon and oxygen isotope exchange between bioapatites and water under inorganic and microbially-mediated conditions. Geochimica et Cosmochimica Acta, 68(1), 1–12.
- Zhao, Z. (2011). New Archaeobotanic Data for the Study of the Origins of Agriculture in China. Current Anthropology, 52(S4), S295–S306.
- 阿部芳郎. (2014). 水産資源の利用形態と生業活動. 『講座日本の考古学4 縄文時代(下)』 (pp. 87–108).
- 安藤広道. (2009). 弥生農耕の特質. 設楽博己・藤尾慎一郎・松本武彦編, 『弥 生時代の考古学5 食糧の獲得と生産』 同成社.

石川日出志. (2010). 『農耕社会の成立』 岩波書店.

- 岩津保洞窟遺跡調査団. (2015). 『群馬県多野郡神流町 岩津保洞窟遺跡の弥生 時代埋葬』 今村啓爾編. 帝京大学文学部史学科.
- 遠藤英子・高瀬克範. (2011). 伊那盆地における縄文時代晩期の雑穀. 考古学研 究, 58(2), 74-85.

大貫静夫. (2017). 弥生開始年代論. 季刊考古学, 138, 30-33.

奥田敏統・古川昭雄. (1990). C4植物のフロラとその日本国内における分布. 日本生態学会誌, 40, 91–121.

遠部慎・中沢道彦・中村豊. (2012). レプリカ法による徳島県三谷遺跡出土土器 の種実圧痕の研究. 雑穀研究, 27, 10–15.

海部陽介. (1992). 群馬県岩津保洞窟遺跡出土の弥生人人骨. 人類學雜誌,

100(No.4), 449–483.

笠原安夫. (1982). 菜畑遺跡の埋蔵種実の分析・同定研究-古代農耕と植生の復元. 『菜畑遺跡』, 唐津市文化財調査報告(第5集), 354–379.

笠原安夫. (1984). 鬼虎川遺跡の第7次発掘における植物種実の検出と炭化ア

- ワ、カブ種子の出土について. 『鬼虎川遺跡第7次発掘調査報告3-遺構 編-』
- 兼岡一郎. (2008). 『年代測定概論』 東京大学出版会.
- 工藤雄一郎. (2018). 動植物・資源. 『日本考古学・最前線』(pp. 239-253).
- 工藤雄一郎・国立歴史民俗博物館. (2014). 『ここまでわかった! 縄文人の植物利用』. 新泉社.
- 小諸市教育委員会. (1994). 『石神遺跡群 石神 -長野県小諸市石神遺跡発掘調 査書-』

更埴市教育委員会. (2001). 『長野県更埴市屋代遺跡群 生仁遺跡Ⅳ –県営ため 池等整備事業に伴う発掘調査報告書-』

佐々木由香. (2008). 中屋敷遺跡の植物利用. 昭和女子大学人間文化学部歴史文 化学科中屋敷遺跡発掘調査団編, 『南西関東における初期弥生時代遺跡の 調査』

- 設楽博己・高瀬克範. (2014). 西関東地方における穀物栽培の開始. 国立歴史民 俗博物館研究報告, 第185集, 511-530.
- 下条晴義. (1989). 炭素・窒素安定同位体比に基づく陸平貝塚人の食性復原のための基礎的研究. 東京大学大学院.

寺島一郎. (2013). 『植物の生態 -生理機能を中心に-』 裳華房.

樋泉岳二. (2014). 海洋資源の利用と縄文文化 -縄文後期東京湾岸・印旛沼周辺 貝塚の魚貝類利用にみる資源認識の多様性-. 季刊考古学, 別冊21.

- 中山誠二・閏間俊明. (2012). 縄文時代晩期終末期のアワ・キビ圧痕:山梨県中 道遺跡の事例. 山梨県立博物館研究紀要, 6, 1–26.
- 中村俊夫. (2001). 放射性炭素年代とその高精度化. 第四紀研究, 40(6), 445-459. 中村豊. (2009). 西病棟建設に伴う埋蔵文化財発掘調査の成果. 国立大学法人徳

島大学埋蔵文化財調査室年報,1,11-28.

- 中村豊. (2010). 徳島市庄・蔵本遺跡における弥生時代前期の雑穀資料. 雑穀研 究, 25, 1-8.
- 中沢道彦. (2014). 先史時代の初期農耕を考える:レプリカ法の実践から. 日本 海学研究叢書.
- 西沢寿晃. (1982). 中部高地諸遺跡出土の抜歯人骨. 『中部高地の考古学 II』, 33-46.
- 西本豊弘. (2009). 弥生農耕の起源と東アジア—炭素年代測定による高精度編年 体系の構築—. 平成16~20年度科学研究費補助金学術創成研究費研究成果 報告書, 294–295.
- 長野県更埴市教育委員会. (1969). 生仁 -更埴市生仁遺跡第一次(昭和43年度) 緊急発掘調査報告-. 長野県考古学会研究報告書, 7.

長谷川史郎. (1979). C3,C4植物の分類と地理的分布.農業気象, 34(4), 195-200. 馬場伸一郎・遠藤英子. (2017).弥生時代中期の栗林式土器分布圏における栽培

穀物. 資源環境と人類:明治大学黒耀石研究センター紀要,(7),1-22. 藤田恒太郎.(1962). 歯の解剖学. 藤尾慎一郎. (1988). 縄文から弥生へ―水田稲作の開始か定着か―. 『日本民族・文化の生成』(pp. 437–452).

藤尾慎一郎. (2013). 弥生文化の輪郭 灌漑式水田稲作は弥生文化の指標なのか.

- 国立歴史民俗博物館研究報告, 第178集, 85–120.
- 南川雅男・吉岡崇仁. (2006). 『生物地球化学』. 培風館.
- 宮田佳樹・小島孝修・松谷暁子・遠部慎・西本豊弘. (2007). 西日本最古のキ

ビ:滋賀県竜ヶ崎A遺跡の土器付着炭化物.国立歴史民俗博物館研究報告, 137.

- 文部科学省. 食品成分データベース. https://fooddb.mext.go.jp/
- 米田穣. (1999). アバクチ洞穴遺出土人骨試料の放射性炭素年代と同位体食性分析. 奈良貴史・阿部祥人・中村良幸・百々幸雄編, 『アバクチ洞穴・風穴洞穴遺跡発掘調査略報—1998年の発掘— 』(pp. 32–36). アバクチ洞穴・風穴

米田穣. (2004). 深堀遺跡出土人骨の同位体食性分析と放射性炭素年代測定.

『深堀遺跡:長崎市深堀5丁目地内下水道管敷設事業並びに深堀第一排水 区雨水梁敷設工事に伴う埋蔵文化財発掘調査報告書』(pp. 36–41).長崎市 教育委員会.

