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Abstract 

This thes is treats combinatorial decomposition properties of simplicial complexes. Among 
them, famous properties are the foUowing: 

vertex decomposable =? shellable =? const ruct ible =? Cohen-Macaulay 
extendabUy shellable =} sbellable =? partitionable 

Among them, shellability as well as Cohen-Mataltlay ness is the most famous and impor­
tnnt property with many applicat ions in combinatorics, such as the Upper Bound Conjecture 
of polytopes and spheres. The main object we discuss in th is thesis is its relaxation, con­
structibili ty. Though const.ructib ility appeared in 1972 paper of Hochster , its serious study 
has not been done uut il this thesis. One of the aims of this thesis is to reveal the properties 
of constructibili ty. One of the results is to show the existence of non-constructible PL-balls 
and PL-spheres in every dimension at least 3, wh ich solves an open problem of 1978 paper of 
Dnnaraj and Klee. 

The combina torial decomposition propert ies discussed in this thesis is not only con­
structibility but also sheUab ili ty and vertex decomposability. In Chapter 3, our results 
on non-constructible balls and spheres provide strengthenings of the res lLlts on shellabil­
ity, Furch 's non-shellable ball construction and Lickorish's condition of non-shellability of 
spheres. Moreover, we give the solu tion of the conjectnre of Hetyei on shellability of certain 
cubical dceompositions of spheres . Analogously to the discussion of non-constructibility, new 
conditions of balls and spheres which imply non-vertex decomposability are given. 

We also treat the decision probl<Jm of construct ibility. Decision problems of combinatorial 
decomposition properties are important problem for computational aims as well as for Wlder­
standing the properties of combinatorial decompositions. Tb.e decision problem of shellability 
is studied h<1rd by researchers but currently known result is only the case of 2-dimensional 
pscudomani[olds that shellabili ty of2-pseudomanifolds can be determined in O(# facets) time, 
given. by Danaraj 1l.lld I<Jee in 197 . In Chap tel· 4 we l;ry the decision problem of constrnctib.il­
ity, and our result is that constructibility of triantulations of 3-dimensional balls with at 
most two interior vertices can be determined in O(#facets) time. This is the first nontriv­
ial result on decision problems of combinatorial decomposition properties in 3-dirnens ional 
case. This result bas applie;ttions to determine constructibtli t ies of some triangulations of 
balls known as non-shellable 3-balls: Bing's ba11 is determined to be non-construct ible and 
Rudin 's . Grii.nbanm's and Ziegler's balls are shown to be constructible. 

The last topic we treat in this thesis is the case of 2-dimensional simplicial complexes. 
fn the case of 2-dirnensional pseudomanifolds, it is known that all the properties mentioned 
in the beginning are equivalent. Especinlly they are topological properties because Cohen­
Maca.tlayness is. On the other hand , all the properties are known to be different in 3- and 
higher dimensional cases as discussed in the former chapters. and the properties except for 
Cohen-Macaulayuess is known to be non-topological. The case of general 2-dimensional sim­
plicial complexes can be seen to be lying between them. In Chapter 5 we give severa l examples 
which shows the difference of aU combinatorial decomposition properties already exists in 2-
dimensional simplicial complexes. Espeeially the result contains a strengthening of formerly 
kno,.,n result: every triangulat ion of th dm1ce hat was kno,vn to be nou-shellable, but we 
show that it is non- constructible. Additionally we show that shellability is not topolog.ical for 
2-dirnensional simpli.cial complexes. 



Preface 

Everything started from one book. I happened to buy the textbook "Lectures on Poly­

topes" [98] written by Prof. Giinter M. Ziegler, at the university bookstore about five years 

ago. I bought it only because the figures (especially of permutahcdra and of zonotopal tiLiugs) 

interested me, but the book turned out to be a very good introduction to the world of poly­

topes, starting from fundamentals and containing many recent results. Among the many 

top ics, especially Lecture 8 ou shellability attracted my interest. Because the shellability is a 

concept which formalizes a very natural construction of objects by adding cells(= facets) oue 

by one, it is conceivable that t riangulations and polytopal decompositions of balls and spheres 

are shellablc. But surp risingly, many counterexamples, that is , uon-shellable decompositions 

of balls a nd spher s are known. One of such examples, Danzer 's cube, is described in .the 

book. I read that part repcatcclly and spent much tillle imaging what is happening on the 

ball, and then proceeded to other non-shellable balls according to the references in the book. 

Still the difference betwecu shellable decompositions and non-shclbble decompositions was a 

big mystery to me, and I have been thinking of this for years. 

Soon I decided shellabil ity shou ld be the theme of my doctoral study. Wh,~t l had iu my 

miud at that time was to give some characterizations of non-shcUabilit)', though this aim has 

not been ach.ievcd yet. During the study, I fell to ~ l1inki ng that why sheUings can add only 

one facet in one step: what wiU happen if we allow a lump of facets to be added at each 

step? After formulating this ''generalized" definition of sheWng, l thougbt tbat l had seen the 

same formulation somewhere before. I was right. It is giveu in the book "Cohen-Macau.lay 

Rings" by Profs. Bnms and Herzog [26], named "constructibility'' (Th.is concept turned o ut 

to go back to a 1972 paper of Hochster [49].) From this point my main interest shifted to 

constructibili ty. 

Very few works, however, have been done about coustmctibility. All l could find were a 

few papers, each of wh.ich made a few statements about co ustructibi lity, so I decided to study 

constructibiLi t~ myseLf. I star ted with the problem whether or not there a re non-coustructible 

triangulations of 3-balls or spheres analogous to the case of shellability. 

My fu·st attempt was to show that every triangulated 3-ball is constructible, which failed 

as is observed in this thesis. At the same t ime, I also tried to check whether cunently known 

non-shellable 3-balls a re constructible or not. First, I made a paper model of Zi gler's 3-

ball (with 10 vertices and 21 facets) and observed that it is constructible. The ne>.-t targets 

were Gri.inbaum's 3-ball (with 14 vertices and 2D facets) and Rudin's 3-bal.l (with 14 vertices 

and 41 facets). But there were some problems: for Griinbanm's ball , tbe coordinates of 

vertices were not known at that time, and for Rudin's, the number of facets was too large 

to make a paper model. So instead of paper models, I attempted computer calculations to 



determine their constructibility by checking aU the possible divisions of these two balls. It 

was found that Griinbaurn's ball was consh·uctible, but the constructibility of Rudin's ball 

remained undetenniued: the amount of the possible divisions is too large even for a computer 

calculation. This led me to consider the algorithmic aspect of combinatorial decompositions, 

that is, decision problems. After a while, I succeeded in finding an efficient algorithm under 

a condition that was restricted but v<tlid tor Rudin 's ball. This resu lt fina lly showed that 

Rudin's ball is also constructible. Later, I found a descriptio1.1 in Provan and Billera [74] 

that both of the balls are construc tib le. If I had known this at the beginning, Chapter 4 of 

this thesis would not exist now because my original motivation of the work w<u to know the 

constructibili ty of Rudin's ball, though the results contain more than that. 

While dealing with the balls on computer, I happened to find a typogr·aphical ~rror in 

the facet list of Griinbaum's ball in the paper of Danaraj and Klee [32]. I sent an e- mail to 

Prof. Victor Klee, and then Prof. Branco Griinb<tnm, who heard from Prof. Klee, kindly sent 

me the correct list, and added a possible set of coordinates for the vertices to realize the ball 

in E3 . Prof. Ziegler also checked this typograph ic:al error for me at almost the same time. 

I thank them very much, especially Prof. Griinbaurn for his efforts to reconstruct the list of 

facets from his hand-made model more than twenty years after the birth of the baiL 

On the other hand , I a lso managed to show Furch's knotted hole ball is not construct ible. 

Thus my first pwblem wa.'> solved. By that time, Prof. Ziegler had given me many useful 

suggest ions since I sent him an e-mail for the first time. I asked for his advice because he was 

the author of rny favorite textbook. Although I was a complete stranger to biro, he kindly 

sent me informative repli s from time to time, which encouraged rne very much. 

The existence of non-construct ible spheres remai11ed to be a question even after l proved 

the existence of non-constructible balls. The answer suddenly came to me in the au~urnn of 

1998, and I wrote to Prof. Ziegler my proof of the existence of non-constructib le 3-spheres. 

He had a lecture in a faLl school on topological combinatorics and int roduced the proof there, 

and brought me a more elegant way to show the staterneot which was sugge. ted by Prof. 

Robin Forman in discussions there. J was very impressed by the simp li city of the improved 

proof. When several new ideas were added by further discussions wi th Prof. Ziegler, such 

as improving proofs, extending the arguments to vertex decomposability and giving several 

examples to show the bounds of the statements, he and I decided to write a paper [45] 

together. This is my fi1·st joint paper, and the results are included in Chapt r 3 of this thesis. 

In Aprill999, after Prof. Ziegler and I finished writing our joint paper, there wa.'5 a meet­

ing, "Geometric and Topological Combinatorics" , in Oberwolfach, Germany. Prof. Ziegler 

was one of the organizers, and it was very kind of him to include my name in the invitation 

list and gave me a great opportunity to spend a whole week at Mathematishes Forschungs in­

stitut Oberwolfach. The very comfortable stay (except for the terrible thunder storm) at the 
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insLitute and the stimulating leading-edge talks of mathematics gave me an idea to extend 

the results of non-constructible spheres to solve a conjecture mentioned by Prof. Ziegler while 

we were work.ing on the joint paper. However, unfortunately (or fortunately) Prof. Ehren borg 

pointed out a crucial error in my argument. We spent a whole day to overcome the probl.em, 

and finally reached a new idea of a seemingly right definition of the bridge index for tangles 

which strongly relates to the constructibili ty of spheres. This result did not fully solve the 

original conjecture (though later we get very close Lo the conjecture), but it did solve Prof. 

Gabor Hetyei's conjecture on shellab.ility, which was in Prof. Ehrenberg's mind throughout 

our discussion. This ide" later developed into a joint paper [36} and the results are also 

included in Chapter 3 o[ tl:tis thesis. 

Chapter 5 is a very recent work, inspired by Prof. Michelle Wachs's talk in the problem 

session in Obenvolfach. (This work of hers can be found in [92] .) Until then, I considered 

the problems only in the world of pseudomanifolds and I was convinced that the case of 

two-dimensional pseudomanifolds is too simple. I never thought that there WP.,re still ques­

tions to be answered for two-dimensional s.implicial complexes. In her study of "obstructions 

to shellabili ty", however, even Lhe case of two-d imensional simplicial complexes needs very 

complicated arguments, and I learned that, apart from the restricted case of pscudomanifolds 

two-dimensional world is far from being simple when it comes to the general cA.~e. This made 

me realize that there are much to think about two-dimensional simpucinl complexes, and 

noticed hat I did not know whether there are two-dimensional complexes which are, [or ex­

ample, Goben-Macaulay but not constructible, constructible but not shellable, and sheUable 

but rwt vertex decomposable. I started to prove t!Jat every shellable 2-dimensional simpli ial 

complex is extendably sbcllable. About six months later, I came across a counterexample to 

tb.is problem. and counterexamples to other problems were time constructed as its variants 

at the same time. Although, as Prof. Ziegler pointed out later, Anders Bj6rner studied the 

same things years ago and a hicved m;my examples (written iu [14}, [16] and [82]) some of 

which are simi lar to m.ine, the chapter still contains newly derived results. In this study the 

discussions with Fumihi.ko Takeuch.i helped me study the problems a.ncl the semimu· at Science 

University of Tokyo held by Prof. Ryuichi Hil·abayashi and Prof. Yoshiko Ikebe were also very 

helpful for me to get the results. 
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Chapter 1 

Introduction 

1.1 Introduction 

Tltis thesis studies combinatorics of cell complexes, especially simplicial complexes. Simpli­

cial (or cell) complexes appear everywhere in combinatorics or topology: the boundaries of 

(simplicial) polytopes, triangulationH of manifolds, or even in subtle ways such as the set of 

chains in a partially ordered set, monotone properties of graphs. Simpucial cornpl.exes and ceU 

complexes play a ftmdamental role in topology, so it is nat ural that the combina torial objects 

with related cell complexes can be treated from a topological viewpoint . Such studies arc 

sometinws mentioned as topological combinatorics or topological methods in combinatorics. A 

review of this field can be found in Bj6rner [15]. 

Though the proper ties of simplicial complexes are sometinws treated topologicaLly, there 

are many properties which are not topological. Here "topological" means that the properties 

are determined by its topological property. Combinatorial decomposition propert ies, the 

ma.in subject of th is thesis, arc such non- topological propert.ies. For example, shellability, 

the mos t famous combina torial decomposition property, is not inv>~riant if we triangulate 

a 3-dimensional ball ir1 a different way. Such properties can not be disenssed on ly from 

a topological view, but need some combinatorial arguments. For example, Bj6rner [12]. 

Bjornor and Wachs [20, 21] suppliet.! such combinatorial methods for shellabili ty, such as the 

lexicographic labeling on the face poset of cell complexes. 

In sp ite of this strong combinatorial flavor , still topological properties a ffect on combinato­

rial decompositions. The firstly found non-shellab.le triangulations of spheres were of non-PL 

spheres (in dimensions d ;::>: 5), the non-shellability followed from the fact that shellable trian­

gulat ions must be PL. And after a long search ofnon-shel lab le triangulations of3-spheres, the 

answer was given fmm combinatorial topology, Lickorisb 's construction using an embedded 

knot [57]. T he relation between knots and shellability was also discussed by Armentrout in his 

paper [3] who showed a relation between sbellability and "link proper ty" in other paper [2]. 

Many interesting and important fact can be derived from the rtice "harmony" of comb ina-



toric.~ and topology. Our standpoint of this thesis lies here. We try iu tllis thesis to use resul ts 

of combinatorial topo logy for combinatorics of decomposition propert ies. (So our method is 

"combinatori<ll topological combi.natorics ." ) Especially our mai n interest is in constructibility 

which is a generalized concept of shellab ili ty. T hough both shellability and const ructibili ty 

are defined purely in combinatorial way, it seerrc~ thM constructibili ty b~s more topological 

!lavor. ln some sense, eonstruct ibili ty can be seen a> a topological relaxation of shellability, 

and th is fi ts well to our metbod. 

Already combinatorial methods made a good progress in to pology, so it is nat ural tha t 

topological methods in combinatorics also work well. 

T hough the enormous number of studies have been done for shcllabili ty and some fo r 

vertex decomposabili ty, const,ructibility seemed not have been treated seri ously enough. It 

only appeared in Stanley [83] , Hoebster [49], Bj iirner [15] , and was ment ioned shortly in 

Danaraj and !<lee [32], Provan and Billera [74] , Bjiirncr [12] to the authors knowledge. (Zee­

man [96, Ch. 3] ba.' the same const ruction restricted to manifolds, and B-~onstructibility and 

S-constructibili ty of Mandel [62], also mentio ned in Sachem and Kern [4], is its generaliza­

tion fo r cellularly decomposed manifolds.) So many fu nd<unental quest ions have been left 

open around constructibili ty, for exam ple, the existence of non-constructible triangulat ions of 

balls or spheres were not discussed in anywhere. T his thesis is the first serious study of con­

structibili ty, which is a compilation of the papers Hachirnori [43] , Hachimori and Ziegler [45], 

Ehrenborg and Hachimori [36] and Hacbimori [44] together with some new materials that 

bave not been published yet. 

After this chapter of introduction. this thesis starts from Chapter 2 which is a review 

of some preliminaries of simplicial complexes, combinatorial decomposition properties, and 

some combinatorial topology. Some fundamental facts of combinatorial decomposit ions will 

also be reviewed. Those who know well about the terminologies used in this thesis C<ill 

ski p this chapter and retmn to recall the precise defini tions, terminologies and fundamental 

propositions when needed in the following chapters. 

Chapter 3 treats the relation between combinatorial decomposit ions of balls and spheres 

and certain knots embedded in them. Tn the ca.>e of 2-dimensional pscudomanifolds, con­

structibili ty is equivalent to the property to be homeomorph ic to a ball or sphere. (This will 

be discussed in Chapter 2.) But we show in this chapter that non-construct ible bal ls and 

spheres exist in tlu-ee and higher dimensional cases, different from the case of 2-dcmeusional 

pseudomanifolds. Especially, the existence of non-constructible 3-sphere shown in this chapter 

solves an open problem suggested in Danaraj and !<lee [32]. T he main result of t llis chapter 
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is the following which implies the existence of noncoustructible triangulations of 3-balls ami 

spheres. 

Main Theorem of C hapter 3. 

• A triangulated 3-ball with a knotted spanning an consisting of 

{ 
at most 2 edges is not constructible, 

3 edges can be shellable, but not, vertex decomposable, 

4 edges can be ve1'tex decomposable. 

• A triangulated 3-sphe•·e or· 3-ball with a knot consi.~ ting of 

{ 
3 edges i.5 not constr·uctible, 

4 or· 5 edges can be shellable, b-ut not ve•·tex decomposable, 

6 edges can be vertex decomposr"ble. 

• A t1·iang-ulated 3-sphere or 3-ballwith a kno t ]( consisting of 

{ 
at most b(K) - 1 edges is no·t constructible, 

at most 2 · b(K ) - 1 edges is not shellable, 

at most 3 · b(K)- I edges is not ve1·tex decomposable, 

whe1·e b(K) is the bridge index of the knot K. 

T his provides generalizations of the previously known results: the construction of non­

shellable triangulations of 3-balls of Furclt [3 J or Bing [10], Lickerish 's construction of non­

shellable spheres [57], ATmentrout's result on cell partitionings of 3-spheres. H also gives a 

solution of Hetyei's conjecture about sheUability of certain cubical decompositions of spheres. 

This chapter contains a joint work with Gtinter M. Ziegler and that wi th Richard Eltrenborg. 

Chapter 4 has a more combinatorial flavor in the sett ing of the probl •rn: decision problems. 

This problem asks whether there are efficient a lgorit lm1s to decide if a given simplicial complex 

has some property or not. The decision problems of combina torial decomposition properties 

are challenging problems in which almost no result is known currently. The on ly resu lt 

the one gi ven by Danaraj and Klee [33] that shellabili ty of 2-dimensiooal pseudnmanifolds 

can be decided in linear order time compla'<ity. Tb.is chapter treats this decision problem 

for constructib ili ty. Our setting is under the condition that the simplicial complex to be 

calculated is a triangulation of a 3-ball and it has very few vertices in its interior. The main 

result in this chapter is the following. 

Main T heor em of Chapter 4. 

If a t1-iangulated 3-ball has at most two interim· vertices, then its constt-uctibility can be decided 

in O(#facets) time. 

The topological properties we use in this chapter are very primitive: that the simplicial 

complexes that appears in the decompositions are always homeomorpb.ic to 3-dimensional 



balls, and some properties of triangtLiations of a 2-ba.ll. But we can see there how these 

prin1i tivc topological observations become powerful tools in the study. 

ln the last Chapter 5, we study lhe case of 2-dimensional simplicial complexes. For 

pseudomanifolds in dimension 2, combinatorial decomposi.tiou properties - vertex decom­

posability, extendable shellability, shellability, constructibility, and Cohcn-Macaulaymess -

are all equivalent. Tills also implies that these decomposition properties are topological for 

2-Climensional pseudomanifolds. But all or them are different in Lince and higher dimensions 

and they are not topo logical (except for Cohen- Iacaulayncss). Thus 2-dimensional pseudo­

manifolds have extremely nice properties which are never true in higher dimensional cases. 

The problem aris.ing here .is how the situation changes if we move to the general cases: general 

2-dirnensiona.l simplicial complexes. Formerly, examples which are Goben-Macaulay but not 

sheUable (Stanley [87]), and shellable but not ex.teudably sheUable (Bjiirner [1 ·1]) have been 

found. What we show in this c:hapter is the following. 

Main Theorem of Chapter 5. Ther·e are 2-dimensional simplicial complexes which are 

• Cohen-Macaulay but not construct-ible, 

• constructible but not shellable, 

• shellable but not ver·tex decomposable, 

• shellable but not extendably shellable. 

Each statement is given by presenting examples of the property. This shows that he gaps 

between each combinatorial decomposition property exists even in 2-dimeosional simplicial 

complexes. Moreover, we show an example of 2-d irnensiona.l simplicia.! complex which is not 

shellable but it hus '\ hellable subdivision, showing that sh liability is not topological for 

general 2-dimensiona.l simplicia.! complexes, contrary to the case of 2-dimension•\l pseudo­

manifolds. 

4 



1.2 History and story of combinator ial decomposit ions 

Among combinatorial decOtnposition properties, shellr"biz.ity is the most popnl<tr one and it 

has a very long history. According to Ziegler [98], the root of sbcllabi li ty is in 1852, in 

the work of Schliifli [79] calculating the Euler-Poincare formula for d-dimensional po lytopes. 

But in his work, shellability of the boundary of a polytope is assumed without proof, whi ·h 

turned out to be non-trivial at all. In 1924, Furch showed in his paper (38] a const ruction of 

non-shell able triangulations of 3-balls using knots , and after that many constructions of non­

shellablc triangu lations were discovered by Newman (71], Rudin [78], Bing [10], Griinbawu 

(unpublished, see (32] or [43]) , and so on. These are reviewed in Ziegler's paper (99] where 

his minimum non-shellable triangulation of a 3-ball using only 10 vertices and 21 facets is 

presented. 

These many stunies on sbcLlabiJjl.y of triangu lations of 3-balls are related to the fa­

mous Poincare Conjecture stating th;tt every simply collllccted wmpact 3-manil'olds (without 

boundary) are 3-spheres. One way of attacking this conjecture is to show that every ·'fake 

cube", a manifold with boundary derived from a simply connected 3-marlifold by removing 

a 3-ball, is a "real cube". Shellabili ty is one property which assures the "fake cube" to be a 

·'real cube," because it is known that triangulations of manifolds can be shellable only if the 

manifolds are P.L homeomorphic to balls (if with non-empty boundary) or spheres (if without 

boundary). This line of study goes to find properties similar but weaker th<tn shellability 

with the same property, such as collapsibi lity or sequential unicoherency. These attempts to 

characterize the 3-sphere frow cell partitioning is described in Bing [9, 10, 11], and also seen 

iu Vince (89] . 

After many discovery of non-shellable triar1gulations of 3-balli;, non-shellable triangu­

lations of 3-sphercs were also constructed by Lickerish (57] . As for non-simplicial cases, 

Vince (00] constructed a non-shellable pseudosimplicial decomposition of 3-spheres, and Ar­

mentrout [2, 3] a non-shellable cell partitiorung of 3-spheres. 

In spite of thP.se negative results, Brugesser and Mani (25] finally gave a proof to the 

fact that the bouudary of a po lytope is always shellable, after 120 years from Scblafli's work. 

Tills work not only supplied a simple combinatorial proof of Euler-Poincare formula for high­

dirnen -ional polytopes, but it also had a striking applkation on polytope theory: the solution 

of Upper Bound Conjecture of polytopes. This conjecture by Mozkin [69] claims that a d­

dimensiona.J polytope with n vertices has the ma.ximum number of faces when it is a cyclic 

polytope. After many attempts of solving this conjecture, the llnal answer was derived by 

McMullen (65] which uses induction argument alo ng shellings of the boundaries of polytopes. 

After this, the sheUability bas become a fundamental tool for the study of polytopes 

with many appLications. For example, Stanley [86] showed the nonnegativity of cd-index 

5 



of polytopes by using S-shellability, a modified version of shellability, and also Billera and 

Ehren borg [7J uses sheUability of polytopes to calculate cd-index of Eulerian posets. Moreover, 

applications to computational geometry is becoming popular, for example Seid I [81Jnses line­

shelling lor the construction of convex hulls. 

Though the Upper Bound Conjecture (now is a theorem) for polytopes was solved, a 

generalized conjecture, Upper Bound Conjecture for triangulations of spheres remained open 

because of the poss ible existence of non-shell able tr iangulations of spheres. For this. Stanley 

introduced the concept of the face ring, or the Stanley-Reisner ring, on simp licial complexes 

and showed that the Upper Bound Conjecture is true if the face r ing of triangulations of 

spheres are Cohen-/vlacaulay [83]. One property wl1ich assures Cohen-Macaulayncss was con­

structibility, a combinatorial decomposition property general ized from shellab.ility, introduced 

by Bochster [49]. At that time it was not known whether or not there ;u·e non-constructible 

triangulations of spheres, but later Edwards [35J showed the Double-Suspens ion Theorem, 

the double-suspension of certain homo!Ob'1' 3-sphere is homeomorp hic to the 5-dimcnsional 

sphere, which leads to the existence of non-PL spheres in dimensions d 2 5, (later this 

doubl<J suspension theorem is generalized to any homology 3-sphercs by Cannon (27Jl which 

assures the existence of uon-constmctible (thus non-shellable) triangulations of spheres . But 

independently from this pessimistic event , Reisner [75J showed a charactcriz<\tion of Cohen­

Macaulayness which implies that aU triangulations of spheres are Cohen-Macaulay, Stanley 's 

method for Upper Bound Conjecture for spheres completed affirmatively [84J. 

Extendable sltellab-ility, introduced by Danaraj and Klee [32J, is related to the decision 

problem of sbellability. Extendably shellable means that every partial shelling can be ex­

tended to a complete shelling, thus a shelling of an e.xtendably shellah le complex can be 

constructed easily. Thus i.£ one usc the shelling property in a design of an algorithm for some 

computation, it is desired to be not only shellable but extendably shellable. In spite of this 

need of extendabilily, very few is known about extendab le shellability. Even it is not known 

whether all skeletons of a simplex a re e.xtendably shellable or not. What is currently known is 

that every triangulation of a 2-ball or a 2-sphere is extendably she.Uable as shown in Danaraj 

and Klee [32] (thus the boundary of a 3-polytope is always extendably shellable), but t he 

bounda.rie of "almost all" 4-polytopes are not extendably sbeUable as shown by Ziegler [99J. 

Ve,·tex decompostLbility, a stronger concept than sheUability, was introduced by Provan 

and Billera [74J (abo in Billera and Provan [8J) in relation with the Hirsch Conjecture. The 

Hirsch Conjecture claim. that the diameter of the graph of a d-polytope with n facets is at 

most n- d. The property of vertex decomposability is that if the dual simplicial complex of 



the boundary of a simple d-polytope is vertex decomposable, then the polytope satisfies the 

Hirsch Conjecture. But it turned out that not every polytopes has a vertex decomposable 

boundary, see !Uee and Kleinschmidt [53]. 

ln closing this introduction, we show the conceivably most oldest example of non-shellablc 

cell decomposition of a 3-baU. (It is very unfortunate that it is not a polytopal d ·COmposition.) 

This is a puzzle caUed "Burr puzzle" described in Martin Gflrdner's Scientific American 

colu nm, "Mathematicfll Games" in Jfln. 1978, which can be found in a book ·'Penrose Tiles 

to Trapdoor Ciphers" [39]. This puzzle is made of six pieces of the right figure which are 

assembled into the left figure. This is an old kind of puzzle which challenges people to 

disn.ssemb l.e to pieces or to a,;scmble into the original shape. This object has an extremely 

interesting property: the whole is homeomorphic to a 3-ball, bu t the removal o[ every one 

piece produces an object which is not homeomorphic to a 3-ball. As is seen later , shellable cell 

partitionings of a manifold with a non-empty boundary should be homeomorphic to a ball in 

every step, which implies that this ceU part it ioning is not shdlab le. Though this example is not 

belonging to the class of cell complexes we t reat in this thesis (i.e., polytopal complexes), but 

at least it gives us an insight how non-she!Jable cell decomposit ions arc possible. For example, 

th.e reasoning of non-sheLiability of Danzer's cube described in Ziegler's textbook [9 , p.238] 

(or in Ziegler [99] with a more beautiful picture) is almost the same in the Ja.,t step. 

According to Gardner, this puzz le is published at least in 1857 in a puzzle book "The 

Magician's Own Book" written anonymously, and its origin is much older. Really many 

people have played with this kind of puzzles without knowing they are examples of non­

shollable balls ... 
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Chapter 2 

Preliminaries 

2.1 Simplicial, polytopal and cell complexes 

Basic definitions 

The main objects treated in this thesis a.re simplicial complexes. 

Definition 2.1. A simplicial complex C is a set of simplices in some Euelidc>~n space such 

that 

(i) if a E C and r is a face of a , then T E C, and 

(ii) if a, r E C, then an r is a face of both a and r. 

Especially, the empty set 0 is always contained in a simplicial complex if the simplicial 

complex is not empty. 

The members of a simplicial complex is called face,, , or k-faces if the dimension is k. 0-

faces are ue1't·ices, 1-faces are edges. and the max.imal faces in inclusion relation are facets. A 

k-skelelon of a simplicial complex is a subcomplex wade of all the faces of the complex whose 

dimen:;ion is at most k. The dimension of a simplicial complex is the ma.x.imum dimension of 

its facets. The following is an example of a simplicial complex of dimension 2 embedded in 

E2. 

There is another way to define simplicial complexes in a viewpoint of set families: a set 

family is a simplicial comple.x if it is closed under taking subsets. Here a set of vertices in 

one face (in Definition 2.1) corresponds to a set iu a family. Simplicial complexes defined in 

this way are especially called abstmct .simplicial complexes, but both definitions are in fact 
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equivalent , because it is known that every abstract simplicial complex of dimension d (i.e. , 

the size of a set in the fil.IIlily is at most d + 1) can be realized in the sense of Definition 2.1 in 

(2d+ !)-dimensional Euclidean space. This equivalcuce allows us to use non-straight simplices 

as in trte following figure instead of real simplices in Definit ion 2.1. 

Later in Chapter 3, sornc exampl s of 3-dimeusional simplicial complexes (triangulat ions of 

3-spheres) lire not rnbcdded in E\ but we need not worry about it because those examples 

are surely embeddable in E7
. 

A simplicial complex. is pure if all its facets have the same dimension cl. A pure simplicial 

complex is stmngly connected if any two facets F and C have a sequence F = F1, F2 , . .. , Fk = 

G of facets such that F; and Fi+ 1 has a common (d- 1)-face, for each 1 5 i 5 k- l. A 

p,,eudomanifold is a pure simplicial complex which is strongly connected and every (d- 1)-face 

i contained in at most two facets. For a set A o[ simplices, the closu•·e A of A is the mitlimum 

simplicial complex which contains A, t hat is, A is the set of all lhe faces of simpli cP.S of A. 

An example of a simplicial complex is a triangulation of a (compact connected) manifold 

(with boundary). A triangu lat ion of a manifold is pure, strongly cormected, and in fact .is 

a pseudomauifold. But a pseudomanifold is not always a triangulation of a manifold, as the 

following example shows, where the neighbourhood of v is not homeomorphic to a bull. 

T he boundary complex 8C of a pure d-dimensional simplicial complex C is the closme 

of (d- !)-dimensional faces which belongs to only one facet. Usually this term is used for 

pseudomanifold cases, but we also use for general cases. In the tr iangulation of a mani fold, 

tbe boundary complex corresponds to the bouudary of the manifold. The interio1· C of C is 

C\8C. 

In Chapters 3 and 4, our main interest is in the case of pseudomanifolds. lo fact, as 

will be shown in the ne.xt section, pseu.domanifolds with certain combinatorial decomposition 
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properties become triangulations of balls or spheres, so what we really discuss in the chapters 

is the case of triangulations of balls or spheres. This emphasis on these special cases is by 

lwo reasons. Th•: first reason is historical: the st1tdy of triangulations of manifolds has a 

long llisto ry and many studies have been done, and the study of combinatorial decomposition 

properties (shcllabi li ty or constrnctibili ty, inLroduced in the next sect ion) of lriangul.ations 

of balls or spheres had an importance in relation with the Poincare Conjecture. Also one 

source of problems comes [rom the study of polytopes in combinatorics, which is a special 

case o[ tr iangulat ions {or polytopal decompositions) of spheres. The second reason is that the 

topo logy of pseudornanifolds (baLls or spheres) is known well. In combinatorial decomposition 

properties such as shellability or constructibility, the topology will be preserved recursively 

in the decomposition. and this somet imes assures a good property. The dilfcreuce betwecu 

the case of pseudomanifolds and that of general simplicial complexes will be presented in 

Chapter 5. 

A polytopal (polyhedral) complex is a set C of polytopes satisfying 

• if P E C and Q is a face of P, then Q E C, and 

• if P, Q E C, then P n Q is a face of both P and Q. 

For the definitions and properties of polytopes, see Ziegler [98]. Here, a simplicial complex 

is a special case o[ polytopal complexes, the case when every polytope is a :>implex, so his 

definition of polytopal complexes is a generalizat ion of Definition 2.1 of simplicial complexes. 

If every polytope in a polytopal compLex is comb.inatorially equivalent to a cube, then the 

complex is a cubical complex. 

An example of a polytopal complex is the boundary complex of a polytope, the set of the 

faces of the polytope except for t he polytope itself. The boundary complex of a simplicial 

polytope is a simpLicial complex and that of a cubical polytope i.s a cubical co rn plex. 

The most general definition in tllis line seems to be regular OW complexes, see Bji:imer [13, 

15]. A {.finite) CW complex 1-!. is a Hausdorff topological space X.11. with a certain kind of 

cellular decomposition K = U:1=0 K' such that (i) K 0 is a discrete space of fini te points, 

each point is a 0-cell, and (i i) J(" is obtained by attaching a finite disjoint fami ly of n-ba lls 

(n- ells) to K"- 1 such that each n-cell Dn has a ch>tracteristic map rf>; : D,.-+ K " such that 

its restriction to the bo=dary of Dn is a continuous map into Kn-l and the restriction to the 

interior of Dn is a homeomorphism. (The condition of weak topology for OW complexes is not 

needed here because we are considering a finite case.) A r·egular· CW complex is a OW complex 

such that each cell has a characteristic map which is a homeomorpllism. For definitions and 

further discussions about OW complexes, the reader is recommended to consult textbooks of 
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topology such as Bredoo [24J, Massey [63], etc. The followiog figme shows a non- regular CW 

complex and a regular CW complex. 

C) 
rcgt!lar C\V complex 

nou-reb'11iar C\¥ comple..x 

This concept of regular CW complexes is used iu many places as a combinatorial object 

corresponding to polytopal complexes, for example in oriented matroid theory (Bji.\rner ct. 

al. [18]), but in this thesis we do oot need tllis because our main in terest is in si mplicial 

complexes. But po.lytopal cases will be discussed sometimes. 