- 米田穣. (2007). 広田遺跡から出土した人骨の同位体分析. 『広田遺跡』(pp. 192–198). 南種子町教育委員会.
- 米田穣. (2014). 土井ヶ浜遺跡から出土した弥生人骨の炭素・窒素同位体分析. 土井ケ浜遺跡・人類学ミュージアム編『土井ヶ浜遺跡:第1次〜第12次発 掘調査報告書』 (pp. 207–214).
- 早稲田大学図書館. 古典籍総合データベース.

http://www.wul.waseda.ac.jp/kotenseki/ga\_jhistory/history.html

## 図表

【表1】各食料源のマクロ栄養素含有率と炭素・窒素安定同位体比

各マクロ栄養素の含有率は文部科学省食品成分データベースを参照し、全重量から水分と灰分の重量を取り除いた重量中の割合を示す。

|         | 代表例  | タンパク質 | 炭水化物 | 脂質   | δ <sup>13</sup> C | $\delta^{15}N$ | $\delta^{13}C_{collagen}$ | $\delta^{15}N_{collagen}$ | 同位体比参考食品          |
|---------|------|-------|------|------|-------------------|----------------|---------------------------|---------------------------|-------------------|
|         |      | (%)   | (%)  | (%)  | (‰)               | (‰)            | (‰)                       | (‰)                       | 文献                |
| C4 植物   | アワ   | 13.1  | 81.7 | 5.2  | -9.6              | 1.8            |                           |                           | 神奈川県中屋敷遺跡炭化アワ     |
|         |      |       |      |      |                   |                |                           |                           | 米田(未発表)           |
| 海生貝類    | ハマグリ | 71.8  | 21.2 | 7.1  | -17.5             | 6.8            |                           |                           | 勝浦産現生ハマグリ         |
|         |      |       |      |      |                   |                |                           |                           | 下条(1989)          |
| C3 植物   | コメ   | 7.2   | 91.7 | 1.1  | -25.4             | 2.1            |                           |                           | 無肥料栽培された水稲        |
|         |      |       |      |      |                   |                |                           |                           | 山﨑(2013)          |
|         |      |       |      |      | -25.4             | 1.2            |                           |                           | 関東地方縄文遺跡で報告されている  |
|         |      |       |      |      |                   |                |                           |                           | C3 植物の現生種の平均      |
|         |      |       |      |      |                   |                |                           |                           | 下条(1989)          |
| C3 草食動物 | シカ   | 84.8  | 1.1  | 14.2 | -24.3*            | 4.1*           | -21.9                     | 4.9                       | 岩津保洞窟遺跡シカ象牙質コラーゲン |
|         |      |       |      |      |                   |                |                           |                           | 本研究               |
| 海生魚類    | マダイ  | 77.7  | 0.4  | 21.9 | -13.2*            | 12.7*          | -10.7                     | 13.5                      | 千葉県古作貝塚マダイ骨コラーゲン  |
|         |      |       |      |      |                   |                |                           |                           | 下条(1989)          |

\*コラーゲンから可食部(筋肉)の同位体比の推定を行った。その際に使用した計算式は以下のものである

(Ambrose, 2000; Tieszen & Fagre, 1993)

 $\Delta^{13}$ C<sub>collagen-muscle</sub> = 2.4‰

 $\Delta$  <sup>15</sup>N<sub>collagen-muscle</sub> = 0.8‰

| 【表 2】 | マクロ栄養素モデルに依 | 用した食料源のマグ | クロ栄養素含有率と | 栄養素別同位体比 |
|-------|-------------|-----------|-----------|----------|
|-------|-------------|-----------|-----------|----------|

|                                                |      | C3 植物 |                | C3 草食動物 |      |                   |  |  |
|------------------------------------------------|------|-------|----------------|---------|------|-------------------|--|--|
|                                                | 質量比  | C質量比  | $\delta^{13}C$ | 質量比     | C質量比 | δ <sup>13</sup> C |  |  |
| 全体                                             |      |       | -25.4          |         |      | -25.8             |  |  |
| タンパク質                                          | 0.15 | 0.17  | -27.4          | 0.85    | 0.79 | -24.6             |  |  |
| 脂質                                             | 0.05 | 0.08  | -29.4          | 0.15    | 0.21 | -30.6             |  |  |
| 炭水化物                                           | 0.8  | 0.75  | -24.9          | 0       | 0    |                   |  |  |
| å $\delta$ $^{13}C_{energy}$                   | 0.85 | 0.83  | -25.3          | 0.15    | 0.21 | -30.6             |  |  |
| $\delta$ $^{13}\mathrm{C}_{\mathrm{collagen}}$ |      |       |                |         |      | -22.1             |  |  |
| $\delta$ $^{13}C_{apatite}$                    |      |       |                |         |      | -15.3             |  |  |
| $\delta$ <sup>15</sup> N                       |      |       | 1.2            |         |      | 4.5               |  |  |

|                                              |      | C4 植物 |                | (    | 4草食動物 |                   |
|----------------------------------------------|------|-------|----------------|------|-------|-------------------|
|                                              | 質量比  | C質量比  | $\delta^{13}C$ | 質量比  | C質量比  | δ <sup>13</sup> C |
| 全体                                           |      |       | -9.6           |      |       | -10.0             |
| タンパク質                                        | 0.15 | 0.17  | -11.6          | 0.85 | 0.79  | -8.8              |
| 脂質                                           | 0.05 | 0.08  | -13.6          | 0.15 | 0.21  | -14.8             |
| 炭水化物                                         | 0.8  | 0.75  | -9.1           | 0    | 0     |                   |
| $\delta$ <sup>13</sup> C <sub>energy</sub>   | 0.85 | 0.83  | -9.5           | 0.15 | 0.21  | -14.8             |
| $\delta$ <sup>13</sup> C <sub>collagen</sub> |      |       |                |      |       | -6.3              |
| $\delta$ <sup>13</sup> C <sub>apatite</sub>  |      |       |                |      |       | 0.5               |
| $\delta$ <sup>15</sup> N                     |      |       | 1.8            |      |       | 5.1               |

|                                              |     | 海生貝類 |                | 海生魚類 |      |                   |  |  |
|----------------------------------------------|-----|------|----------------|------|------|-------------------|--|--|
|                                              | 質量比 | C質量比 | $\delta^{13}C$ | 質量比  | C質量比 | δ <sup>13</sup> C |  |  |
| 全体                                           |     |      | -17.5          |      |      | -14.8             |  |  |
| タンパク質                                        | 0.7 | 0.69 | -17.6          | 0.8  | 0.73 | -13.2             |  |  |
| 脂質                                           | 0.1 | 0.14 | -23.6          | 0.2  | 0.27 | -19.2             |  |  |
| 炭水化物                                         | 0.2 | 0.17 | -17.5          | 0    | 0    |                   |  |  |
| $\delta$ <sup>13</sup> C <sub>energy</sub>   | 0.1 | 0.31 | -10.3          | 0.3  | 0.27 | -19.2             |  |  |
| $\delta$ <sup>13</sup> C <sub>collagen</sub> |     |      | -15.1          |      |      | -10.7             |  |  |
| $\delta$ <sup>13</sup> C <sub>apatite</sub>  |     |      |                |      |      |                   |  |  |
| $\delta$ $^{15}{ m N}$                       |     |      | 6.8            |      |      | 12.7              |  |  |