The set of faces of a simplicial complex C forms a poset (partially ordered set) ordered 

by inclusion relat ion (of the dosure) , calied a face poset of C. T his face poset has the empty 

set as its bottom element 6 aud the artificial element i (regarded as the simplicia l complex 

itself) as the top element. 1f two simplicial complexes have an isomorphic face poset, then 

they are combinator·ially eq"Uivalent. 

For a simplicial complex C, the star stare a of a face a E C is the simplicial complex 

tbat contains all faces of facets of C that contain a, and the link Iinke a is the subcomplex 

of stare a that do not intersect with a. 

stare x linkex 

In the polytopal case, there are two way~ to Jeline the link. One way is (i) just the same 

as sir.tLpli0ial case. This definition is used iu Ziegler [98]. The other way is (ii) t.o define as 

a polytopa.l complex whic:b is combinatorially equ.iYalent to the "face figure" of a in C , i. e., 

a polytopal complex whose face poset is isomorphic to the subposet of the fuce posct of C 

induced by the elements T satisfying a :::; T, that is, the upper ideal of a. 

"'" . "' '''"' '''"'"~ 

link x of (i) 

. . 

linke x of (ii) 
--+ our definition 

In tlcis thesis we 

These two definitions differs in general but they coincide in the case of simplicial complexe . 
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Some operations 

For two . implices a and T not prov iding common vert ices, the join of a and T is a simplex 

with vertices of a and T. Th join v * C of a ver tex v and a simp licial complex C is tlt set of 

simplices {v • a: a E C} (not a simplicial complex), and the join of two s implicial complexes 

C and D is the simplicial complex C * D = {a * T : a E C and 'T E D}. A pymmid over 

a simplicial complex C is v * C, a join of C <\Dd a 0-ball, and a suspension of a simplicial 

complex D is {v, w} * D , a join of D and a 0-sphcre. 

The suspension of D is denoted by ED. 

pymrnid 

~ v 
suspension 

In this figure, the left figure is a pyTarnicl over a square (t his makes a solid pyramid) and 

the right figw·e is a suspension of a circle made of 4 edges (t his makes the boundary of an 

octahedron). 

(In usual treatment i.n PL topology, the join operation is only allowed in the case the two 

simplices are joinable, i.e. , eadt vertices of the invo.lved simpli ces is the verte..x. of t tteir convex 

hull and no intersection occurred by this operation . But in otu· context, we are noL interested 

in a fixed embedding and Otlly requi.re just the existence of a possible embedding. In other 

words, our ma in i.nterest is in the combinatorial slructure which can be read from abstract 

simplicial complexes. So in our situation, we C<tn perform the join operation in an abstract 

setting and then embed it in some Euclidean space. This is why we omit ted the requ.irement 

of joinability.) 

If a simplicial complex C' has an embedding in E", in which other si.mplicia.J complex C 

is a lready embedded, such that every face of C is a tmion o f some faces of C', tbeu C' is a 

subdivision of C . 

c C' 

A stella~· subdiv·ision stellarc a is a special kind of subdi vis ions, stellare a = (C \stare a) u 
(jj *Linke a), where p is a new vertex. This stellar subdivision can be realized by taking a 
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relative interior point p in the face a and then con~truct a rn.inirnmn subdivision of C which 

contain p as a vertex. 

(For a polytopal complex , we should use the definition of links in the way of (i) in p. 12.) 

A bCiryce?ltric subdiv·ision sd( C) is a subdivision of C made by repeated stellar subdivisions: 

first stellarly subdivide C by all the d-faces of C (where dis dim C), then by all the (d- l)­

faces, · · · , and laslly by the 1-faces. (The resulting subdivision is unique.) This also can be 

defined via face posets: in the face poset of C minus the top element C itself and the bottom 

element 0, we associate a simplex Vq" Vu,, · · · Vu,, to each chain a, , :-:; a;, :-:; · · · :-:; ai, . Then 

we get a simplicial complex sd(C) which is the same one a.s defined above. 

c sd(C) 

The number of faces: /-vectors and h-vectors 

For ad-dimensional simplicia.! (polytopal) complex C, we denote the number of i-dimensional 

faces of C by /;(C). and f(C) = (j_1 (C). fo(C). fc(C), ... , !d(C)) is called the !-vector of 

C. We associate a generating polynomial, f -polynomicLI, to the !-vector, 

j(C, x) = f-t(C)xd+L + !o(C)xd + · · · + !d-t (C)x + !d(C). 

From this polynomial another invariant, h-vecto1· is defined to be the coeffi.cients of f(C , x-1) , 

that is, 

f(C, x- 1) = h0 (C)xd+J + hL(C)x" + · .. + hd(C)x + hd+l (C). 

{Be careful that !-vector is indexed by { -1, 0, ... , d} but h-vector is indexed by {0. 1, ... , d+ 

l}.) The polynomial j(C, x- 1) is caUed an h-polynomial and denoted by h.(C x). 
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These two vectors are related by a linear transform and the know ledge of one of the vectors 

determines uniquely the other. The exp licit formula to derive h-vector from / -vector i~ as 

follows: 

Especially, 

hu(C) 

h1(C) 

hd+lfC) 

1, 

/o(C)- (d + 1), 

!d(C)- fa-J(C) + · · · + (- l )d /o(C) + ( - l )d+l f -i(C) 

(- l)dX(C) 

where ;((C) is the t·educed Euler characteristics, 

;((C)= - f - I (C) + fo(C)- ··· + (-l)d!d(C). 

In spite of t he equivalence of f -vectors and h-vectors, there <tre some C<L~cs where using 

h-vectors are preferred t han /-vectors. For example, the boundary complexes of polytopes 

and <tlso triangulated spheres satisfies a set of eq uations called Dehn-Sommerv ille eq uations 

(for example Bayer and Bil.lera [5], Ziegler [98]): 

but these equation~ wri tten in term of h-vectors are s imply: 

Moreover, h-vectors have a combinatorial and algebraic interprct<ttion which we will review 

in Section 2.3.4. 

As noteJ above, t he top element of h-veclor. hd+1(C), equals to (- l )d;((C) . This means 

that hd+I (C) is a topological invar iant because the reduced Euler characteristics has the 

following formula: 
d 

;((C)= L (-l)i dim Hi( C), 

where ff;'s are the reduced homology groups. A topological space is contractible if it ha.~ 

the homotopy type of one point. We also say that G is contractible if ICI (= u.EC u, t he 

underlying space of C) is contractible. Because the reduced homology groups a re inva.riar1.t 

by homotopy, contractible space has H1(C) = 0 for all i . Thus we have hd+l(G) = 0 if G is 

contractible. (This fact will be used in Chapter 5.) 
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2.2 Balls , spheres, and manifolds 

This sccti0 11 provides basic preli minaries on topology, especially on PL (piecewise linear) 

topology. We just present here some proper t ies wbkb we need in this thesis wi thout proof. 

For their prooJS and furt her discussions, we recommend Zeeman [96], Hudson [51] or Bing [11]. 

For a simplicia l (polytopal) complex 0, t he underlying space (or geometric realization) 

ICI is the union U uEC a of all the simplices belonging to C. If the underlying space is home­

omorphic to a manifold M (with bow1dary), tl.terL the simplicial complc.x i.~ a triangulation 

of M. Tlu·oughout this thesis. a d-ball or a d-sphe1·e is a short for a triangulation of the 

d-dimens ional ball or d-dimensional sphere, respect ively. A triangui>Ltion of a manifold is a 

pseudoma.nifold with au additional conditiou that the neighbottrhoocl of every point in the 

underlying space is homeomorphic to a full-ball or a half-lntll. 

In the case of a polytopal complex, a polytopal complex whose underlying space is home­

omorphic to a manifold M is a polytopal (iecompo$ition of M . A polytopal ball (sphe1-e) is 

short for <t polytopal decomposition of a ball (sphere). 

A d-climcnsional ball (as a topo logical space, not a triangulation) is PL if t here is a 

piecewise linear homeomorphism between the ball and a d-dimensional simplex, and a d­

dimcnsionaJ sphere is PL if there is a piecewise linear homeomorphism between the sphere 

and the boundary of a d-climensional simplex. We say a PL-d-ball (or simply a PL-ball) , 

and a PL-d-sphere (a PL-sphere) for short. A triangulated manifold is called a combinato1·ial 

manifold if the link of each vertex is a PL-ball or a PL-spberc. 

Tbe foLlowing propositions are fundamental in PL topology. 

Proposition 2.2. {.96, Lemma 9} 

A t1·iangulation of a ball o1· a sphe1·c ·is P L if tmd only if the link of each ue1·tex is a P L-ball 

m· a PL-sph e1·e, i.e., if it is combinatorial. I 

Proposition 2.3. {96, Corollary to Theo1-em 2} 

If two PL-d-balls meet by a PL-(d- l )· ball which lies in their boundaries, then the union is 

again a .P L-d-ball. 

Proposition 2.4. {96, Follows fmm The01·ern 2} 

If two P L-d-balls meet by thei1· whole bo·unda1ies, then their union is a P L-d-sphm·e. 

Proposition 2.5. [96, The01·em .1} 

fJ we remove a PL-d-ball fmm a PL-d-sphere, the closu1-e of the rest is a PL-d-ball. 
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Proposit ion 2.6. {96, Corollary to Demma 8} 

The join of a PL-p-ball and a PL-q-ball is a PL-(1'+ q + 1)-ball, and the join of a PL-p-sphere 

and a PL-q-sphere is a PL-(p + q + i)-sphere. Es1Jecially, a py1·amid ove1· a PL-d-ball is a 

PD-(d + 1)-ball, and a suspens·ion of a PD-d-sphere is a PL-(d + I )-sphere. 1 

Furt.her, it is known that all 2- and 3-balls and spheres are PL, but there are non-P L 

5-spheres. (It is not known whether t l1erc are no.n-PL 4-spheres or not .) 
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2.3 Combinatorial decomposition properties 

2.3.1 Shellability 

Definition 2. 7. An ordering of the facet. F 1, F2 ,. . F, of a d-dimensi.oaai s implicial complex 

is a .~helliny if (F 1 U · · · U 1";_1 ) n P, is a pure (d- 1)-climensiona l simplicial complex, for 

2 :::; i:::; t. A simplicial complex is shellable if it admits a shelling. Moreover, if every partial 

shelling (i.e. , an ordering of a subset of facets sat isfy ing the condition) extends to a complete 

shelli ng, it is called extendably shellable. 

For polytopai complexes, there are several types of defini tions of sbellability all of which 

generalize the above definition, bu t t he following is now the standard defin ition because it 

has a very nice recursion. 

Definition 2.8. (Bjiirner and Wachs [2 1] Bjiirncr [13], etc.) 

An ordering of t lw lacets F1 , F2 , ... , F, of' a d-dimensional polytopal complex is a shelling if 

(F 1 U · · · U F,_1) n F\ is (d - I )-d imensional and has a shelling which extends to a shening of 

th ' boundary of Fi. 

Th re are some other versions for example: (i) only require the intersect ion is shellable 

(D rugesser-Mani [25]) , (ii) even only require t hat it is a ball or sphere (Danaraj-Kiee [31], 

·'weak shellabllity"), (iii) requ ire that F1 U P.1 U ... U F, is a ball for every step (Ewald [37]) 

except for the last step, and (iv) a custom-tailored version lor the appliwtion to cd-index, 

S-shellabili ty ("S" for "spherical") of Stanley [86]. It is known that these are all equivalent 

in simplicial case . (B ut (iii) requires that the realization is a ball or sphere, and (iv) requires 

to be a sphere.) Another essentially same variation is by indexing the facets in the reverse 

way: this seems to be familiar among topologists. for example Bing [10]. 

Although the above definitions of shellability requires that shellable comple.xes should be 

pmc (easily shown), there is a non-pure version of defini tion by Bjiirner and Wachs [22, 23]. 

This non-pure version of shellabili ty, which includes the pure ca.'e as a special case, is now 

assumed to be the standard definition, but we will not use it in this thesis. 
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One property of shellability is that it is inherited by links: 

Proposition 2.9. (Bjorner{12}} 

Eve1'1J link of a shellablc simplicial (polytopal) complex is shellable. 

(Be careful that this may no longer be true if we use the first version of the definition of the 

lin.k in the polytopal case; this is why we chose the second way of delinition in p. 12. See 

Exercise 8.4 of Ziegler [98].) 

Proof. A shelling of the complex induces a shelling of each link. I 

Another way to show th is is by using the results of Bjorner and Wachs [2lj: a polytopal 

complex is sbellable if and only if its face poset is CL-shellable ("CL" = "cbainwise lexico­

graphic"), and every i.nterval of a CL-shcllable poset is CL-shellable. 

By tllis proposition, we can easily check that the following figure is not shcllablc because 

Iinke x is not shellable. (!-dimensional complex is shcllable if and only if it is connected.) 

~liokc> 

c 

The most interesting and rny:;terious fact around shell r.tb ility seems to be the existence 

of nou-shellable triangulations of 3-balls and 3-spheres. This is a surprising fact compared 

to the fact that every shellable pseudomanifolds are homeomorphic to balls or sphere' (this 

will be shown in Section 2.3.2 in a stronger form) , and that the converse for 2-dimensional 

pseudomanifolds is also true (see Section 2.5). Moreover, the following important theorem is 

shown by Brugesscr and Mani [25], which has many applications in combi.natori.cs of polytopes 

sudt M McMullen's Upper Bom1d Theorem of polytopes [65). 

Theorem 2.10. (Brugesser-Mani {1!5/) 

Eve11J boundm·y complex of a polytope is shellable. 

The proof is done by using the so-called "line shelling". 

A number of uon-shellable triangulations of 3-ball.s are reviewed in Ziegler [99]. Current ly 

known construction of non-shellable b<tlls eems to be only of two types: one uses knots, and 

the other constructs directly a situation that a removal of every one facet corrupt the ball­

ness. Such triangulations of balls that no facet can be removed wilhout corrupting ball-ness 

are especially called strongly non-shellable (99]. 
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The former construction, a construction using knots is the oldest one: Fmch's knotted 

bole ball. This one will be treated in Section 3.1 of Chapter 3. The rest can be grouped 

in t.be latter construction, though finding some nice reasoning of their non-shellability seems 

an interesting open problem. An indirect but good-for-understanding example is the Danzer 

cube described in Ziegler [98, 99] , a triangulation of a cube involving a spe-ial link mane of 12 

edges. The small examples of triang-ulated 3-balls, Rudin (78], Griinbaum (unpublished, see 

Da.uaraj and Klee [32] and Hachimori [43].) and Ziegler (99], exhibit a concrete example of 

triangulation with the property that no facet can be removed without losing ball-ness. (Thus 

these tluee examples are strongly non-shellable.) The list of the facets of these triangulations 

are the following: 

Rudin's 3-ball (with 14 vcrticeti and 41 facets): 

3 4 7 11 4 58 12 56 9 13 6 3 10 14 3 4 7 12 4 58 13 

56 9 14 631011 4 7 11 12 58 12 13 6 9 13 14 3 10 14 ll 

4 8 11 12 5 9 12 13 6 10 13 l4 3 7 14 11 11 12 13 14 7 11 12 13 

8 12 13 14 9 13 14 11 10 14 11 12 3 7 12 13 4 8 13 14 59 14 11 

6 10 11 12 3 9 12 13 4 10 13 14 5 7 14 11 6 8 ll 12 I 3 9 13 

2 4 10 14 1 57 11 2 6 8 12 1 3 7 13 2 4 14 1 59 11 

2 6 10 12 1 7 11 13 2 8 12 14 1 9 13 11 2 10 14 12 

Griinbaum's 3-ball (with 14 vertices and 29 facets): 

1 2 37 1 2 4 8 1 2 7 8 1 3 57 l 4 8 10 I 5 6 13 

1 57 13 I 6 11 13 1 7 8 10 l 7 11 13 2 3 7 9 2468 

2 56 14 2 5 12 14 2 6 8 14 2789 2 8 12 14 3 57 9 

4 6 8 10 56 13 14 57 9 13 5 12 13 14 6 8 10 14 6 11 13 14 

7 8 9 13 7 8 10 14 7 8 13 14 7 1l. 13 14 8 12 13 14 

Ziegler's 3-ball (with 10 vertices and 21 facets): 

1 2 3 4 1256 2 3 6 7 3 4 7 8 4 1 8 5 I 56 9 

1 6 2 9 1 2 4 9 l 4 8 9 1 8 59 2 56 10 2 6 7 10 

2 7 3 10 2 3 1 10 2 1 5 10 3 6 7 8 3 2 4 8 3 2 6 8 

4578 41 3 7 4157 

(The list of Rudin's and Griiobaum's 3-balls are Laken from D<tnaraj-Kiee (32], where the 

typographical error of Lhe 9th Facet in the latter is suitably corrected, see [43]. The list of 

Ziegler's 3-ball is taken rrow his own paper [fl9].) 

All of ~hese tluee examples have a geometric realization in E3 , with all vertices on their 

boundarie:;. Rudin 's ball even bas a convex realization, while the rest two seems to have only 

non-convex realizations. Another example of non-shellable triangulation of a 3-ball, Bing's 
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house with two rooms wruch will be described in Section 4.4, also ha.s the same property: a ll 

the vertices orr its boundary and the removal of any one facet corrupting its ball-ness. 

The ou.ly known way of the construction of non-sbellable triangulations of 3-spheres wa.s 

shown by Li<:korish [57] . (If we do not require to be a triangulation, pseudos implicia.l de­

composition is shown in Vince (90] and cell partitionings in Armentrout [2, 3].) This uses an 

embedded knot and its non-shellabilit-y is showu by using the idea of collapsing and counting 

the number of generators needed to represent the fundamental group of the knot complement. 

This non-shellablc sphere will be treated in Section 3.3 with a proof of its non-shcllability by 

a different way via constructibility argumeut. 

About extendable shellabiHty, what we remark here is the foLlowing. 

• All the triangulation of 2-ball~ and 2-spheres are extcndably s llcllable. (Shown later in 

Section 2.5.) But not &II shcllable 2-dimensional simplicial c:omple.:xcs are extendably 

sbcllable. (See Section 5.3.) 

• There are s implicial 4-polytopes whose boundary complexes are not extendably 

sheLiablc. (Shown in Ziegler [99]. This implies that extendable sbellability is strictly 

stronger than sheLla bility.) 
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2.3.2 Constructibility 

Definition 2.11. A pure d-dimcns.ional simplici1d complex C .is constmctible if 

(i) C is a simplex, or 

(ii) there are two d-dimensional constructible simplicial complexes C1 <tnd C2 SlJCb that 

C1 u C2 = C and that C1 n C2 is a (d -!)-dimensional constructible simplicial complex. 

c 

This concept of constructibility was first formulated by Hochster [49], and appears in 

Stanley [83], Bjiirner [15], etc. The relation between shellability and collStructibility can be 

seen from the following reformulation of shellability of simplicial complexes. 

Definition 2.12. (Reformulation of Deflnition 2.7.) 

A pure d-dimensional simplicial complex C is shellable if 

(i) C is a simpl~Jx, or 

(ii) tiPre is a d-dimensio11al shellable simplicial complexes q and a d-simplcx C2 such that 

C1 u Cz = C and that C1 n C2 is a {d- !)-dimensional sbeLlable simplicial complex. 

The equivalence of Deflnitions 2.7 and 2.12 is easy to see. From th.is, one can observe lhat 

construdibility is a relaxation of shellabil ity, that is, if we restrict ~ to be a simplex in the 

Definition 2.11 of constructibility, we have Definition 2.12 of shellability. 

The version for polytopal complexes is as follows. 

Definition 2.13. A pure d-dimensional polytopal comple.x Cis conskuctible iJ 

(i) C is a polytope, or 

(i i) there are two d-dimcnsional constructible polytopal complexes cl and c2 such that 

C1 u C2 = C and that 0 1 n 0 2 is a (d- 1)-dimeusioual constructible polytopal complex. 

Tilis polytopal version is also a relaxation of shellabili ty for polytopal cases. Also this 

definition includes the simplicial version of the definition above. If we use this definil.ion for 

regular CW complexes, we should additionally require that the boundary complex of each 
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cell is constructible, see Mandel [62] or Hachimori [42]. (For polytopal case, we do not need 

this treatment because the boundary complex of a polytopes is constructible.) 

Construclibility is inherited by links, as 'ame as the case of shellability. 

Proposition 2.14. (Bjomer {12, 15}} 

Eve1·y link of a constructible polytopal complex is constr'ILCtible. 

Pmof. Let C be a constructible polytopal complex and r a face of C. We use induction on 

the number of facets of C. The case of a ·itOplex C is trivial , so we write Cas a uni011 of two 

constructible complexes C1 and C2 . If r is contained in only oue of C1 and C2 , say in C,, 
then Linker= Iinke, r is constmctible by induction. If r is contained iu C, n C2, then 

(i) (Linker) n C1 = Linke, r =: £ 1, 

(ii) (linkc r) n c2 = Ii nke, T =: £2, 

(iii) Lr n £2 = (Iinke, r) n (Iinke, r) = linke, ne, r, and 

(iv) L1 UL2=linkcr. 

These observations imply by induction that Ii nke r is constructible. 

Again we remark here that this proposition for polytopal (non-simplicia.!) case does not. hold 

if we define links by the faces of stare cr not containing cr (the way of definition (i) in p. 12), 

as remarked after Proposition 2.9. 

We also have tbe following property of constructible complexes. The proof is omitted 

because it is obvious. 

Propos it io n 2. 15. Construct·ible polytopal complexes are stmngly connected. I 

For the case of pseudomanifolds , constructibility assures a stronger p roperty for the topol­

ogy of the underlying space. 

Proposit ion 2.16 . (Zeeman {96}, Bjome,· {15}} 

A d-dimensional constructible simplicial (oT polytopal} complex in which any (d- 1)-face is 

contained in at most two facets is a PL-d-ball or a PL-d-S7Jhe1·e. 

Proof. This is by induction on the size of facets and on the dimension. First, a simplex is a 

PL-ball by definition, and th is makes the induction base. 

Let C be a constructible complex with the property that each (d- 1)-face is contained 

at most two facets, and assume that C is not a simplex. Then there are two constructible 

complexes Ct and C2 satisfying the condition (ii) of Definition 2.13. Here both C1 and C2 
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satisfy the condition that each (d- 1)-facc is contained in at most two facets, thus by induction. 

both are PL-d-bal.ls or PL-d-spheres. Moreover, C1 n C2 is contain.ecl in the boundaries ol' 

both balls because of the requirement that C also satisfies that each (d- 1)-face is cont<\incd 

at most two facets. (This means that C1 and C2 were Plrd-balls, not spheres.) Because 

the boundary of a d-ball is a (d- 1) sphere, C1 n C2 also satisfies that each (d- 2)-face is 

contained at most two facets. Also by induction hypothesis , C1 n Cz is a PL-(d- 1)-ball or 

PL-(d- 1)-sphere. ow the statement follows from Propositions 2.3 and 2.4, according to 

whether C1 n C2 is a ball Or a sphere. I 

Bec<\US<' shellable complexes are constructib le, we have the following corollary. 

Corollary 2.17. A shellable pseadomanifold is a PC-ball o•· a PL-sphere. 
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2.3 .3 Vertex decomposability 

A deletion die a of a face a of a simplicial complex C is the simplicial complex { r r E 

C and a~ r} . 

Definition 2.18. A pure d-dimensional simplicial complex C is ve1·tex decomposable if 

(i) C is a simplex (including the case that C is {0}), or 

(ii ) there is a vertex x such that Iinke x and dlr; x are vertex decomposable simplicial 

complexes. 

X 

~linkr;x 
die~ 

The vertex x in the definition is called a shedd·ing ve•·tex. 

This definition is introduced by Provan and BiUera [74] in relation with Hirsch conjecture. 

(Sec also Billera and Provan [8] .) 

There is also more general concept, k-dccomposability. 

Definition 2.19. A pure d-dimcnsional simplicial complex Cis k-decomposable if 

(i) C is a simplex, or 

(ii) there is a face a with dim a 5 k such that linkr; a and dlr;x are k-decomposable 

simplicial complexes. 

at umlly the following implications hold: 

vertex decomposable= 0-decomposa,ble =? !-decomposable => · · · =? d-decomposablc. 

Moreover, Provan and Biliera [74] shows that d-dccom:posability is equivalent to shellabi lity. 

(The fac:L that vertex decomposability implies shellabil ity can be shown directly using induc­

tion on the number o[ facets and the dimension.) 

The important property of vertex decomposab ility is lhe following. 

Theorem 2.20. (P•·ovan-Billera {14}) 

If C ;., a d-dimensional ver·tex deconwosable simplicial complex, then 

(
d +l) diamC5fk(C)- k+l, /0!' 0 5 k 5 d. 
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Here, diam C is the diameter of the graph in wl:ti c;h vertices are facets of C and two vertices 

are connected by an edge if the corresponding two facets have a common (cl- 1)-face. Con­

sequent ly, every vertex decomposable simplicial complex sat isfi es the Hirsch conjeeture (in a 

dual sense), that is, diam C is at most #{facets} - (d + 1). 

{The Hirsch conjecture states that the diameter of the edge graph of a polytope P (a graph 

made of edges and vertices of the polytope) is at most #{ facets of P } - dimP , and the vertex 

decomposable simplicial complexes above corresponds to the botllldary complex of the dual 

(or the polar) of the polytope.) 

The Kirsch conjecture for polytopes is still open, but there are simpl icial spheres which 

fails to sat isfy the conjectw·e, 27-sphere with 56 vertices and more than 8000 simplices by 

Walkup [9:l]. and also sucb example of a 3-sphere is given in Mani and Walkup [66]. There is 

a uon-vcrtex decomposable 4-polytope made by Lockeberg [60] but still satisfying the Hirsch 

conjecture, see !Gee and Kleinschmidt [53] . 

Remm-k. The facet l.ist of Lockeberg's 4-polytope described in the paper of !<lee and Klein­

schmidt [53] seems to contain a typographical error. The facet ",.ejk" (the 43rd facet) should 

be "aehk" in order to make this simplicial complex to be a sphere. 
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2.3.4 Other properties 

Cohen-Macaulayness 

Cohen-Macaulayncss is one of the most famous properties ofsimpliciaJ complexes and bas been 

studied by many researchers. To be precise, this is not a kind of combiniltoriaJ decomposition 

properties, but we introduce this concept as one of combinatorial decomposition properties 

because this is in a sense a topological relaxation of combinatorial decompositiou properties 

and we can not avoid this in the study of this field. 

Usually Cohen-Macaulayness is defined in terms of face rings (or Stanley- Reisner rings) 

that a simplicial complex is Goben-Macaulay if its face ring is Coheu-MacatLlay, but we 

define here in terms of reduced homology groups of links which is the characterization of 

Cobeo-Macaulayness by Reisner [75] . For the original algebraic definition, see for example 

Stanley [ 6] or Hibi [48]. 

Defin ition 2.21. A simplicial complex is Cohen-Macaulay if H;(Linke o-) = 0 except i 

dim linke o- for any face a of C, where H; is the reduced homology group over a ring R. 

Renwrk. This Cohen-Macaulayness depends on the choice of R. Ln tlLis thesis, we assume 

tba.t the ring R is always Z. It is known that Cohen-Ma.caulayness over Z is stronger than. to 

be Goben-Macaulay over any field , see Bjorner [15, p. 1855]. 

The following property is known. 

Proposit ion 2.22. (Mnnlwes {70, Corollary 3.4]} 

A simplicial complex G is Cohen-Maca11lay if and only if ]01 satisfies that H;(]GI) = 0 

H,(IGI , ]OJ \P) for all p E ]OJ and i < dim G, whe1·e H ; denotes the singular relative homology 

group and if; denotes the singular ,-educed homology g.-oup. Thus Cohen-Macaulayness is 

topological, i.e., if the underlying space-~ of G and G' m·e homeomorphic and G is Cohen­

Macaulay, then C' is also Cohen-Mucaulay. 

Though the proof in . unkres [70] is written in terms of cohomology over a field, the same 

argument can be used for homology over Z. The following proof is the same as the originaJ 

except for replacing cohomology by homology. 

Proof. H linke o- >I 0, then 

B 1 (]C], JCI \ p) ~ ff1 (Jstare o-1, ]stare o-J \ p) 

~ Hj(Jstarc o-1, ]Bo- • Iinke a]) 

~ Hi-diB"* linkeo-]) --- (•) 
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llll<l if linkc a = 0, then 

H1 (jCI, jCJ\p) :e Hj( Jaj,jaJ\p) 

:e Hj (laj,J8al) 

~ H1-t(!8al) .. (*) 

"" {Z ifj=dirua 
0 ifj i- dim a 

~ flj-dimu-J(0). 

Here, both ( •) are implied by the long exact sequence 

---+ H,+ 1(X.A) ---+ H,(A) ---+ H,(X) 

---+ H,(X , A) ---+ H;_,(A) ---+ H;_ ,(X) 

---+ 

---+ Ho(X,A) ---+ iL1(A) ---+ iL 1(X) 

---+ 0 

for X :::l A and A =I 0. 
ThuR we have 

H1 (jCI, JCJ \ p) :e Hj-dima-ttl linkc aiJ (= Hj-dima-I( linkc a)), · · · (**) 

for all j and p E;;.. 

Now we show that the following conditions are equivalent. 

(i) H,( JCJ) = 0 = H;(ICJ, JCJ \ p) fori< dim C and p E JC[, 

(ii) If,(linkc a)= 0 except ·i = dirnlinkc a for any face a of C. 

The first remark is that both conditions imply that C i · pure. That (i) implies the purity 

of C follows from the fact that Ih (ICI, JCI \ p) :e Z if p E ~and a is a k-dimensional facet. 

That (ii) implies the purity of C is verified as follows: Let C satisfy (ii) but non-pure, and 

D the subcomplex of C generated by the facets whose clirnension is less than dim C. Then if 

we take a facet of C n D to be a, then linkc a is discounected but its dimension is at least 

oue. This contradicts the condition of (ii) because disconnected complex 6 with cliruension 

at least one has i£0 ( 6) =1 0. 

Now because Cis pure, dim linkca + dim a+ l =dim C in both (i) and (ii). The condition 

H;(linkca) = 0 fori < clirn linkc a of (li) is equivalent to the conclition H;-d;m ,_1(1inkc a) = 

0 for i < dim C and a =I 0, and this is equivalent to the condition H;( JCJ, JCI \ x) = 0 for 

i <dim C from (**). For a= 0, the condition is equivalent to the conditi n B;(JCI) = 0 for 

i <dim C. Thus (i) and (ii) are equivalent. 

I 
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Especially, triangulations of balls and spheres are aU Cohen-! Iacaulay (ove1· Z). 

The ~ypical property of Cohen-Macaulayness is the following. 

Proposition 2.23. The h-vectors of Collen-Macaulay simplicial complexes are nonnegat.ive. 

I 

For the proof of this proposition , see for example Stanley [86]. The statem >nt follows from 

the fact that h-vectors correspond to the coefficients of llilbert series of the face ring of C. 

The class of constructible simplicial complexes is an important subd.'ISS of Cohen­

Macau lay simplicial complexes. 

Proposition 2.24. A constructible simplicial complex is Collen-Macaulay. 

Proof. (Hibi [48, Lemilla 23.6]) 

This wa.s originally proved by Hochster [4n] in terms of face rings, but Reisner's characteri­

zation (Definition 2.21) makes the proof very easy. 

The proof is by induction on the number of facets and the dimension. U a d-dimensi.onal 

constructib le simplicial complex Cis a simplex, then it is Cohen-Macaulay because a ll of the 

reduced homology groupR of a ball are 0. 

[f C is not a simplex, the11 there are two constructible simplicial complexes Ct and C'2 

with C1 n C2 is a (d- !)-dimensional constructible complex and C1 U C2 = C. The reduced 

homology groups of C, C1, C2 have the following "reduced Mayer-Vietoris exact sequence": 

-+ fi,(C't n C2) -+ ii,(Ct) $ H,(C2) ---; fr,(Ct U C2) 

-+ H;-1 (Ct n C2) -+ if,_ ,(Ct) ED if,_,(C2) ---; il;-t (Ct u C2) 

-+ 

-+ fru(Ct n C'2l -+ Hu(Ct) ED Ho(C'2) -+ flu(Ct u C2) 

-+ iLt(Ct nc2) -+ if_l(C!) $ fLt (C2) ---; if_ 1(C, u C2) 

---; 0 

Here by induction hypothesis. ii,(Ct) , H,(C2 ) are 0 for all i ::; d- 1 and H;(C't n C2 ) are 

0 for all i.::;: d- 2, the above exact sequence implies that ii,(C) (= H,(linkc 0)) is 0 for all 

iS.d -1. 

For the links Iinke a with a fo 0, the reduced homology groups of the link of the dimensions 

less than dim Iinke a disappear from the induction hypothesis on the dimension because 

liukc a is constructible from Proposition 2.14 and has a smaller dimension. 
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Partitionability 

Definition 2.25. A simplicial complex Cis partil'ionable if the set of faces of Cis partitioned 

into the sets of the form {r: </>(a) t:;; r t:;; a}, where a lli a facet of C and </>(a) is a face of a. 

In the term of face poset ·, a simplicial complex is partitionablc if its face poset (minus 

the top element) can be partitioned into intervals whose tops are facets. 

One class of partitiouable simplicial complexes are shellablc simplicial complexes in which 

a shelling F1, F2, . •. , Ft of a shellable simplicial complex C induces a partition in a natural 

way: 

(i) For F1, we set ¢(F1) = 0. 

(ii) For F, with i e:: 2, we set ¢(F,) to be the unique minimal face R, of Pi which is not 

contained in F1 U F2 U · · · U Fi-1· 

The following figure shows the partition induced by a shelling. 

c 

"~ 
d f 

For a pure partitionable simplicial complex, tl1ere is a combinatorial interpretation of 

h-vectors, that is, we have the following proposition. 

Proposition 2.26. Fo1· a pm·titiorwble simplicial com7Jlex, we have 

h;(C) =#{a: dim¢(a) = i- 1}. 

For example in the above figme, /(C)= (1, 6, 10, 5) and h(C) = (1 , 3, 1, 0) , this coincides 

with the numb~rs #{i: dim </>(a)= i- l}. The proof is just by counting the faces contained 

in eacll intervals using the fact that each interval is a boolean lattice. (See for example 

Ziegler [98], Stanley [86], Kleinschmidt and Onn [54], etc.) 