【表3】マクロ栄養素モデルの検証に用いた人類集団の同位体比データ

| 集団名      | 主な食性              | 出典                      |
|----------|-------------------|-------------------------|
| Cahokia  | 低い位の集団では C4 植物を多く | Ambrose et al., 2003    |
|          | 摂取、高い位の集団では C3 生態 |                         |
|          | 系の肉を多く摂取          |                         |
| Yangshao | C4 農耕と C4 植物食家畜   | Pechenkina et al., 2005 |
| 沿岸縄文     | C3 植物と海生魚類の利用     | Kusaka et al., 2015     |
|          |                   |                         |

【表4】本研究で分析した歯種の形成期間

White & Folkens (2005)、Nanci (2018)に基づき作成した。dm1:第一乳臼歯、C:犬歯、P1:第一小 臼歯、P2:第二小臼歯、M1:第一大臼歯、M2:第二大臼歯、M3:第三大臼歯

(4-a) 男性

|            | dm1          | С    | P1   | P2   | M1  | M2   | M3   |
|------------|--------------|------|------|------|-----|------|------|
| 歯冠形成開始(ci) | 在胎12.5-15.5週 | 0.6  | 2.1  | 3.2  | 0.1 | 3.8  | 9.5  |
| 歯冠形成完了     | 0.4          | 4.4  | 5.6  | 6.6  | 2.5 | 6.8  | 12.4 |
| 歯根形成開始     | N.D.         | 5.2  | 6.4  | 7.3  | 3.2 | 7.6  | 13.2 |
| 歯根形成完了(rc) | 2            | 11.0 | 11.2 | 12.2 | 7.0 | 12.3 | 17.5 |
| ci~rcの期間   | 1.7          | 10.4 | 8.9  | 9.0  | 6.9 | 8.5  | 8.0  |

(4-b) 女性

|            | dm1          | С   | <b>P</b> 1 | P2   | M1  | M2   | M3   |
|------------|--------------|-----|------------|------|-----|------|------|
| 歯冠形成開始(ci) | 在胎12.5-15.5週 | 0.6 | 2.0        | 3.3  | 0.2 | 3.6  | 9.9  |
| 歯冠形成完了     | 0.15         | 4.3 | 5.4        | 6.5  | 2.4 | 6.6  | 12.6 |
| 歯根形成開始     | N.D.         | 5.0 | 6.1        | 7.2  | 3.1 | 7.3  | 13.2 |
| 歯根形成完了(rc) | 1.8          | 9.4 | 10.5       | 11.3 | 6.5 | 11.8 | 17.7 |
| ci~rcの期間   | 1.5          | 8.8 | 8.5        | 8.0  | 6.3 | 8.2  | 7.8  |

【表5】 分析資料リスト

MNI は最小個体数(Minimum number of individuals)を指し、形態学的情報(歯種同定や動物種同定の結果)から判定したものである。時代は、発掘報告書等で出土状況から判定されたものである。

| 遺跡名   | 所在地    | 時代      | 人歯  | 資料  | 人骨貨 | 資料  | 動物骨資料 |     | 注釈                |
|-------|--------|---------|-----|-----|-----|-----|-------|-----|-------------------|
|       |        |         | 試料数 | MNI | 試料数 | MNI | 試料数   | MNI |                   |
| 岩津保洞窟 | 群馬県神流町 | 弥生時代中期  | 27  | 7   | 2   | 2   | 13    | 9   | 人歯資料の26点は遊離歯、1点は分 |
|       |        |         |     |     |     |     |       |     | 析した人骨資料に植立していたもの  |
| 石神    | 長野県小諸市 | 縄文時代後期  | 4   | 4   | 4   | 4   |       |     | 4 個体から人骨・人歯を      |
|       |        |         |     |     |     |     |       |     | それぞれ1点ずつ採取        |
| 生仁    | 長野県千曲市 | 弥生時代後期  | 1   | 1   | 1   | 1   |       |     | 1 個体から人骨・人歯を採取    |
| 姜家梁   | 中国河北省  | 新石器時代中期 | 3   | 3   |     |     |       |     |                   |
|       | 合計     |         | 35  | 15  | 7   | 7   | 13    | 9   |                   |

【表 6】放射性炭素年代測定結果。時代区分は、較正年代の確率密度分布の最頻値の時代を採用 人歯・人骨資料

| 遺跡    | 資料番号 | 歯種・骨種  | <sup>14</sup> C年代 | 時代区分    | 較正年代            | 較正年代            | Lab-code |
|-------|------|--------|-------------------|---------|-----------------|-----------------|----------|
|       |      |        | (BP)              |         | (1SD, cal BP)   | (2SD, cal BP)   | (TKA-)   |
| 岩津保洞窟 | 4号人骨 | 右肋骨    | 7231 ± 22         | 縄文時代早期  | 8148( 1.7%)8144 | 8156(21.8%)8087 | 20191    |
|       |      | (推定年齡  |                   |         | 8105( 4.2%)8095 | 8069(73.6%)7977 |          |
|       |      | 6ヶ月)   |                   |         | 8053(62.3%)7997 |                 |          |
| 岩津保洞窟 | 1874 | 右上顎 M3 | $4730~\pm~20$     | 縄文時代前期末 | 5578(44.2%)5534 | 5581(49.6%)5510 | 17264    |
|       |      |        |                   |         | 5480(13.4%)5465 | 5486(19.5%)5452 |          |
|       |      |        |                   |         | 5347(10.5%)5334 | 5378(26.3%)5329 |          |
| 岩津保洞窟 | 72   | 左下顎 P2 | $2271~\pm~22$     | 弥生時代中期  | 2342(57.9%)2308 | 2348(62.2%)2302 | 17260    |
|       |      |        |                   |         | 2221(10.3%)2210 | 2241(33.2%)2180 |          |
| 岩津保洞窟 | 2010 | 右上顎 M3 | $2194~\pm~23$     | 弥生時代中期  | 2303(47.3%)2240 | 2310(95.4%)2144 | 17263    |
|       |      |        |                   |         | 2181(20.9%)2152 |                 |          |
| 岩津保洞窟 | 2876 | 右下顎 P1 | $2193~\pm~17$     | 弥生時代中期  | 2302(50.5%)2243 | 2308(61.1%)2225 | 17270    |
|       |      |        |                   |         | 2179( 9.2%)2168 | 2209(34.3%)2146 |          |
|       |      |        |                   |         | 2163( 8.5%)2153 |                 |          |