From the way how a shelling induces a partition described above, h-vectors can be cal­

culated easily from a shelling F1, F2 , .•. , Ft of C: hk(C) is the number o[ i's sucll that the 

minimum face ofF, whicll is not contained in Fj with j S i- I has dimension k- 1. (See 
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Ziegler [98, p.247].) For this, we need only one arbitrary shelling because It-vector is aLready 

detcrmiued by its !-vector aud we get the same answer no matter how we take a shelllng. 

A consequence or the calculation of II- vectors from the pa.rtition as above is that h-vecLors 

of partitionable simplicial complexes arc non-negative. This mysterious coincidence with 

the fact that. Goben-Macaulay simplicial complexes have non-negative h-vcctors leads us to 

the conjecture of Garsia [40] and Stanley [85]: Goben-Macaulay simplicial complexes are 

partitionable. Some related results w:e shown such as Duval and Zhang [34], but the problem 

is still open. (The converse direction is not true: There are pa.rtitionable simplicial complexes 

which are not Cohen-Macaulay, see Stanley [86, p.85]-) 

Important :;tudy about partitionability was done in Kleinschmidt and Onn [54j. They 

showed that polyhedral fans and oriented matroid polytopes are signable, which in tile sim­

plicial c:a.5e mean:; that they ru·e partitionablc. Both of these two classes are not known to be 

sheliable or uot, but their r ·'suit shows the parbtionabili ty not using shellabiJi ty. Moreover, 

their arguments can be used to show the upper bound property not using shcllability or even 

Cohen-Macaulayness. Further study can be found in Onn [73]. Thus partitionabi lity is a very 

useful and important properLy, but we do not treat in this thesis except for the cakulatioJJ of 

It-vectors in Chapter 5. 
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Simplicial collapsing 

Definition 2.27. If a face G of a simplicial complex C is contained in only one face F 

and dim G = dim F- 1, then we write C \i'(•)(C- { G, F)) and we call this operation an 

elementa1·y .simplicial collapse. (This only happens when F .is a facet. Such face G is called 

j1·ee.) 

JJ a simplicial complex C' is derived by a sequence of elementary simplicial collapse from 

C, C simpl·icially collapses to C ' and denoted by C '-,JC' . Especially if C' is one vertex, then 

C is simplicially collapsible. 

If C has a subdiv ision which is simplidally collapsible, the n Cis (polyherlmlly) collapsible, 

denoted by C \i C'. 

There is another but equival nt way to define collapsing: a face G is free if it is contained 

iu only one facet , and an elementary simplicial collapsing removes aU the faces which contains 

G, for example Bjiirner [15] or Welker [95]. 

Collapsing is a fundamental tool in combinatorial topology, for example in the regular 

neighborhood theory. As is eas ily observed, each elementary simplicial collapse is a strong 

deformation retract which is performed by a combi11atorial operation, especi<tlly it preserve 

the homotopy type of the underlying space. So collapsing is a cornbinatori<tl analogy of 

homotopy equ ivalence. ln particular, a collapsible simplici<tl complex has a contractib le (i.e. , 

b motopy equi valent to one point) underlying space. 

The relation betw~>en shellability and simplicial collaps ibility is not clear because collapsi­

ble simplicial complexes are always contractible but shellable simplicia] complexes can have 

non-zero homology. But if we restr ict to the contractible ca.~e, they certainfy have a strong 

relation. 

Proposition 2.28. A shellable contT·actible simplicial complex is sirnplicially collaps·ible. 

The proof is by performing elementary simplicial co llapses in the reverse way of a shelling. 
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2.4 The hierarchy of combinatorial decomposition properties 

Summarizing the relations among the combiLlatorial decompo. ition properties introduced in 

the l<>st section, we re-state the following proposition. 

Proposition 2.29. For simplicial complexes, the following implications hold: 

• vertex decomposable => shellable => constructible => Cohen-Nfacaulay , 

• extendauly shellable => shellable, 

• shell<Lble => partitionable, 

• cont,·actible and shellable => simplicially collapsible, 

and for polytopal complexes, we have 

• extendably shellable => shellable => con.~tructible. 

All of tb' implications in the proposition is strict : 

• There are shellable but not vertex decomposable simplicial complexes. For example, the 

existence of polytopes with non-vertex decomposable boundary is known. (Locke berg's 

polytope, see Klee-Kleinsctunidt [53] .) 

• There are constructible but not shellab le simpl icial complexes. For insta.ucc, Rudin's 

b<tll, Griinbaurn'o ball, Ziegler's ball are such example, see Proposition 4.6. 

• There a.re Cohea-Macaulay but not constructib le simplicial complexes. For tllis, trian­

gulations of b;.tlls ami spheres which are not constructible will be shown in Chapter 3. 

Also homology spheres which are not homeomorphic to spheres (e.g. , Poincare sphere) 

are Goben-Macaulay but not constructible. 

• There are shellable simplicia.! complexes that are not extendabl.y shellable. Such exam­

ples are shown in Ziegler [98] and Ziegler [99]. He showed that the boundary complexes 

of almost all4-polytope are not extendably shellable while all the boundary complexes 

of polytopes are shellab le. 
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• There are partitionable but not sbellable simplicial complexes. For example, the fol­

lowing triangulation of the projective plane is not shellable (because it is not Cohen­

Macaulay (over Z)) but partitiouable. 

l 4®' 
3 . 4 

6 

• There are simplicially collapsible but not shellable complexes. 

In the case of pseudomanifolds, the first line of implications is refined as follows. 

Proposition 2.30. Fo1· pseudomanifolds, the following implications hold: 

• vertex decomposable =:- shellable =:- constmctible =:- P L-balls or P £-spheres 

=:- balls o·r spheres =:- Cohen-Maca-ulay. 

As same aH above, these refined implications arc also strict. 

• There are PL-balls and PL-sphcres which are not construct ible. Tllis will be shown in 

Chapter 3. 

• There are bal.ls and spheres which are not PL. The existence of non-PL spheres follows 

from Edwards' "double suspension theorem" (35] or its generalized version by Can­

non (27]. 

• There are Cohen-Macaulay simplicial complexes which are not balls or spheres: homol­

ogy spheres are Cohen-Macaulay. 
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2.5 The case of 2-dimensional pseudomanifolds 

[n the case of 2-dimensional pseudo manifolds, ruauy good propetties are kuown to hold which 

arc never true in general. Among them, we see in this section that all the inverse implica­

tions of Proposition 2.30 holds for 2-dimensional pseudomanifolds, and that combinatorial 

decomposition properties are topological property. 

We start from the most importao proposition, which we will use many times throughout 

this thesis. This is a classical result. 

Proposition 2.31. All]iOlytopal2-htLlls and 2-sphe1·es m-e shella/Jle (thus constn.J.ctible}. 

Proof. We show tbat all 2-b<tlls are shellablc. The case of 2-, pheres follows immediately: 

Choose one facet a of a 2-sphere and remove it, then the remained 2-ball (2-sphere minus 

2-ball is a 2-ball) is shellable and its shelling exteods to that of whole 2-sphere by just adding 

a in the end of the shelling. 

To show the shcLlabi lity of a 2-ball, we construct its shelling in a reverse way. What we 

sl10w in the sequel is that if B has more than 011e facets, then every 2-ball B has a facet a such 

that (B- a) n a is an arc (i.e., a simple path). If this is shown, then we successiv ly remove 

sucb a from the ball and we get a. shelJing by 1·ev 1-sing tlle way of this removal sequence. 

For this, we find a facet a which meets with 8B by an arc and starting from one endpoint 

of the arc and following the boundary of a running in the interior of B, either we reach 

anot her endpoint of the arc or meet with 8B in another point. In the former case, we are 

done. [u the latter case, the arc divide B into two balls and we use the following claim. 

Claim. If a 2-ball D C B has the property that (8 D - 8B) is an arc k contained in the 

boundary of oue facet of B, then D contains a facet r such that ( 8r - 8B) is an arc. 

The claim is shown by induction on the size of D. First, if D has only one facet. then 

the claim above is trivially tru . If D bas more than one facets, we choose one facet r ' of D 

such Lhut r meets with 8B by at least one arc. If (8r' - 8B) is one arc, t hen we are done. 

Else, it consists of a least two arcs, so we can take k' from one of the arcs wh.ich is different 

fro m k. Then k' divides B into two balls D1 and D1 such that D 1 is contained in D. Now, 

D1 satisfies the condition of the clalm and has smal ler number of facets than D, and the 

induction hypothesis implies that D1 (t. hns D) contains a facet T with the property we need. 

D 
~ 

k'-Ef55?5k 

~ 
D, 
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The following proposition follows immediately from lhe claim in the proposition above. 

This proposition for the special case in simplicial 2-ba.Lls plays the key role iu Chapter 4. 

Proposition 2.32. Let a simplicial2-ball E have a spanning edge which divides B into two 

2-balls E 1 and E2. Tf 8; has no intedm· vertices, the11 it has a facet {2-simplex) with two 

edge.• in BE, for ,i = 1, 2. 

Proof. The claim in the proof of Proposition 2.31 assures the existence of a facet r such that 

(B,- r) n r is an arc. But by a.'sumptiou, E; has no interior verti ces, which me1u1s that the 

arc (B;- r) n r is a spanning edge, which means that r has two edges in BE. 1 

Proposition 2.31 together with Corollary 2.17 concludes that shellability of 2-

pseudomanifolcls is clctcrrnincd by their topology. that is, a 2-pseuclornanifolcl is shellable 

if and only if it is a 2-ball or a 2-sphere. 

Corollary 2.33. A 2-pseudomanifold is shellable if and only if it 'is 11 2-ball or· a 2-spher·e. 

Or equivalently: 

Corollary 2.34. A 2-psev.domanifold is constrv.c/,ible if and only if it is a 2-ball m· a 2-

sphere. I 

Thus we can condude that: 

Corollary 2.35. A constr·uctible 2-pseudomanifold is shellable. 

Also Proposition 2.:n implies the following corollary. 

Corollary 2.36. All 2-balls and 2-spher·es ar·e extendably shellable. 

For verl,e.x decomposability, we also have the following proposition, shown by Provan and 

Oillera [74]. 

Proposition 2.37. All 2-balls and 2-spheres ar·e vertex decomposable. 

Proof. It is enough lo show the ca;;e of 2-balls, because in the case of 2-sphercs, every vertex 

x of a 2 sphere S can be taken as the first shedding vertex making the remaining ells x to be 

a 2-baU. 

For a 2-ball B, we show in the following that there always exists a vertex x tn 88 such 

that no spa1ming edge is incident to x. U this is shown, such a verte.x x become. a shedding 

vertex by an induction argument because in this case link ax is a connected 1-complex which 

is e;u;i!y shown to be verte.x decomposable, and dla xis a. 2-ba.ll and its vertex clecomposabilit:y 

is shown by induction. 

To show the existence of suci.J a vertex x, we first choose a vertex x' a.rbitra.ry from BE. 

If this ·atisfies the condition, we are clone. Else a! is incident to a spanning edge. Por such a 

cas , we show the following claim. 
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Claim. If a 2-ball 8 has a. spanning edge which divides B into two 2-balls 81 and 82, then 

each divided two ball 8; has a vertex x in 88 such that x is incident to no spanning edge. 

The proof of the claim is by induction on the number of facets of 8,. If 8 , has only one 

facet , then the statement is dear. If not, take a vertex x' on 8 ; n 88 different from the two 

endpoints of the spanning edge dividing 8 1 and 8 2 . [f x' is not incident with any spao1Iing 

edge of 8, then we are done. Else there is a spanning edge x'y. If we take this spanning edge 

as the first spanning edge, then it divides n into s; aud B~ such that B\ is smaller than 81 

and 8\ has the vertex we are looking for by the induction hypothesis. 

B, 

~ 

~''"";"'"''' B' y 
1 

I 

The rest reverse impLications of Proposition 2.31 are "spheres or balls * PL-spheres or 

balls" and "Cohee-Macaulay * spheres or balls ," and these two implicat ions also known 

to hold. The former follows fTOIO the fact that triangulated non-PL spheres do not exist 

in dimensions at most three. (Thi.s is open for dimension 4.) The latter follows from the 

classification of 2-surfaces: there is no 2-surfaces with fr, = 0 except for balls and spheres. 

In summary, w~ have the following theorem. 

Theorem 2.38. For 2-psev.domanifolds, vertex decomposab·ility, extendable shellabil£ty, 

shellability, constructibility, being 2-bal/s or 2-sphe,·es, being PL-2 -bal/s or PL-2-sphe,·es. and 

Cohen-Macav.layness, a1·e all equivalent. Moreove1·, these propeTties are topological. 
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2.6 Knots and tangles 

This section provides a brief introduction to kn ts and tangles. For fw-ther study, there arc 

many textbooks on knots, for example, Lickorish [5 ], Livingston (59], Rolfsen [76}, etc. 

A knot is a simple closed tame arc contained in some 3-dimensional manifold (wiLh bound­

ary) !vf3, where tame means that it is piecewise linear. In this t hesis, we always treat the case 

where l\!1 3 is a 3-ball B 3 or a 3-spherc S3. There are severa l ways to define knot equivalence 

for example using Reidemeister moves, ambient isotopy, or homeomorphism of /vf3
. In this 

thesis, we use the most primi tive way for the defini t ion of knot equivalence as fo llows. 

Defini tion 2.39. Let k and k' are two simple closed piecewise linear arcs. If k = 

POP I ·-- PiPi+l · · · PtPo and k' = PoPt - · · p,QPi+L ·- · Pt.Po and the triaJJg]e P·iQPi+t does not in­

tersect with other part of the arc, then k and k' are related by an elementmy move. lf two 

knots are related by a sequence of elementary moves, then t hese two knots ar~ eq-uivalent. We 

abo say thal these two knots are of the same lY]!e, and the representat ive of the eq uivalence 

tlass is mentioned as a knot type. 

It cnn be deduced from this defini t ion that if the difFerence between two knots bounds a 

disk. tben they are equivalent. 

If the knot itself bounds a disk then it is triv ial. 

Definit ion 2.40. A knot k is t1'ivial or is an unknot if there is a disc (2-ball) in NJ3 whose 

boundary is k. rr not. k is knotted. 

The reason we use this definition is because we want to use the qu.ivalence relation in 

a slightly generalized way thau is used in usual contexts. That is, if M 3 = B 3 , we a llow 

some parts of the knot to go onto t he boundary or into the interior dming the sequence of 

elementary moves, while usually tiP knots are requ ired to be in t he interior of 1'vfJ all the 

tirue. 
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The modifications in the above figure are not equivalent if we defined the equivalence rck1.tion 

by ambient isotopy or homeomorpilism of M 3 , but are equivalent by our definition. But we 

should note tha this does not contain a radical change between the usual definition and om 

definition. In fact , all the properties and techniques are valid for our definition: what we 

should do to apply usual argument is just to move the a.rcs on the boundary into the interior 

by slightly perturbing the arc. 

A spr"nning a1·c is a simple t<tme me contained in a 3-ball B3 with its two end points lying 

in the boundary. [f this arc is made of one edge of a triangulation of B3 t<nd contained in 

the interior, then it is especially call d 3 spcmning edge. Agt<in here we allow some pMt of 

spanning arcs to be contained in the boundary of B3 while usual treatment requires the arc 

except for the endpoints to be contained in the interior, as same as the knot case above. 

Let u> imagine to join two endpoints of a spanning arc by a simple blme arc lying in the 

boumlary of B" to get a knot in Ba Now suppose we make two knots k aud k' from one 

spanning arc in this way by joining differently in the boundary of sJ. Then what we have 

"'re two knots which are equivalent to each other. This fact can be easily shown from the 

fact that every simple closed curve i11 a 2-sphere S2 is not knotted, i.e. , bounds a disc. In 

our situation, two knots k and k' differs only in the part contained .in the boundary of B:3. If 

the endpoints of the spanning arc are a and band p1 is a point in k where the segment from 

a to PI is common with I<! but from Pl to the ne.xt common point P2 is different, then two 

different arcs from p1 to p2 together make a simple closed arc which bounds a disk. Then 

we can perform a sequence of elementary moves from the part of k' to that of k to reach 

the situation that tbe arcs from a to p2 are the same. Repeating this procedure, we finally 

construct a sequence of elementary moves from k' to k. 

This fact that we always get tbe same type knot no matter how we join two endpoints of 

a spanning arc enables us to define the knot type of spanning arcs <~'> follows. 

Definition 2.41. Two spanning arcs are equivalent if the knots derived by joining two end­

points of each spanning arc by a tame simple arc in the boundMy of B3 are equivalent. If 

Lhe knot is trivial, then the spanning arc is trivial or tmknotted, and otherwise knotted. The 

type of a spanning ar is the type of the knot derived from the spanning MC. 

There is another way to define the equivalence of knotted spanning arcs using elementary 
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movp_s as same as the case of knots. For this we use the following two types of elemPntary 

moves: we say that two spanning arcs I and I' are related by an elementm·y move if 

(i) l = Po1lt ···PiPiT 1 · · · p, and I' = PoP1 · · · p,qp,+L · · · p, , and the triangle p,qp;+ 1 does not 

intersect with other part of the arc, or 

(ii) l = POP I··· Pt-lPt and l = PDP I··· Pt-lq , and the triangle Pt- lPtQ does not intersect 

with other part of the arc, 

and two spanning arcs are equivalent if there is a sequence of elen1entary moves from l to l'. 