(表6続き)

(表6続く)

| 遺跡    | 資料番号 | 歯種・骨種  | <sup>14</sup> C年代 | 時代区分   | 較正年代            | 較正年代            | Lab-code |
|-------|------|--------|-------------------|--------|-----------------|-----------------|----------|
|       |      |        | (BP)              |        | (1SD, cal BP)   | (2SD, cal BP)   | (TKA-)   |
| 岩津保洞窟 | 2143 | 右上顎 M3 | $2169~\pm~41$     | 弥生時代中期 | 2305(36.2%)2235 | 2314(95.4%)2051 | 17263    |
|       |      |        |                   |        | 2183(32.0%)2116 |                 |          |
| 岩津保洞窟 | 2294 | 右下顎 P2 | $2168~\pm~24$     | 弥生時代中期 | 2300(40.9%)2253 | 2307(50.7%)2228 | 17256    |
|       |      |        |                   |        | 2159(27.3%)2125 | 2208(43.7%)2111 |          |
|       |      |        |                   |        |                 | 2078( 1.1%)2069 |          |
| 岩津保洞窟 | 1869 | 右上顎 P1 | $2133~\pm~17$     | 弥生時代中期 | 2149(55.4%)2109 | 2292( 3.9%)2275 | 17269    |
|       |      |        |                   |        | 2081(12.8%)2067 | 2154(91.5%)2047 |          |
| 岩津保洞窟 | 1918 | 左下顎 P1 | $2132~\pm~24$     | 弥生時代中期 | 2150(48.7%)2100 | 2297( 8.1%)2267 | 17255    |
|       |      |        |                   |        | 2088(19.5%)2062 | 2157(84.3%)2037 |          |
|       |      |        |                   |        |                 | 2025( 3.0%)2007 |          |
| 岩津保洞窟 | 2788 | 右下顎 P2 | $2114~\pm~20$     | 弥生時代中期 | 2129(68.2%)2055 | 2148(88.3%)2036 | 17258    |
|       |      |        |                   |        |                 | 2027( 7.1%)2006 |          |
| 岩津保洞窟 | 1911 | 左下顎 P2 | $2110~\pm~16$     | 弥生時代中期 | 2122(68.2%)2057 | 2143(89.1%)2037 | 17259    |
|       |      |        |                   |        |                 | 2025( 6.3%)2007 |          |
| 岩津保洞窟 | 8号人骨 | 右肋骨    | $2109~\pm~16$     | 弥生時代中期 | 2121(68.2%)2056 | 2142(88.6%)2037 | 20192    |
|       |      | (胎児)   |                   |        |                 | 2025( 6.8%)2007 |          |
| 岩津保洞窟 | 1047 | 右上顎 M2 | $2103~\pm~21$     | 弥生時代中期 | 2120(68.2%)2042 | 2135(95.4%)2002 | 17262    |
|       |      |        |                   |        |                 | (               | 〔表6続く〕   |

(表 6 続き)

| 遺跡    | 資料番号 | 歯種・骨種   | <sup>14</sup> C年代 | 時代区分    | 較正年代             | 較正年代            | Lab-code |
|-------|------|---------|-------------------|---------|------------------|-----------------|----------|
|       |      |         | (BP)              |         | (1SD, cal BP)    | (2SD, cal BP)   | (TKA-)   |
| 岩津保洞窟 | 1047 | 右上顎 M2  | $2103 ~\pm~ 21$   | 弥生時代中期  | 2120(68.2%)2042  | 2135(95.4%)2002 | 17262    |
| 岩津保洞窟 | 344  | 右上顎 dm1 | $2080~\pm~18$     | 弥生時代中期  | 2100( 9.6%)2088  | 2115(95.4%)1996 | 17748    |
|       |      |         |                   |         | 2062(58.6%)2002  |                 |          |
| 岩津保洞窟 | 1743 | 左下顎 P1  | $2080~\pm~17$     | 弥生時代中期  | 2099( 8.1%)2089  | 2115(95.4%)1996 | 17254    |
|       |      |         |                   |         | 2062(60.1%)2002  |                 |          |
| 岩津保洞窟 | 1967 | 右下顎 M2  | $2054~\pm~17$     | 弥生時代中期  | 2044(68.2%)1989  | 2106( 5.6%)2085 | 17272    |
|       |      |         |                   |         |                  | 2063(89.8%)1949 |          |
| 岩津保洞窟 | 2170 | 左下顎 M2  | $2018~\pm~16$     | 弥生時代後期  | 1990(68.2%)1949  | 2000(95.4%)1925 | 17266    |
| 岩津保洞窟 | 1968 | 右下顎 P2  | $1969~\pm~18$     | 弥生時代後期  | 1934(68.2%)1889  | 1971( 3.4%)1960 | 17257    |
|       |      |         |                   |         |                  | 1951(92.0%)1876 |          |
| 岩津保洞窟 | 1083 | 右上顎 M2  | $1957~\pm~18$     | 弥生時代後期  | 1926(68.2%)1883  | 1967( 0.4%)1964 | 17261    |
|       |      |         |                   |         |                  | 1950(95.0%)1866 |          |
| 岩津保洞窟 | 試掘 2 | 左下顎 M2  | $1910~\pm~20$     | 弥生時代後期  | 1880(31.3%)1859  | 1896(95.4%)1820 | 17445    |
|       |      |         |                   |         | 1852(36.9%)1826  |                 |          |
| 岩津保洞窟 | 221  | 右上顎 dm1 | $1738~\pm~20$     | 古墳時代    | 1696 (48.7%)1649 | 1708(91.5%)1594 | 17252    |
|       |      |         |                   |         | 1634(19.5%)1615  | 1584( 3.9%)1571 |          |
| 岩津保洞窟 | 2900 | 右上顎 dm1 | $1443~\pm~19$     | 飛鳥~奈良時代 | 1345(68.2%)1311  | 1370(95.4%)1301 | 17253    |
|       |      |         |                   |         |                  |                 | (表6続く)   |

(表6続き)

| 遺跡    | 資料番号  | 歯種・骨種  | <sup>14</sup> C年代 | 時代区分    | 較正年代            | 較正年代            | Lab-code |
|-------|-------|--------|-------------------|---------|-----------------|-----------------|----------|
|       |       |        | (BP)              |         | (1SD, cal BP)   | (2SD, cal BP)   | (TKA-)   |
| 岩津保洞窟 | 2477  | 左下顎 M2 | $1308~\pm~16$     | 飛鳥~奈良時代 | 1284(52.8%)1260 | 1289(71.5%)1236 | 17265    |
|       |       |        |                   |         | 1200(15.4%)1190 | 1207(23.9%)1185 |          |
| 岩津保洞窟 | 2126  | 左下顎 P1 | $1176~\pm~17$     | 平安時代    | 1173(14.1%)1159 | 1176(95.4%)1057 | 17750    |
|       |       |        |                   |         | 1146(27.5%)1109 |                 |          |
|       |       |        |                   |         | 1090(26.6%)1062 |                 |          |
| 岩津保洞窟 | 1626  | 右下顎 P2 | $1087~\pm~18$     | 平安時代    | 1049(23.7%)1030 | 1055(31.7%)1021 | 17749    |
|       |       |        |                   |         | 996(44.5%)961   | 1012(61.9%)952  |          |
|       |       |        |                   |         |                 | 945( 1.8%)938   |          |
| 岩津保洞窟 | 2177  | 右下顎 C  | $506 \pm 17$      | 室町時代    | 535(68.2%)519   | 542(95.4%)512   | 17268    |
|       |       |        |                   |         |                 |                 |          |
| 岩津保洞窟 | 2280  | 右上顎 M2 | $450~\pm~35$      | 室町時代    | 526(68.2%)493   | 540(94.0%)459   | 17271    |
|       |       |        |                   |         |                 | 348( 1.4%)340   |          |
| 石神    | SK102 | 骨      | 3338 ± 17         | 縄文時代後期  | 3608(68.2%)3562 | 3636(85.6%)3556 | 20203    |
|       |       |        |                   |         |                 | 3533( 9.8%)3496 |          |
| 石神    | SK55  | 骨      | $711 \pm 16$      | 鎌倉時代    | 675(68.2%)664   | 683(95.4%)657   | 20202    |
|       |       |        |                   |         |                 |                 | (表6続く)   |

(表6続き)

| 遺跡  | 資料番号 | 歯種・骨種  | <sup>14</sup> C 年代 | 時代区分    | 較正年代            | 較正年代             | Lab-code |
|-----|------|--------|--------------------|---------|-----------------|------------------|----------|
|     |      |        | (BP)               |         | (1SD, cal BP)   | (2SD, cal BP)    | (TKA-)   |
| 生仁  | -    | 頭骨     | $2439~\pm~22$      | 縄文晩期終末  | 2679(17.5%)2641 | 2697(23.7%)2634  | 18262    |
|     |      |        |                    |         | 2608( 3.4%)2600 | 2616( 7.4%)2590  |          |
|     |      |        |                    |         | 2492(35.6%)2420 | 2537( 0.9%)2528  |          |
|     |      |        |                    |         | 2415( 5.3%)2401 | 2509(63.4%)2358  |          |
|     |      |        |                    |         | 2395( 6.4%)2379 |                  |          |
| 姜家梁 | M16  | 左下顎 P1 | $4156~\pm~20$      | 新石器時代中期 | 4817(10.9%)4797 | 4824(18.9%)4783  | 20206    |
|     |      |        |                    |         | 4762( 5.6%)4752 | 4767(74.7%)4612  |          |
|     |      |        |                    |         | 4726(51.8%)4628 | 4596( 1.8%)4587  |          |
| 姜家梁 | M9   | 左下顎 P1 | $4112 ~\pm~ 19$    | 新石器時代中期 | 4799(21.6%)4762 | 4808(25.6%)4758  | 20204    |
|     |      |        |                    |         | 4689( 3.9%)4680 | 4700( 9.9%)4671  |          |
|     |      |        |                    |         | 4642(2.6%)4636  | 4650(59.9%)4529  |          |
|     |      |        |                    |         | 4629(40.2%)4569 |                  |          |
| 姜家梁 | M13  | 左上顎 M3 | 4112 ± 22          | 新石器時代中期 | 4799(21.2%)4762 | 4808 (25.1%)4758 | 20205    |
|     |      |        |                    |         | 4690( 5.0%)4679 | 4702(11.1%)4670  |          |
|     |      |        |                    |         | 4643( 3.3%)4635 | 4651(59.1%)4528  |          |
|     |      |        |                    |         | 4630(38.7%)4569 |                  |          |

(表6続く)

動物骨資料

| 遺跡    | 資料番号 | 動物種    | <sup>14</sup> C年代 | 時代区分   | 較正年代              | 較正年代              | Lab-code |
|-------|------|--------|-------------------|--------|-------------------|-------------------|----------|
|       |      |        | (BP)              |        | (1SD, cal BP)     | (2SD, cal BP)     | (TKA-)   |
| 岩津保洞窟 | 899  | ツキノワグマ | 9481 ± 25         | 縄文時代早期 | 10757(68.2%)10691 | 11060( 2.9%)11034 |          |
|       |      |        |                   |        |                   | 10999( 2.5%)10975 |          |
|       |      |        |                   |        |                   | 10789(88.4%)10654 |          |
|       |      |        |                   |        |                   | 10620( 1.6%)10605 |          |
| 岩津保洞窟 | 1154 | イノシシ   | $9306~\pm~25$     | 縄文時代早期 | 10565(65.2%)10496 | 10580(77.9%)10477 | 20198    |
|       |      |        |                   |        | 10449( 3.0%)10445 | 10470(17.5%)10423 |          |
| 岩津保洞窟 | 924  | イノシシ   | 8797 ± 24         | 縄文時代早期 | 9892(68.2%)9764   | 9913(95.4%)9697   | 20194    |
| 岩津保洞窟 | 944  | ウサギ    | $8759~\pm~26$     | 縄文時代早期 | 9885( 2.6%)9877   | 9896(93.2%)9654   | 20195    |
|       |      |        |                   |        | 9865( 5.3%)9848   | 9647( 2.2%)9630   |          |
|       |      |        |                   |        | 9815( 1.4%)9810   |                   |          |
|       |      |        |                   |        | 9792(58.8%)9681   |                   |          |
| 岩津保洞窟 | 1061 | ウサギ    | $8740~\pm~26$     | 縄文時代早期 | 9765(61.4%)9654   | 9887( 1.9%)9873   | 20196    |
|       |      |        |                   |        | 9648( 6.8%)9630   | 9868( 3.2%)9846   |          |
|       |      |        |                   |        |                   | 9823(89.6%)9585   |          |
|       |      |        |                   |        |                   | 9571( 0.8%)9564   |          |
|       |      |        |                   |        |                   |                   | (表6続く)   |