That this way o[ definition is the same as Definition 2.41 is easily seen from the Definition 2.39 

of equivalence of knots. 

A ttmgle is a mutually disjoint set of knots and spanning arcs in a 3-ball Jil. 

For tangles, we defu1e the equivalence relation as before. 

Defin it ion 2.42. Two tangles t and t 1 are relat.ed by an elementa,·y move if 

(i) t = PW1 · · · PiP•+ I··· Pt and t' =POP! · ·· p,qp,.q · · · TJt, and the triangle p;qp;+ 1 does not 

intersect with other part of the tangle, or 

(ii) t = PoP1 · · · Pt-lPt and t = POP I · · · Pt-lg, and the triangle p,_ 1p1q does not intersect 

with other part of the tangle, 

and two tangles are equi11alent if there is a sequence of elementary moves from t to t' . The 

equivalence class is ment.ioned as the type of tangles. 

By definition, knots and spanning arcs are special cases of tangles . To define triviality or 

knottedness, intuitively, we want to define a tangle is trivial when it is eqnivalent to a set of 
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paraUel unknotted spanning arcs and a set of unknots which are not linked. To define this 

precisely, we need the concept of a semispanning dio~c wl1ic:h is a disc iJJ B 3 whose boundary 

consists of two arcs, one lies iJl the boundary of B3 and one is a spanning arc of B 3
. If there is 

a semis panning disc which has a spanning arc l on the boundary, then l is always trivial, and 

conversely if l is trivial, then there is a scmispanning disc containing l on its boundary. So 

having a semispanning disc is equivalent to trnknottedness. This situation is also said that the 

spanning arc is stmight. (This term "straight" do not menu that it is straight geometrically.) 

For knots, we define spanning discs as same as the ca.>e of spanning arcs, that is, a sparcniJlg 

disc of a knot k is a disc whose boundary is k. Now we define triviality of tangles a.~ foUows. 

Definition 2.43. A tangle is trivial if its spanning arcs and knots have semispanning discs 

or sparu1ing discs which are mutually disjoint. Otherwise it is tangled. 

Especially, if a tangle made of only spam1ing arcs are trivial , they arc called simultaneously 

.9t1'f1ight. 

Remark that the knottedness and triviality for knots or spanning arcs defined above is 

equivalent to this definition as speeial cases. 

The concept of link.1 is lying between that of knots and tangles, Lhat is, a link is a set 

of tame simple closed a.rcs in B3 (or M 3 in general). (Be careflll that this ·'link" is different 

from the "link" defined on simplicial and polytopal complexes in Section 2.1!) 

Borromean link 
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A simple way to construct comp[jcated knots in S3 is by taking the connected sum of 

knots. This operation is described in the following figure. 

Precise description is as follows: Given two knots ](1 and K2 with fixed orientations embedded 

in S3 's, remove a small ball from each of both S3 's such that the iutersect ion of the ball and 

the knot is a trivial spanuing arc, resulting two balls with kuottcd spa11uing knots of types J<, 

and K2. Then join these two balls by their boundary such that. the endpoints of the spauning 

arcs meets, to get an oriettted knot I<1#K2 in a 3-sphere. It is known that this operation is 

well-defined, and it is associative, the unique identity is the nnknot, and there is no inverse 

for a nontrivial knot . Moreover, any knot can be decomposed uniquely into prime knots. i.e., 

knots that are not the connected sums of any other two non-trivial knots. 

Note that there can be different connected sums of K 1 and [(2 if we do not give orientations 

to the knots. So the connected sum is not well-defined without the orientation. But we will 

abuse this concept for non-oriented knots in the following. This will not c;wse us a tro uble 

because giv ing different orientations ouly affect the orientation of each prime knot in the 

prime knot decomposition. 

To see that this connected sum operation produces complicated knots. let us start from 

the simplest knot, the t,·efoil knot "· We denote "#n to be the connected sum of n copies of 
r1 Limes 

~<,i.e.,~. 

Trefoi I knot r;. 
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One way to measW'e the complexity of a knot is to see the fundamental group of the 

complrment, i.e .. of the space S3 - (the regu lar neigbboW'hood of the knot). This group is 

called a knot group. lu OW' ca;;e, the knot group of"· is representable by two generators, while 

"#" needs at lenst n + 1 generators. (See Goodrick [41].) We will see the same situation 

for another complexity index, the bridge index, in Chapter J. There the bridge index of the 

trefoil knot " is 2, and that of "#n is n + l. (A lthough these two indices coincides in this 

case, they are different in general. T he knot complement can be represented by generators of 

the size of the bridge index, but there is smaller representa tion in general.) 

A generalization of knots and sp,lnuing arcs to the high dimensions is the concept of ball 

pairs and sphere pairs. 

Definition 2.44. A ball pa·ir is a pair (B 1, B2) of ad-ball B1 and a k-ball B2 such that B2 

is embedded in B1 and 8B2 is contained in 8B1. A sphere paiT is a pair (SJ , S2) of a d-sphcre 

and a k-spucre such that 52 is embedded in 51. 

The standa.·d ball7Jair of dimensions rl and k is the pair of :Bd-k 6.k and 6.k , where 6.k is 

the standard simplex and r,d-k 6.k is its (rl- k)-fold suspension, and the standar·d sphere pni1· 

is the pair of the boundaries of tbe standard ball pair of dimensions rl + 1 and k + 1. 

A ball pair or sphere pair is pair!unknottedunknotted if there is a b.omeo rnorpl1ism to the 

standard ball pair or the standard sphere pair, and otherwise pai1·!knotted knotted. 

The following is known. 

Proposition 2.45. If the1·e ar-e two •tmknotted ball p11i1·s (B 1, B 2) and (B;, B~) of d·imensions 

rl and k, the followinq holds. 

• If these two unknotted ball pairs meet by" ball-pair (D 1 ,D2) of d·imensions d- 1 and 

k-1 such that D1 E 8B1 n aB; 1md D2 E 8B2n8B~, then the ball pai1· (BtUB[ , B2 UB~) 

is an unknotterl ball pair. 

• If these two unknotted ball pairs meet by a S]Jhere-pair (S1, Sz) of dimensions d- 1 

nnd k- 1 such that S1 = 8B1 = 8B[ and D2 = i:JB2 = B2, then the .~phe1-e pair 

(BtU B[, 82 U B~) is an unknotted sphere pair. 

I 

This proposition is shown, for exan1ple, in Zeeman [96, Lemmas 18 and 19]. Later in 

Sections 3.2 and 3.3 we will use this for the ca.•e of dimensions 3 and 1: the case of ordinary 

kuots and spanning arcs. For such special cases, the proof is very ea.sy. For the ball pair case, 

se the foUowing figure. Let us assume that the arc ab in the left 3-ball Ct and the arc be 
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in the right 3-ball C'2 is not knot,ted and show that the arc abc is not knotted in the :J-ball 

C' = C't u C'2· 

(T1 
~y 

X Z 

For this, let J) be a point on oC n (C't n C'2), y an arc from b to J) contained in cl n c2, X 

an arc from atop contained in 8C1 n 8C, and zan arc from c top contained in 8C2 n oC. 

Then x and y together form an arc in oCt wh.ich joins a and b. Bee<luse ab is an unknotted 

spanning arc of C1, the closed arc al>-byp-pxa is a trivial knot, that is, it bounds a 2-ball. 

(Here we may assume that the arc byp is the only part of the 2-baU that is contained in 8C2.) 

Similarly bc-czp-pyb is a trivial knot that bounds a 2-ball. The u.nion of the two 2-balls is 

again a 2-ball, and it proves that the knot al>-bc-czp-pxa, and hence the spanning arc a/rue, 

are not knotted. 

The sphere pair case is almost the same. See the following figure in which the spanning 

o.rc abc in the left 3-ball C1 and the spanning arc ab'c in the right 3-ball C2 is unknotted , and 

we show th.at the knot abcb'a is not knotted in the sphere C = C1 U C2. (The case that Cis 

a 3-ball also works.) 

~ 
~X 

Take an arc x .in C1 n C2 from a to c. (This arc exists since C1 n C2 is a 2-ball or 2-sphere.) 

the closed curves abc-cxa and ab'c-cxa both bound 2-balls. These 2-baUs intersect in the 

curve axe, and hence their union is a 2-ball bonnded by the closed arc abc-elf a, which shows 

that the knot abc-cb' a is trivial. 
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Chapter 3 

Knots and combinatorial 
decompositions 

Tl1is chapter treats the case of 3- and ltigher dimensional pseudomanifolds, especially the case 

of t:riaugulations of 3-balls and 3-spheres. The main problem considered here is to construct 

nou-c:onstructib le triangulatiotlS of 3-balls and 3-sphercs. Non-shellab le triangu lations of 3-

balls and 3-spheres were known, but the case of no11-constructible ones were open. For this 

we exteud the well-known construction of non-shellable 3-balls and spheres nsing knots, and 

sh w Ln<uty stronger results fo r contbioa.torial decompositions. (Another construction of non­

construct ible 3-balls , not using knots, will appear in Chapter 4.) 

Most of the materials ofthi chapter are from a. joint work with Giinter M. Ziegler (Sections 

:3.2 through 3.4 and 3.8) and with Richard 13hrenborg (Sections 3.5 through 3.9). 

In Sections 3.1 to 3.3. we discuss the existence of non-constructible 3-balls and 3-spberes 

starting from an extension of Furdt 's construction of non-shellable 3-balls: we show that 3-

balls having a knotted spanning arc made of at most two edges are not construct ible. We 

also show that non-constructib le 3-spheres exist. T h.is solves an open problem in Dana.raj and 

Klee [32]. Non-constructible 3-spheres given in Section 3.3 are 3-sphercs containing a knot 

made of three edg•:s, which were shown to be non-shellable by Lickerish tmder some addit ional 

condition. Thus our result is a. strengthening of his result. The existence of non-constructible 

3-balls and 3- pheres are extended to the case of higher dimensions in Section 3.4. In. Sec­

tions 3.5 to 3.7 we discuss extensions of the results of Sections 3.1 to 3.3 by introducing the 

bridge index of knots and tangles, and conditions which implies non-constructibility are given 

in terms of the bridge index and the size of knots or tangles contained in the triangulations. 

Tllis also gives an answer to Hetyei's conjecture on shellability o f certa.i11 cubical decompo­

sitions of spheres. Const.ructibility of <:ell partitionings is also discussed in Section 3.9. In 

Section 3.8, an analogue of the results of Sections 3.1 to 3.7 are given for vertex decomposabil­

ity. Here conditions which imply non-vertex decomposabili ty are given by the size of knots 
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contained in the triangulations, as same ru; the case of coustruc:tibi!ity but in a weakened 

way. Thus these results provide a hierarchy of combinatorial decomposition properties mea­

sured by the size of knot. or knotted spanning arcs containerl in the triangulations, which is 

summarized in the la.>t Section 3.10. 
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3.1 Fmch's knotted hole ball 

Historically. the first appeared example of a nou-shellable triangulation of a 3-ball seems to be 

Furch's knotted bole ball. (Appears in Furch (38] and also described iu Bing [10] , Stillwell [ 8] . 

Ziegler (98], and Ziegler (99].) As the name describes, it uses a special knot el)jbedded in the 

triangulation to show its non-shellability. The construction of the triangulation is as follows: 

(i) First triangulate a 3-ball finely enough. 

(ii) St;~rtiug from a facet which meets the boundmy by a 2-face, dig a hole to another side 

making a knot in the interior of the original bal l. 

(iii) Stop digging just one step before corrupting the property that the object is a 3-ball, 

that is, leaving o.oe interior edge to the ex it to the opposite side. 

This construction is sometimes described in the setting of "pile of cubes," that is, dig a knotted 

bole from the bottom face of a large pile of cubes to the upper face , and stop digging in the last 

step and leave one cube as a "plug" of the hole. If we triangulate each cube into 6 simplices, 

we get a nou-shellable triangulated 3-ball. {The cubical complex before triangulation is also 

a uon-shellable cubical 3-ball.) T he following figure shows this construction . 
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The critical fact for the non-shellability of Furch's ball is tllat tlJjs ball bas a knot ted 

spanning arc made of one edge ("knotted spanning edge"). 

spanning arc made of one edge 

In the construction, the knot type of the knotted spanning edge is the type of the knot 

we chose for the knott<xl hole. Thus the type of the knotted spanning edge can be chosen 

arbitrary. Further, we can spl it the edge into n edges by stellar subdivisions without changing 

the type of the spanning arc. Thus we have the following proposiLion . 

Proposition 3.1. (Furch {38}) 

Given a knot J( an d a natu1·al number n ~ 1, we can construct a triangulated 3-ball which 

embeds a knotted spanning CL1'C k , of the same type as ](, a., a 1-dimensional subcomplex made 

of n edges. I 

Furch showed that sucb l.riangulatcd 3-balls with a knotted spanning edge is not shellable. 

Theorem 3.2. (Furch {38}) 

A t1'inngulated 3-ball which has a knotted spanning a1'C made of one edge is not shellable. 

The proof is quite simple, shown by induction that every shellable triangulation has no 

uch spauuing arc. that is, a 3-simplex has ao such spanning arc, and if U}:,1
1 F; has no such 

spanning arc in a shelling F1 , .. . , Ft, then the next step (U~:i JS) U F; cannot have one, 

either. 

The uc.xt ection will give precise proof for this theorem in a stronger form. 
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3.2 Non-constructible 3-balls 
- 3-balls with a knotted spanning arc 

The first generalization of Theorem 3.2 is to the case of coustructibiJi ty. 

T heorem 3.3. A triangulated 3-ball which has a knotted spanning a?'c made of one edge is 

not constructible. 

Because non-constructible complexes arc non-shellable, this theorem implies Theorem 3.2. 

This generalized theorem is shown in Hachiroori [43), which firs tly showed the existence of 

non-constructible triangulations of 3-ba.Jls. (In the paper , one more example is shown to 

be !lOU-constructible, wb.icb a ppears iu Section 4.4 in Chapter 4. Before the paper, a non­

constructible regular CW complex was in Walkup [94] , a non-shellable cell complex with only 

t h.ree facets.) 

But .it tmns out that we can be more aggressive for the statement, that is, we have the 

fol.lowi ng theorem in a more gen.eralized way: 

Theorem 3.4. A triangulat ed 3-ball which has a knotted spanning a1·c made of at most two 

edges is no t constntctible. 

This theorem is shown in Hacbimori and Ziegler [45], a joint work of Giinter M. Ziegler 

and the aulbor, and this is the key fact to show t he main theorem of that paper: the existence 

of uon-constructible triangulat ions of 3-spberes. (The paper also contains the materials in 

Section 3.8 and Section 4. 1. ) 

From here to the next sect ion , we will describe this striking resu lt accord ing to the method 

shown in the paper. T he first step is to prove Theorem 3.4. 

Pmoj of Theorem 3.4. We show by induction on the number of facets of C that in a con­

structible triangulation C of a 3-ball, a spanning arc that consists of only two edges ab and 

be cannot be knotted. (We may assume that the arc in question has exactly two edges, sin.ce 

an arc consisting of a single edge can be extended by an edge on t he boundary. Recall for 

tb.is that we allow parts of spanning a rcs to lie iu the bom1dary of the ball. See Section 2.6 .) 

[f C is a single si mplex (tetrahedron), then the arc cannot be knot ted. Otherwise C 

decomposes into two const ru ctible complexes C1 and C2 as .in Definition 2.11 of constructihil­

ity; both cl aud c2 a.re triangulated 3-balls by Proposition 2.16. There are LWO cases to b e 

considered. 
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Case 1: The two edges ab and be are both contained irt Cr . They form a spanning arc ab-be 

of Cr , wlllch by induction canno be knotted. 

c 

c~ 
\9~c, 

Case 2: One edge ab is contained in C1 an d til' other one be is contained in C2. Cr is 

construct ible, so by induction ab is an uuknotted spann ing arc of Ct. and similarly for 

the arc be in G2. 

In this case the tlllknottcdness of ab-be is shown from Proposition 2.45. 

Thus we have the following corollary from Propos ition 3.1. 

Corollary 3.5. 1'he1·e are non-const•·uctible tr·iangulations of 3-balls. 

Remark thaL this theorem is sharp, that is, the existence of a knotted spanning ecige with 

tb.rec edges will not lead to non-constructibi li ty. The following figtu·e shows why t he proof 

fails for the case with three edges. 

lo the figure, the who! ball C has a knotted spanning arc made of th.ree edges, but each 

subdivided balls Cr and C2 aeed not have one made of Jess than or equal to three edges. This 

observation is realized by tlte following "real'' example which is shellable but has a knotted 

spanning arc made of three edges. 
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Example 3.6. (A shellablc 3-ball with a knotted spanning arc con ist ing of 3 edges.) 