(表6続き)

| 遺跡    | 資料番号 | 動物種  | <sup>14</sup> C年代 | 時代区分   | 較正年代            | 較正年代            | Lab-code |
|-------|------|------|-------------------|--------|-----------------|-----------------|----------|
|       |      |      | (BP)              |        | (1SD, cal BP)   | (2SD, cal BP)   | (TKA-)   |
| 岩津保洞窟 | 1152 | シカ   | $8685~\pm~24$     | 縄文時代早期 | 9656( 8.8%)9645 | 9689(95.4%)9551 | 20197    |
|       |      |      |                   |        | 9632(59.4%)9559 |                 |          |
| 岩津保洞窟 | 2928 | タヌキ  | $2492~\pm~24$     | 縄文時代晩期 | 2707( 8.6%)2690 | 2720(95.4%)2489 | 20201    |
|       |      |      |                   |        | 2636( 4.6%)2627 |                 |          |
|       |      |      |                   |        | 2622( 4.3%)2613 |                 |          |
|       |      |      |                   |        | 2595(50.7%)2499 |                 |          |
| 岩津保洞窟 | 2590 | イノシシ | $2427~\pm~19$     | 縄文時代晩期 | 2485(68.2%)2377 | 2680(12.3%)2640 | 20200    |
|       |      |      |                   |        |                 | 2609( 2.3%)2600 |          |
|       |      |      |                   |        |                 | 2493(80.9%)2358 |          |
| 岩津保洞窟 | 2069 | カモシカ | $1701~\pm~18$     | 古墳時代   | 1616(68.2%)1565 | 1693(13.9%)1666 | 20199    |
|       |      |      |                   |        |                 | 1629(81.5%)1553 |          |

【表7】炭素・窒素安定同位体比測定結果 C/N 比が正常範囲(2.9-3.6)から外れたものは下線付ボールド体で示した。 時代区分において?と表記した資料は放射性炭素年代測定を行えなかったため、考古学的所見から推定された時代を記した。 人歯・人骨資料

| 遺跡    | 資料番号 | 歯種・骨種   | 収率     | %C   | %N   | C/N | $\delta^{13}C_{collagen}$ | $\delta^{15}N$ | $\delta^{13}C_{apatite}$ | $\Delta^{13}C$ | 時代区分    |
|-------|------|---------|--------|------|------|-----|---------------------------|----------------|--------------------------|----------------|---------|
| 岩津保洞窟 | 4号人骨 | 右肋骨     | 15.9%  | 41.6 | 14.8 | 3.3 | -19.7                     | 9.0            |                          | 56             | 縄文時代早期  |
|       |      | 左上顎 dm1 |        |      |      |     |                           |                | -14.1                    | 0.0            |         |
| 岩津保洞窟 | 1874 | 右上顎 M3  | 10.3 % | 44.3 | 16.2 | 3.2 | -20.2                     | 6.8            | -14.6                    | 5.5            | 縄文時代前期末 |
| 岩津保洞窟 | 72   | 左下顎 P2  | 9.3 %  | 44.0 | 16.3 | 3.2 | -13.9                     | 7.3            | -8.8                     | 5.1            | 弥生時代中期  |
| 岩津保洞窟 | 2010 | 右上顎 M3  | 9.6 %  | 43.4 | 16.0 | 3.2 | -16.3                     | 7.0            | -8.8                     | 7.5            | 弥生時代中期  |
| 岩津保洞窟 | 2876 | 右下顎 P1  | 5.8 %  | 43.3 | 15.9 | 3.2 | -15.1                     | 7.9            | -9.2                     | 5.9            | 弥生時代中期  |
| 岩津保洞窟 | 2143 | 右上顎 M3  | 9.5 %  | 43.1 | 15.8 | 3.2 | -16.5                     | 6.7            | -10.6                    | 6.0            | 弥生時代中期  |
| 岩津保洞窟 | 2294 | 右下顎 P2  | 4.1 %  | 44.3 | 16.3 | 3.2 | -14.6                     | 7.1            | -8.5                     | 6.2            | 弥生時代中期  |
| 岩津保洞窟 | 1869 | 右上顎 P1  | 5.9 %  | 43.6 | 16.1 | 3.2 | -16.1                     | 7.8            | -10.9                    | 5.3            | 弥生時代中期  |
| 岩津保洞窟 | 1918 | 左下顎 P1  | 7.2 %  | 43.7 | 16.1 | 3.2 | -16.5                     | 7.6            | -9.5                     | 7.0            | 弥生時代中期  |
| 岩津保洞窟 | 2788 | 右下顎 P2  | 7.9 %  | 43.9 | 16.2 | 3.2 | -16.2                     | 7.3            | -8.8                     | 7.3            | 弥生時代中期  |
| 岩津保洞窟 | 1911 | 左下顎 P2  | 9.5 %  | 43.2 | 16.1 | 3.1 | -15.7                     | 6.7            | -12.2                    | 3.5            | 弥生時代中期  |
| 岩津保洞窟 | 8号人骨 | 右肋骨     | 12.4%  | 40.2 | 14.4 | 3.3 | -16.6                     | 7.1            |                          |                | 弥生時代中期  |
| 岩津保洞窟 | 1047 | 右上顎 M2  | 8.0 %  | 43.3 | 15.9 | 3.2 | -14.1                     | 7.4            | -8.7                     | 5.4            | 弥生時代中期  |
| 岩津保洞窟 | 344  | 右上顎 dm1 | 6.0%   | 44.1 | 16.2 | 3.2 | -16.0                     | 9.2            | -9.1                     | 7.0            | 弥生時代中期  |
| 岩津保洞窟 | 1743 | 左下顎 P1  | 5.8 %  | 43.6 | 15.9 | 3.2 | -16.1                     | 9.3            | -9.2                     | 6.9            | 弥生時代中期  |
|       |      |         |        |      |      |     |                           |                |                          |                | (表7続く)  |

(表7続き)

| 遺跡    | 資料番号   | 歯種・骨種   | 収率     | %C   | %N   | C/N        | $\delta^{13}C_{collagen}$ | $\delta^{15}N$ | $\delta^{13}C_{apatite}$ | $\Delta^{13}C$ | 時代区分              |
|-------|--------|---------|--------|------|------|------------|---------------------------|----------------|--------------------------|----------------|-------------------|
| 岩津保洞窟 | 1967   | 右下顎 M2  | 6.0 %  | 41.9 | 15.4 | 3.2        | -17.4                     | 8.3            | -11.5                    | 5.9            | 弥生時代中期            |
| 岩津保洞窟 | 1967   | 右下顎 M2  | 6.0 %  | 41.9 | 15.4 | 3.2        | -17.4                     | 8.3            | -11.5                    | 5.9            | 弥生時代中期            |
| 岩津保洞窟 | 2170   | 左下顎 M2  | 7.8 %  | 43.4 | 16.0 | 3.2        | -17.1                     | 7.8            | -8.6                     | 8.5            | 弥生時代後期            |
| 岩津保洞窟 | 1968   | 右下顎 P2  | 6.0 %  | 44.1 | 16.2 | 3.2        | -16.1                     | 7.7            | -8.8                     | 7.4            | 弥生時代後期            |
| 岩津保洞窟 | 1083   | 右上顎 M2  | 8.8 %  | 43.2 | 16.0 | 3.2        | -16.5                     | 7.1            | -9.9                     | 6.6            | 弥生時代後期            |
| 岩津保洞窟 | 試掘 2   | 左下顎 M2  | 10.0 % | 43.4 | 16.0 | 3.2        | -16.6                     | 6.8            | -9.7                     | 6.9            | 弥生時代後期            |
| 岩津保洞窟 | 221    | 右上顎 dm1 | 4.4 %  | 43.6 | 16.0 | 3.2        | -16.5                     | 8.1            | -10.2                    | 6.3            | 古墳時代              |
| 岩津保洞窟 | 2900   | 右上顎 dm1 | 4.2 %  | 43.2 | 15.8 | 3.2        | -14.8                     | 8.1            | -8.6                     | 6.2            | 飛鳥~奈良時代           |
| 岩津保洞窟 | 2477   | 左下顎 M2  | 5.7 %  | 42.4 | 15.7 | 3.2        | -16.6                     | 7.7            | -9.8                     | 6.8            | 飛鳥~奈良時代           |
| 岩津保洞窟 | 2126   | 左下顎 P1  | 3.9 %  | 41.5 | 15.3 | 3.2        | -16.7                     | 8.1            | -9.8                     | 6.9            | 平安時代              |
| 岩津保洞窟 | 1626   | 右下顎 P2  | 3.2 %  | 42.3 | 15.2 | 3.2        | -17.5                     | 7.8            | -9.2                     | 8.3            | 平安時代              |
| 岩津保洞窟 | 2177   | 右下顎 C   | 6.9 %  | 44.1 | 16.4 | 3.1        | -18.7                     | 7.1            | -9.8                     | 8.9            | 室町時代              |
| 岩津保洞窟 | 2280   | 右上顎 M2  | 5.5 %  | 43.2 | 15.8 | 3.2        | -17.9                     | 7.1            | -10.3                    | 7.6            | 室町時代              |
| 岩津保洞窟 | 2165   | 右上顎 M2  | 0.0 %  |      |      |            |                           |                |                          |                |                   |
| 工抽    | SV 102 | 骨       | 4.0%   | 42.8 | 14.8 | 3.4        | -19.9                     | 7.1            |                          | 6.5            | 建立時代公開            |
| 白竹    | SK102  | 左下顎 P1  |        |      |      |            |                           |                | -13.5                    | 0.0            | <b>吨</b> 入时17夜别   |
| 了抽    | CV 101 | 骨       | 0.3%   | 34.8 | 9.6  | <u>4.2</u> | -20.6                     | 7.4            |                          | 0.0            | 细 <b>立</b> 哇伊忿 拥o |
| 白竹    | 5K181  | 左上顎 M3  |        |      |      |            |                           |                | -12.6                    | 8.0            | 爬入时1\饭别?          |
|       |        |         |        |      |      |            |                           |                |                          |                | (表7続く)            |

(表7続き)

| 遺跡    | 資料番号   | 歯種・骨種  | 収率    | %C   | %N   | C/N        | $\delta^{13}C_{collagen}$ | $\delta^{15}N$ | $\delta^{13}C_{apatite}$ | $\Delta^{13}C$ | 時代区分           |
|-------|--------|--------|-------|------|------|------------|---------------------------|----------------|--------------------------|----------------|----------------|
| 7.抽   | SV 520 | 骨      | 0.6%  | 33.4 | 11.5 | 3.4        | -18.1                     | 9.9            |                          | ( )            | <b>建立時代後期9</b> |
| 白仲    | SK520  | 左下顎 M3 |       |      |      |            |                           |                | -12.1                    | 6.0            | 神义时1\饭期?       |
| 石神    | SX02   | 左下顎 M1 | 0.3%  |      |      |            |                           |                | -13.1                    |                | 縄文時代後期?        |
|       |        |        |       |      |      |            |                           |                |                          |                |                |
| 万油    | SV 55  | 骨      | 3.2%  | 44.1 | 15.4 | 3.4        | -19.9                     | 10.9           | -13.4                    | 6.5            | 鎌合時代           |
| 11 7中 | 3KJJ   | 左下顎 M2 | 7.8%  | 29.3 | 9.3  | <u>3.7</u> | -19.6                     | 10.5           | -13.4                    | 6.5            | <u> </u>       |
| 止尸    |        | 頭骨     | 1.3%  | 41.5 | 13.9 | 3.5        | -16.2                     | 7.5            |                          | 0.2            | 细寸曲曲如十         |
| 生仁    | -      | 右上顎 M3 |       |      |      |            |                           |                | -6.9                     | 9.3            | <b>吨</b> 义     |
| 姜家梁   | M13    | 左上顎 M3 | 13.9% | 29.3 | 10.1 | 3.4        | -7.5                      | 10.3           | -0.1                     | 7.4            | 新石器時代中期        |
| 姜家梁   | M9     | 左下顎 P1 | 20.3% | 30.5 | 10.1 | 3.5        | -6.5                      | 9.9            | 0.4                      | 6.9            | 新石器時代中期        |
| 姜家梁   | M16    | 左下顎 P1 | 13.4% | 40.7 | 14.5 | 3.3        | -7.2                      | 9.5            | -0.3                     | 6.9            | 新石器時代中期        |
|       |        |        |       |      |      |            |                           |                |                          |                | (表7続く)         |