Let Ct be a pile of 6 x 6 x 1 cubes in which each cube is spli• iota 6 tetrahedra. Then 

c := C1 U (b • (gray faces))= C1 U (b • F1) U (b • F2) U · · · is a shcllable 3-ball btlcause 0 1 is 

shellable, and the arc ab-bc-cd is a knotted spauning arc of the 3-ball as is indicated i.n the 

upper part of the figw·es. 

a 
C = (pile of cubes) U (b • Fi) U (b • F2 ) U · 
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3.3 Non-constructible 3-spheres 
- 3-spheres with a knot consisting of 3 edges 

Using Theorem 3.4, we can now prove the theorem which shows the existence of non­

constructible 3-spheres. 

The theorem we will show in this section is that a 3-sphere is not constructible if it has 

a knot made of only three edges. To conclude from this the existence of non-constructible 

triangulations of 3-spheres, we need to show that triangulations which embeds a knot in such 

a way really exist . In fact, we can construct triangulat ions wh ich embed a knot of any type 

consisting of any number of edges. 

Proposition 3. 7. Given a knot [( and a natv.ml n·umbe1· n ~ 3, we can constr·uct a tr·ian­

ylllated 3-sphe,·e 01· ball which embeds a knot k, of the same type as [( , as a !-dimensional 

subcomr!lex made of n edges. 

Pr-oof. Such cons truction is weU-knowu ill combimttori<\1 topo logy. We refer here Lickorish·s 

paper [571, but the origin s ems mnch older than it. 

We first show the case of 3-spheres and n = 3. We prepare a triangulated 3-ba ll C which 

has a knotted span.uing edge with endpoints a and b, for example by the Fw·ch's "knotted 

hole" construction described in Section 3.1. Remark that the kTrot type of the spanning edge 

can be arbitrarily chosen: for exampJc, if we make a knotted hole such that the hole has the 

same knot type as K , then we have a knotted spanning edge of the same type asK . Then we 

make a join over the boundary of C, that is, let 6 = CU(8C*v) where vis a newly introd uced 

v rte.x. The resulting 6 is a triangulated 3-sphere because the operation of taking join over 

the boundary can be seen as joining two 3-balls by their boundaries (see Proposition 2.4), 

aud the closed arc k = a-b-v-a is a knot of the same type asK, made of just three edges. 

If 1l is larger tha rt 3, the required triangulation can be obta.ined by stellar ly subdi viding 

the 3-sphere with a knot made of three edges. 

A 3-ball embedding such a knot can be obtained by removing one fac:et from a 3-sphere 

constructed above. 

Now the theorem. 

Theorem 3.8. If a l1'iangHiated 3-sphere or 3-ball has a knot made of tMoe edges, then it is 

not const•·uctible. 

Pmof. We will &how that in a constructi ble 3-ball or 3-sphere C every knot consist ing of three 

edges(= "triangle") is trivial. 

We utie iuductiou on the number of facets. The case of a simplex is clear. Otherwise the 

complex C can be divided into two construc:tible complexes C1 and C2. From Proposition 2.16 
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both C1 and C'2 must be 3-ball~. If one of them contains a.ll the t l.tree edges of a tr·iangle "'• 

then ~< is trivial by induction. If not, then one of them, say C1, has two edges ab and be of 

~. and the other one C2 has the third edge ca of 1<. Now ab-br: is a spanning arc of C'1 and 

cu. is a spanning arc of C2, and both spanning arcs are not knotted from ThL'<lrem 3.4. This 

implies that "' is trivial from Proposition 2.45 (or from the fact that the connected sum of 

two trivial knots is trivial). 

This theorem originally bas a different proof, using another property of construct ible 3-

sphcrcs described later in Section 4.1. This simplified version is brought to us from a comment 

of Robin Forman. 

From Proposition 3. 7 and Theorem 3.8, we have the following corol lary. 

Corollary 3.9. The1·e an non-const1·uctible triangulations of 3-sphc,·es. 

Dauaraj and £<lee [32] asks whether every 3-sphere is constructib le or not. Thus the 

corollary above solves this open problem. 

Theorem 3.8 generalizes the following theorem proved by Lickerish in two ways. 

Theorem 3.10 . (Licko1"ish [57}) 

If a triangulated 3-sphere (or 3-ball} has a knot made of three edges such that the fundam ental 

group of the knot complement has no less than !,, then it is not .shellablc. I 

Our Theorem 3.8 extends th is theorem of Lickerish from the shellability case to the con­

strucLibility case, and also removes the complexity condition of the knot. 

Lickerish himself mentions in his paper that the complexity condition cannot be removed 

from his tbeoreru. His method fails for simple(= not complicated enough) knots, for example, 

a trefoil knot or a connected sum of two trefoil knots is not enough. Oo the other hand, our 

theorem guarantees non-construc:tibility, thus non-shcllabili ty, of such 3-spheres with a knot 

of any type. For instance, we conclude that the 3-sphere with a trefoil knot made of three 

edges, for which Lickerish's method does not work, is not shellable. 

But we should remark that this does not mean that our method is more powerful than 

Lickerish's. In fact, Theorem 3.10 above is a corollary to his original theorem. The original 

statement is much stronger: it guarantees a property that any facet removal produces a 3-

ball wnich is not simplicially collapsible from the a.~surnptions. (The fact that shellable balls 

are simplicially collapsible implies the theorem from this.) Not to be simplicially collapsible 

l~ a very strong property (see the remark below), and this is why Theorem 3.10 needs the 

additional condition of knot complexity. The reason why our Theorem 3.8 does not need the 
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complexity condition is because we attacked to constructibility, which is closer to slwllabili ty 

than simplicial collapsib.i li ty. 

Remark. Not to be simplicially collapsible is stronger than not to be shellable. For example, 

Rudin's ball is not shellable but is simplicially collapsible because of the theorem of Chill­

ingwort b [28, 29), and also Lickerish and Martin [56) shows that a 3-ba.IJ wi th a knot ted 

spanning edge can be simplic.iaLly collapsible. (This lat ter paper is the source of the comment 

of Lickerish that the complexity condition of the knot cannot be removed from Theorem 3.10.) 

For constructibility, it is not known whether constructible 3-balls are always sirnplicially 

collapsible or not. But non-constructible but simplicially collapsible examples exist: simpli­

cially collapsible 3-baUs with a knot ted spanning edge! 

In conduding this section, we give an example wruch shows that the number "thr-ee" of 

the edges of the knot in Theorem 3.8 is sharp. 

Example 3.1 1. (A shcllable 3-b<tll and 3-spbere with a knot consisting of 4 edges. ) 

This example arises in the Sll.!lJC line of construction as Example 3.6. Let C'1 be a pile of 8 x 6 x 

l cubes in wrucb each cube is split into 6 tetrahedra as before. Then the 3-ball G.! = C'1 U (b • 

(slashed faces minus the face incident to b)) U (d • (gray faces minus the face iucident to d)) 

has a knot a&-bc-cd-da. This knot r.Lirbc-cdrda is not trivial because a&-bc-cd is a non-trivial 

knotted spanning arc. (It makes a trefoil knot.) Its shellability is easily seen as in Example 3.6. 

To get a 3-sphere with a knot cons isting of 4. edges, we have only to take a. cone over the 

bou11dary of C'2, that is, C := C'2 U (v * 8C2 ) . The shelling of C'2 can be trivially ex tended to 

that of C b cause 8C2 is shellable since it is a 2-sphere. 

a 
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3.4 The case of higher dimensions 

In the previous sections , we showed the existence of non-constructible 3-spheres and 3-balls. 

This directly implies the exi tence of non-constructible d-spheres and d-balls, for d;::: 3. 

Corollary 3.12. There exist non-constructible d-balls and d-spher·es, for· d;::: 3. 

Proof. If C is a constructible complP.x, then the link of any face of C is always constructible 

front Proposition 2.14. This shows t he following immediately. 

• If C is a non-constructible (d- !)-ball, then the pymmid over C is a non-constructible 

d-ball. 

• If Cis a non-constructible (d -1)-sphere, then the suspension L:C is a non-constructible 

d-sphere. 

These show the statement together with Corollaries 3.5 and 3.9. 

The constructions used in the above proof always produce PL-balls or PL-spheres from 

Proposition 2.6. (Note that every triangulated 3-balls are PL.) Thus what we showed is a 

stronger statement: there exist non-constructible PL-d-balls and PL-d-spberes in all dimen­

sions d ~ 3. 

It is known that there are non- PL spheres in dimensions d ~ 5: if H is a homology 3-sphcre 

which is not homeomorphic to a 3-spherc, then its double suspens ion E2 H is homeomorphic 

to a 5-sphere. (This "double suspeus i.on theorem" is first shown by Edwards (35J for a Certain 

type of homology sphere, and later generalized to any homology sphere by Cannon [27].) But 

1'.2 His not PL. The non-PLness of E2 H can be seen from the fact that a sph re is a PL-sphere 

if and only if it is a combinatoria l manifold, i.e., it has a triangulation with the property that 

evPJ"Y link of a vertex is a PL-sphere (Proposition 2.2). In E2 H, the links of the two vertices 

used in the se<:ond suspension are Elf which is not a PL-sphere . Early discussion about the 

non-PLness of E2 H can be found in Curtis and Zeeman [30]. 

Prom Proposition 2.16, we already know that constructible d-balls and d-sphcres are always 

PL, so the existence of non-constructible triangulations of d-balls and d-spheres, for d ;::: 5, 

were already known to us, indepe11dent to the theory developed in this chapter . But the cases 

of dimension 3 and 4, and the PL cases for all dimensions d ~ 3 are firstly shown thanks to 

our theory. 
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Remark. Recently Bj6rner and Lutz [19] (also Lutz [61]) constrncted a series of very com­

pact riangulations of non-PL spher s, wh.ich has only d + 13 vertices for dimension d. This 

construction is based on their small (with 16 vertices, conjectured to be the smallest) triangu­

lation of Poincare sphere and "one-point-suspension" . This example (18 vertices for :>-sphere) 

is currently the SLnallf'.st non-constructible triangulation of spheres. On the other band, what 

the author achieved from Theorem 3.8 is an example with 381 vertices and 192 facets. though 

this one bas an additional property to be PL and having lower dimension. (P robably we can 

slightly reduce the size than this, but far from the example of Bj6mer and Lutz.) 
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3.5 Bridge index of knots and tangles (I) 

As is shown by Examples 3.6 and 3.11, the uumbers of edges in Theorems 3.4 and 3.8 are 

both sharp. But there is a possibility to extend them further by introducing a condition for 

the complexity of the knot. The idea of using the condit ion of the complexity of the knot 

is seen in several papers: for example, Armentrout (2) and Lickerish [57) for shellabllity, and 

Goodrick (41] for simplicial collaps ibili ty (also see Bing 's article (10]) . 

The measure we use is the bridge index (or the bridge number) of knots, and our goa.! is 

to show that if a 3-sphere C has a knot I\ with b(K) > e(K), where b(K) is the bridge index 

and e(K) is the number of edges ]( is made of, then C is not constructible. 

All the results we will give here li·om this section through the end of this clmptt)r is taken 

fr·om Ehrenberg and Hachimori [36], a joint work of Richard Ehrenborg and the author. 

The bridge index is already used for the shellability of cell decompositions ir1 Armen­

trout [2] . The idea to use this complexity i.ndex for our constructibility argument is brought 

by Giinter M. Ziegler inspired from the fact that the knot in our prev iously given Example 3.11 

is in a "2-bridge position''. 

We start from reviewing the definition of bridge index for hots. 

Definition 3.13. A knot ]( in B 3 is i.n an n-bT"idge position if .it is the union of n simulta­

neously straight spruming arts wh ich arc contained in the interior of B'' <tnd some other arcs 

contained in the boundary of B3 . The bddge indez b(K) of]( is the lllinliuum number m 

\ICh that there is a knot x; in B'1 in an m-bridge position which is equivalent to K. 

!fa knot K is in a 3-spherc S 3 , then take a3-ball B3 in S3 which contains K , and dcfiuc 

the bridge index with respect. to s :J 

Tltis bridge index is first introduced by Schubert [80) and many properties are discussed 

in it. There a rc several different definitions for bridge index, see for example Livingston (50], 

Rolfsen [76] or Adams [1), which are, of course, all equivalent. The definition we give here is 

the one used in Armentrout [2], Goodrick [41) and Lickorish and Martin (56]. 
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The unknot is the unique knot with the bridge index l. It is easy to check that the 

trefoil knot has the bridge index 2 from the following figure because it has a 2-bridge position 

embedding and it ha..~ larger bridge index than J since it is knotted. {There are many other 

knots with the bridge inda'< 2.) 

2-bridge position 

Moreover, Schubert showed the following. 

Proposition 3.1 4. For two knots K 1 and K2 , b(Kt#K2) = b(KJ) + b(K2) -l. I 

Thu~ , any positive number b has knots with their bridge indices equal to b. For example , 

(b- !)-fold connected sum of trefoils has the bridge index b. (0-fold connected sum is the 

unknot.) 

lf there is a knot in a constructible 3-spbere or a 3-ball and if we repeat the divisions 

accord ing to the definition of constructibility, the knot wiLl be decomposed into pieces of 

tangles. So what we have to discuss is the relation between the bridge index of the original 

knot and that of tangles that the knot will be decomposed into. For this, we should first 

extend the definition of the bridge index which can be used for tangles. 

Definition 3.15. LetT be a tangle in a 3-ball Ba The tangle Tis in an m-bridge position 

if T i · the union of simultaneously straight m spanning arcs in the interior of 1f3 and orne 

oth •r imple arcs contained in the boundary of Ba .Every connected component is required 

lo have at least one spanning arc, so a closed arc on the boundary or a simple arc which is 

realized by one arc on the boundary is prohibited. For a tangle T , we define the bridge index 

b(T) as the minimum posit ive integer m such that there is a tangle T in au m-bridge position 

and T is equivalent to T. 

lf a tangle T is iu a 3-sphere S3 , (in this case, T is a link) then we take a 3-ball B3 in C 

which contains T and define its bridge indm< with respect to B3 . 
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A straight opanning arc has the bridge index 1 and a set of simultaneously straight t 

spanning arcs has the bridge index t. It is easy to see that this definition is tbe same as 

Definition 3.13 if the ta.ngle happens to be a knot , so we will use this definition for bridge 

index from now on. 

The key proposition is the following, a kind of subadditivity of the bridge index. 

Proposition 3.16 . Let C be a 3-bal/ (•·espec-tively, 3-srJhere) and C 1 and C2 be 3-balls such 

that C = Ct U C2 and that C1 n C2 is a 2-ball {respect-ively, 2-sphe,·e). LetT be a trmgle of 

C, T1 the intersection T n Ct. and T2 the topological closm·e ofT- T 1. (Hence T1 and T2 a.-e 

tangles of Ct and C2, •·espectivelJJ) Then we hauc 

Proof. Consider first the case when C is a 3-sphere. It is possible to choose a 3-ball C' <;;; C 

such U1at T is contained in C', c: = C' n C; is a 3-ball fori = 1, 2, the langle T; is contained 

inc; fori= 1, 2 and C[ n q is a 2-bull in C1 n C2. Now when replacing C, C1, C2 by C', 

c;, C2 the bridge indices ofT, T 1 and T2 do not change. Hence we can assume that C is a 

3-b;.Lll. 

We will construct a tangle r wh ich is equivalent to the tangle T and is in a (IJ(TJ) + b(T2 ))· 

bridg(' position. This will prove that b(T) = b( r) ~ b(T1) + b(T2) whicl1 is the claim of the 

propo~ition. 

The intersection T1 n Tz is a set P of points {Pt,P2, ... ,pt} in C1 n C2. Using some 

elctmmtary deformations, we can assume that aU the points of P are lying Oil the boundary 

of the disc C1 n C2 . 

In both balls, we optimize the positions of tangles to achieve the minimu.m number of 

the spanning arcs in both embeddings, i.e. , we deform the tangle T; by some sequence of 

elementary moves into r, such that r; is in a b(T;)-bridge position in C; , fori = l, 2. Without 

loss o[ generality, we can assum.c that the endpoints in -r:; are not lying in Ct n C2. Let p;i be 

the endpoint of r, corresponding to the point P; ofT;. Then we connec;t Pi and p;, by an arc 

on the boundary of C; (i = 1, 2) such that r = r 1 U r2 U {p'1,PiP2j} is equivalent to T. That 

such counection is possible can be easily checked step by step according to the elementary 

deformations from T; to Ti -

N ow r is a tangle in a (b(TJ) + b(T2))-bridge position. Moreover r is equivalent toT thus 

Proving the desired inequality. 
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We remark that tile requirement in Definition 3.15 that every connected component must 

have at lca.sL one spanuing a.rc is unavoidable in the proof o[ this proposition. Without it 

there may be cases that a spanning arc (3 in T, should be realized by one simple arc on the 

boundary but an arc P:j.1'j should cross the arc, making the construction en the proof, thus 

the statement. fail. 

T 

[n this figure, b(Tt) = 1, b(T2) = 2, and b(T) = 2, sat isfymg the subadditivity. Ir we do not 

require that every component has at least ouc spanning arc, then the bridge indices of T1 and 

T2 become 0 and that ofT becomes 1, not satisfying the subadditivcty. 

60 



3.6 Bridge index of knots and tangles (II) 

This section present some other ways to define the bridge index, but this is an additional 

section which has no fmther use in this thesis. So the reader can skip this sectiou, but the 

materials in this section may hdp the reader imagine what is the bridge index and why the 

subadditivit-y of Proposition 3.16 should hold. 

ln this section, we assume that knots and tangles are embedded in a 3-ball. 