動物骨資料

| 遺跡    | 資料番号 | 動物種・組織  | 収率    | %C   | %N   | C/N | $\delta^{13}C_{collagen}$ | $\delta^{15}N$ | $\delta^{13}C_{apatite}$ | $\Delta^{13}C$ | 時代区分     |
|-------|------|---------|-------|------|------|-----|---------------------------|----------------|--------------------------|----------------|----------|
| 岩津保洞窟 | 899  | ツキノワグマ骨 | 3.3%  | 41.3 | 14.5 | 3.3 | -19.8                     | 2.8            |                          |                | 縄文時代早期   |
| 毕津伊洞穹 | 1154 | イノシシ骨   | 10.8% | 39.9 | 14.4 | 3.2 | -21.4                     | 2.7            |                          |                | 建文時代目期   |
| 石伴体們出 | 1134 | イノシシ象牙質 | 7.4%  | 39.4 | 14.2 | 3.2 | -21.2                     | 3.7            |                          |                | 吨又吋八十别   |
| 毕津伊洞穹 | 024  | イノシシ骨   | 2.2%  | 39.5 | 14.2 | 3.3 | -21.2                     | 3.1            |                          |                | 建文時代目期   |
| 石伴体們屈 | 924  | イノシシ象牙質 | 3.7%  | 37.2 | 13.2 | 3.3 | -21.7                     | 3.2            |                          |                | 吨又时代十别   |
| 岩津保洞窟 | 944  | ウサギ骨    | 9.1%  | 39.7 | 14.0 | 3.3 | -22.9                     | 1.5            |                          |                | 縄文時代早期   |
| 岩津保洞窟 | 1061 | ウサギ骨    | 11.7% | 40.5 | 14.5 | 3.3 | -23.4                     | 2.1            |                          |                | 縄文時代早期   |
| 毕津伊洞窟 | 1152 | シカ骨     | 6.2%  | 37.6 | 13.1 | 3.4 | -21.2                     | 2.6            |                          |                | 建立時代目期   |
| 石任体的油 | 1132 | シカ象牙質   | 2.0%  | 39.4 | 14.0 | 3.3 | -21.9                     | 4.9            |                          |                | 吨入时17十岁] |
| 岩津保洞窟 | 2928 | タヌキ象牙質  | 13.9% | 41.4 | 14.4 | 3.4 | -18.0                     | 3.4            |                          |                | 縄文時代晩期   |
| 岩津保洞窟 | 2590 | イノシシ骨   | 2.5%  | 37.7 | 12.7 | 3.5 | -20.8                     | 3.5            |                          |                | 縄文時代晩期   |
| 岩津保洞窟 | 2069 | カモシカ象牙質 | 12.7% | 39.6 | 13.6 | 3.4 | -23.6                     | 3.4            |                          |                | 古墳時代     |

【表8】岩津保洞窟遺跡から出土した縄文~弥生時代人骨・人歯試料の 同位体比指標間で行なったピアソンの積率相関検定のp値 p値が棄却値(α=0.05)以下の場合はボールド体で示した。

|                                             | $\delta$ $^{13}\mathrm{C}_{\mathrm{collagen}}$ | $\delta$ $^{13}C_{apatite}$ | $\delta$ $^{15}{ m N}$ | $\Delta^{13}C$ |
|---------------------------------------------|------------------------------------------------|-----------------------------|------------------------|----------------|
| $\delta$ $^{13}C_{	ext{collagen}}$          |                                                |                             |                        |                |
| $\delta$ <sup>13</sup> C <sub>apatite</sub> | 4.7E-05                                        |                             |                        |                |
| $\delta$ $^{15}$ N                          | 0.55                                           | 0.98                        |                        |                |
| $\Delta^{13}C$                              | 0.69                                           | 0.021                       | 0.38                   |                |

(8-a) 岩津保洞窟遺跡(縄文早期~弥生後期)

(8-b) 岩津保洞窟遺跡(弥生時代のみ)

|                                              | $\delta$ $^{13}\mathrm{C}_{\mathrm{collagen}}$ | $\delta$ $^{13}C_{apatite}$ | $\delta$ $^{15}{ m N}$ | $\Delta^{13}C$ |
|----------------------------------------------|------------------------------------------------|-----------------------------|------------------------|----------------|
| $\delta$ <sup>13</sup> C <sub>collagen</sub> |                                                |                             |                        |                |
| $\delta$ <sup>13</sup> C <sub>apatite</sub>  | 0.13                                           |                             |                        |                |
| $\delta$ $^{15}$ N                           | 0.59                                           | 0.52                        |                        |                |
| $\Delta^{13}C$                               | 0.051                                          | 0.0070                      | 0.29                   |                |



【図1】先行研究で分析された弥生人骨のコラーゲン炭素・窒素安定同位体比 黒枠は、それぞれの食料源が食性の 100%を占める人骨コラーゲンの同位体比 を推定した枠である。C3 植物・C4 植物・海生貝類は下條(1988)、草食動物は下 條(1988), Yoneda et al. (2001), Yoneda et al. (n.d., submitted)、淡水魚は Yoneda et al.(2004)、サケは Welch & Parsons (1993)、海生魚類は Minami (1995)、海生哺乳 類は Yoneda et al. (2001), Yoneda et al. (n.d., submitted)のデータを参照した。



【図 2】Kellner & Schoeninger (2007)で提唱された生態系別の線形モデル Kellner & Schoeninger (2007)の Fig. 2 を転載した。"C3 protein line", "C4 protein line", "Marine protein line" はそれぞれタンパク質を C3 生態系・C4 生態系・海洋 生態系の食料源から摂取した動物の炭素同位体比の回帰直線。δ<sup>13</sup>Capatite が最も 低い点はエネルギー源をすべて C3 植物から摂取した場合、最も高い点はをエネ ルギー源をすべて C4 植物から摂取した場合を想定している。



【図3】本研究で分析した資料が出土した遺跡の位置。地図は Google Terrain Map のデータを用いて GPSVisualizer で作成 ①群馬県多野郡神流町岩津保洞窟遺跡、②長野県小諸市石神遺跡、③長野県千曲市生仁遺跡、④中国河北省姜家梁 (Jiangjialiang)遺跡



(4-a)  $\delta^{13}$ Capatite- $\Delta^{13}$ Capatite-collagen C3 植物/C3 草食動物-C4 雑穀/海生貝類 0-60%の比較





C3 植物/C3 草食動物-C4 雑穀/海生貝類 0-60%の比較





C3 植物/C3 草食動物-C4 雑穀/海生貝類 0-60%の比較



【図 4】マクロ栄養素モデルの食性別結果(次ページに続く) 各食料源の略称に最も近い点が、その食料源の寄与率が 100%の値である。



【図 4】マクロ栄養素モデルの食性別結果(続き) 各食料源の略称に最も近い点が、その食料源の寄与率が 100%の値である。



【図5】マクロ栄養素モデルの結果と先行研究の人骨同位体比との比較




【図 6】本研究で分析された人歯・人骨・動物骨資料のコラーゲン 炭素・窒素安定同位体比



【図7】本研究で分析された人歯・人骨資料のコラーゲン・アパタイト炭素比 黒がコラーゲン ( $\delta^{13}$ Ccollagen)、赤がアパタイト ( $\delta^{13}$ Capatite)





【図9】本研究で分析した人歯・人骨試料とマクロ栄養素モデルとの比較





エラーバーは各歯種群の1標準偏差を表す。



【図 11】C4 雑穀の寄与率を 40%に固定して C3 草食動物と C3 植物の寄与率を 10%ごとに変動させた場合のマクロ栄養素モデル

(12-a)縄文早期~弥生後期



(12-b)縄文晩期~弥生後期の拡大図



【図 12】縄文~弥生時代人における C4 雑穀寄与率の推定

本研究で分析した縄文〜弥生時代人歯試料において、 $\delta^{13}C_{collagen}$ 、 $\delta^{13}C_{apatite}$ から C4 雑穀と C3 生態系食料源 (C3 植物+C3 草食動物)の寄与率を算出した結果を、各試料の放射性炭素年代に対して示した。