Another definition of the bridge index is by cow1ting the local ma.xima in a projection of 

a knot into a plane (see for example Livingston [59]). Here, we mean a 71rojection of a knot 

or a tangle the projection of a 3-cnbe onto a plane, where the cube is an image I (B 3 ) of the 

3·ball in which the knot or tangle is embedded, where 1 is a homeomorphism. {The term 

"projection of a tangle" indicates the composite of 1 and the projection.) IV homoommphi>m @ 
~ ~ ~ projection 

height~o-....., / 
function~~/ 

Here, if we choose another homeomorphism J' from B3 to the same cube, then we get another 

projection. In the projection, we take a height junction h along one of the edge of the square, 

and a local maximum of a tangle T is such a point p {in B 3 ) that p has a small neighborhood 

N in which h(p) 2: h(x) for all x E Tn N. (But we do not say the end roints of pa nn ing arcs 

of tangles to be local maxima because they have only half-neighborboodR.) 

Using this projection, tl1e bridge index of a knot is defined a.o; the minimum of the number 

of the local ma.xirna of the knot iu a projection, where the projection ranges over aU the 

possible ·hoices of the homeomorphism f. 
A.n extension we propose for tangles from this version is the following: 

Definition 3.17. The bridge index b'(T) for a tangle Tis 

b'(T) = rnin #{local maxima ofT) + #{spanning arcs ofT}, 

where min is taken over all possible projections. 

We have one more version, in the same spirit ao; above. ao; follows: 
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Definition 3.18. The bridge index b"(T) for a tangle T i 

b"(T) = min#{local maxima ofT}, 

where ruin is taken over all possible projections in which all the endpoints of the spal1lling 

arcs ofT lies on tile bottom line. 

The following two propositions show that the three diffen:nt definitions of the bridge iudex 

are equivalent. 

Proposition 3 .19. b' (T) = b"(T) for any tangle T. 

Proof. [ b'(T) :S b"(T)) 

Let 1r be a projection with all endpoints on the bottom line. Let -7r be "- projection, 

which wverses the height function of 1r. [f the number of local maxima of T in 1r is 

b"(T) , i.e., 11' achieves the minimum number of local maxima, then the number of local 

max:i1na. ofT in -1r is lf'(T)- #{spanrung arcs ofT}. This follows from the fact th;\t 

in "• #{ local maxima} = #{local minima} for closed cycles and #{local maxima} 

#{ local minima} - 1 for spanning arcs. The inequality follows. 

(b"(T) 2: b'(T)] 

Let 1r b' a projection of T with m(T) local maxima. We assume that 1r achieves the 

minimum, i.e., b' (T) = m(T) +#{spanning arcs ofT} . We make aoother projection 

7r
1 ofT from 11' as indicated in the following figure. (Extend the spanning arcs in the 

projection , without increasing the number of local maxima, such that the endpoints of 

Spanning arcs ends in the lipper edge of tbt~ big square.) 

Now -1r
1 is a projection ~atisfying the condition that a.ll the endpoints of spanrung arcs 

lie on the bottom edge, and the number of loca.l maxiwa ofT with the height function 

-11'
1 equa ls to m(T) +#{spanning arcs ofT}= b'(T), and the inequality follows. 
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Proposition 3.20. b"(T) = b(T) for· any tangle T. 

Proof. We use the following fact: if a projection of a tangle cou,ists of a set of arcs (with­

out closed cydes, can be intersecting) such that each of the arc has both endpoints at the 

bottom and has only one local maximum, then there is an embedding of the tangle made of 

simuLtaneously straight spanning arcs. And also a set of simultaneous ly straight spanning 

arcs can be embedded into a plane without intersection. In the reverse direction, a set of arcs 

embedded in a plane can be embedded as a set of simultaneously straight spanning arcs, and 

a sel of simultaneously straight spanning arcs has a projection with endpoints at the bottom 

iu which each arc has only one local rnm<imum. 

[ b" (T) 2: b(T) I 
For a given projection 7r ofT whose etldpoints are at the bot torn , we can modify the 

projection such that it ha.; a horizontal cutting plane so that the tangle above the plane 

consists of only arcs with one local ma..ximum, and below the plane wnsists of only arcs 

with one (or zero) local minimum, as the following figure. 

From this, we can construct an cmbc<.lding ofT into a 3-ball which is in a 1/'(T)-bridge 

position. To do this, we just embed the upper part in the interior of the ball as a set of 

simultaneously straight spanni11g arcs, and the lower part 011 the boundary. ( 1 ote that 

this is always possible. This is because for the embedding oi the upper part into the 

bail, the places of endpoints on the boundary of the ball can be chosen arbitrary.) In 

this embedding, the number of spanning arcs equals to tile Humber of local maxima in 

the original projection. 

[ b(T) 2: b" (T)] 

From an embedding of T in a b(T)-bridge position, write a projection as the figure 

above such that the upper part is the set of sparuting arcs in the interior of the ball aud 

the lower part b the set of arcs on the bo!lllda.ry of the ball. Then the number of local 

ma.xi1llll. in the projection is b(T). 
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The way of defining the bridge index by If' prov ides a different proof of Proposit ion 3.16 

as the following fi gure indicates. 
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3.7 Non-constructibili ty and the bridge index 

Proposition 3.16 provides the promiserl theorem a.s follows. Instead of showing for sirnplici"J 

balls or spheres , we show here for polylopal balls or spheres. Tbi ehange is not radical (i n 

fact , il is ea.sy to see that Theorems shown in Section 3.2 and 3.3 holds for polytopal cases 

without any change of discussion), but we state the theorem for polytopal balls and spheres 

iu order to use it for Hetyei's conjecture below. 

Theorem 3.21. Let C be a 3-dimen.~iorwl po/ytopal ball or sphen which is constructible. 

Let T be a tangle contained in the !-skeleton of the polyto11al complex C. Then we have the 

inequality 

b(T) S e(T) . 

where b(T) is the bridge index ofT and e(T) is the number· of edges ofT. 

Proof. 'The proof is by induction on C. The induction basis is when C is a 3-dirnonsional 

polytope. Then T is a disjoint union of straight spanning arcs and unknols. Let k be the 

number of components ofT. Then b(T) = k S e(T) , and the induction base is complete. 

The induction step is as follows. If C is not a simplex, we have two 3-dimension<tl com­

plexes Ot and Cz satisfy ing the condition (ii) of Definition 2.11, and from Propos ition 2.16 

they are 3-balls and C1 n C2 is a 2-ball or sphere. Let T1 = T n Ct anu Tz = T- T1• By 

Proposition 3.16 and the induction hypothesis we obtain 

b(T) S b(Tt) + b(T2 ) S e(Tt) + e(T2) = e(T). 

This completes the induct ion. I 

Corollary 3. 22 . Let C be a 3-d·imensional polytopal ball or .~phere . Assume thu.t the [­

skeleton of the complex C contains a knot K .mch that 

e(K) $ b(K)- 1 

Then the polytopal complex C is non-constmctible. 

One consequence from Corollary 3.22 is the following theorem. 

Theorem 3 .23. Given a non-negative integer n there exists a tr'iangnliLtion C of a 3-

dimmsional spher·e o•· ball such that the n-fold barycentric subdivision sd n (C) is non­

constructible. 

Proof. Choose a knot K with bridge index larger than or equal to 3 · 2" + 1 Let C be 

a triangulation of a 3-d.imensional sphere or ball that contains K on three edges. Such 

a triangulation can be constructed from Proposition 3. 7. Because taking the barycentric 
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subdivision divides each edge into two edges, the knot K contained in sd"(C) consists of 3 2" 

edges. From Corollary 3.22, i t follows now that the complex sd"(C) is non-constructible. 

For the case of 3-balls, we can reduce the complexity. For this, we use Proposition 3.1 to 

make a triangul>tted 3-ball with a spanning arc made of one edge, then apply Theorem 3.21. 

The spanning arc in sd"(C) is made of 2" edges. so if the knotted spanning arc has the bridge 

index at least 2" + 1, then the sd"(C) is not constructible. 

Similar statement for shellabili ty is already shown in Kearton-Lickorish [52] or Li<:kor­

ish [57]. In fact, the proof of Theorem 3.10 i.n Lickerish [57] showed the following strong 

statement. 

Theorem 3.10'. If a triangulated 3-sphere has a knot mode of e edge.~ such that the funda­

mental group of the knot complemeut has no less than e + 1, then any removal of one facet 

gives a 3-ball which is not simplicially collapsible. Thus the t1·iangulation is not shellable. 

But the results for simplicial collapsib ility can not be used for construc:tib ility because it 

is not known whether constructible simplicial balls are a.lways simplicially collapsible or not. 

One more application of Corollary 3.22 is the following conjecture of Gabor Hetyei . 

Conjecture 3.24 (Hetyei [46, 47]). There exist non-shellable triangulations of d-balls 

whose cubical barycentric subdivision is again non-shellable. 

Here, the cubical barycenl!·ic subdivision of a simplicial comp.lex C is the abstract cubical 

complex D(C) su<:b that 

(i) the set of vertices of D(C) is the set of non-empty faces of C, and 

(ii) a face of the cubical complex D(C') is an interval of the face poset of C. 

ft is straightforward to see that the cubical barycentric subdivision O(C) is a cubical complex 

and that D(C) is a subdivision of the simplicial complex C. Hence the simplicial complex C 

and its cubical barycentric snbdivision D(C) have the same geometrical realization. For an 

example of cubical barycentric subdivis ion , see the following figure. 

Now we can give the affirmative answer to Hetyei's Conjecture 3.24 from Corollary 3.22. 

Before this, Margaret Readdy already settled this conjecture for dimensions d ~ 4: every 

suspension of a non-shellable sphere satisfies the condition. So the newly derived fact is 
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the rcmain0d three-dimensional case. Our solution is also given in a stronger form , for con­

struct ibility. ln the following proof, the last part for the cases of d 2 4 is essentially the same 

as her argument. 

Theorem 3.25. Let d be greate•· than or equal to 3. Then there exists a d-dimensional s·im­

plicial PL-sphere Cd such that the c-ub-ical ba•·vcentric subdiv-ision O(Ct~) is non-construct·ible. 

Proof. Consider first the case when d is equal to 3. Choose a knot [( with bridge index larger 

than or equal to 7 and let C3 be a sim plicial complex that contains the knot J( on t lJree edges. 

Observe that the complex C3 is non-constructible . By the same ru·gument as in Theorem 3.23. 

the cubical complex D(C:I) is n n-constructible. 

The remain ing part of the proof is by induct ion on dimension. Let Cd be the suspens ion 

of Cd-h that is, Cd = Cd-1 U (u • Cd_J) U (v • Ct~-d, wlJere ·u and v are newly introd uced 

vertices. Then we have &bat lin.kcd (v) = Cd-l · and hence Cd is non- constructible. Observe 

that linkorc.)(v) = Cd-t, and hence D(Cd) is also non-cons~ructible from Proposition 2.14. 1 

Remark. We can also prove Hetyei's conjecture directly from Lickerish's 'Theorem 3.10' for 

non-shellable spheres as follows. Let C be a 3-spbere whiclJ has a knot K consisting of 

tlJree edges. Let us take stellar subdivisions by al l the 3-faces of D(C) ru1d then take stellar 

·ubdivis ious by a ll &he 2-faces of D(C) to get a subdivision C' of D(C). Then we can show 

lh~tl C' is slJellable if O(C) is sbcllable. Now C' and D(C) ha.s the same 1-skeleton, especially 

K consists of 6 edges in C' . Prom 'Theorem 3.10' , if the knot complement of a knot made of 

e edges has no representation by less thane generators in triangulated S3, the triangulat ion 

Ls not shellable. So we conclude that D(C) is not shellable if the minimum representation of 

the knot complement of [( needs 7 generators. 

But th is method c;an not be used for constructibili ty. 
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3.8 Vertex decomposability, shellability and t he bridge index 

The results shown from Sections 3.2 to 3. 7 hru· an analogue for vertex decomposab ility. which 

we will show in this section. (The first half of this section is from Hachimori and Ziegler [45] 

aod the latter part is from Ehrenborg and Hachimori [36], also analogous to the previous 

sections.) 

Theorem 3.26. If a 3-bal/ G has a knotted spanning m·c consisting of at most 3 edges, then 

G is not vertex decomposable. 

Proof. We show that every knotted spanning arc conoisting of at most 3 edges are not knotted 

iJ1 a vertex decomposab le 3-ball C. 

First we observe that if x is a shedding vertex of a vertex decomposable d-baH, then x lies 

in the boundary. Furthermore, every vertex y adjaeent to x is either in the interior of C, or 

the edge xy is contained in the boundary of G. This is because the deletion die x must be a 

3-ball , and the Jlnk of x is a 2-ball. 

Again we use induction on the number of facets. If the spanning arc is made of 1 or 2 

edges, then it is not knotted by Theorem 3.4. So we can asstune that the spanning arc is 

made of 3 edges, where the first and la;;t edge do not lie in the boundary of the ball. Thus if 

the R.rc is ab-bc-cd, the edges ab and cd lie in til(: interior of G. fn particular, band care not 

shedding vertices. 

The vertex a also cannot be a shedding vertex: otherwise !Jc-cd ls a 2-edge knotted span­

ning arc in the 3-baU die a (to verify this we use au argument as in the proof of Theorem 3.4), 

and thus dlc a is not constructible (not even shellable) by Theorem 3.4. Similarly d cannot 

be a shedding vertex. 

Thus x must be taken cli.fferent from {a, b, c, d}. In this case, however, dlc x ba~ a knotted 

spanniug arc with 3 edges and has a smaller number of facets than C, cont radicting the 

induction hypothes is. 

For example, we can observe (d irectly from the figure) that the shellab le 3-ball shown in 

Example 3.6 is not vertex decomposable. 

As same a5' Theorem 3.4, the number "3" of edges in the knotted spanning arc is best 

possible, because there are vertex decomposable 3-balls that have a knotted spanning arc 

with 4 edges. 

Example 3.27. (A vertex decomposable 3-ball with a knotted spanning arc made of 4 edges.) 

[u the figure of Example ~-6 , G' = Ct U(v• (gray faces)) , where v is a newly introduced vertex. 

has a knotted spanning arc ab-bv-vc-cd with 4 edges. This 3-ball C' is vertex decomposable. 

(One can take v as the first shedding vertex.) 
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As in the case of constructibility in Section 3.3, from Theorem 3.26 we get a result for 

knots in vertex decomposa ble 3-sphcres resp. 3-balls. 

Theorem 3.28. If a 3-sphe,·e or a 3-ball C has a knot which consists of at most 5 edges, 

then G is not veliex decomposable. 

Proof. We usc Theorem 3.26 and induction on the 1111mber of facets. 

If Cis a simplex, the statement obvio11sly holds. Let C be vertex decomposable, let x be a 

shedding vertex of C and let "' be a knot with at most 5 edges. If x is a vertex of~<, then die x 

has a knotted spann.ing arc with at most 3 edges, contradicting to Theorem 3.26. Otherwise 

die x has a knot "' with aL most 5 edges, contradict ing to the induction hypothesis. 1 

Th<: number of edges in this theorem is again best possible, as is shown in the following 

example. 

Example 3.29. (A vertex decomposable 3-ball and 3-sphcre with a knot consisting of 

6 edges .) In the figure of Example 3.11, C2 = C1 U (-u • {slashed faces)) U (w • (gray faces), 

where v and w arc newly introd uced vertices, has a knot al>-bv--uc-cd.-dw-wa with 6 edges, and 

this 3-ball is vertex decomposable. From this 3-ball, we can construct a vertex decomposable 

3-sphere by taking a cone over its boundary, namely, C' = C2 U ("u • 8C2)-

For the bridge index version , we provide improved bounds for both of sltellability and 

vertex decomposability cases. 

What we use is the following lemma on the bridge index of tangles. 

Lemma 3.30. Let C be a 3-ball and T be a tangle inC, and let C1 UC2 = C and T1 UT2 = T 

be Ute decomposition assumed in Proposition 3.16. If b(T2) = 1, th en 

(i) ·if Tt n T2 consists of two points, then b(T) ~ b(T1). 

(ii) ifTr nT2 ·is one point, then b(T) = b(TL). 

(iii) ifTt n 7'2 = 0, then b(T) = b(T!) + 1. 

The proof is almost triv ial , so we omit describing it. 
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In the case of shellablc simplicial complexes, we have the following theorem. 

Theorem 3.31. Let C be a 3-dimensional simplicial ball or sphe1·e which is shellable. Let K 

be a knot contained in the !-skeleton of the simplicial complex C. Then we have the inequality 

2 · b(K) S e(K). 

Proof. We may assume that K is not the unknot. 

If Cis shellable, there is a shelling F1, F2 , ... , F,. such that ( F1 U· · ·UFj-t )n F1 is a shellable 

2-compl.cx on DF1. Especially, F1 U · · · U Fj-l and Fj are 3-balls and (F1 u · · · u F1 _ 1 ) n F; is 

a 2-ball. for 2 S j S n. 

Let cfn+Jl = C, cf'l = Ft U· · ·UF;-t, and cJil = F;. Let T1(n+tl = K , rrl = T[>+tlncf'1, 
and rJ•I = T1(i+t)- T[i) (T[ 1

> = 0.) Note that cli+t) = cf'l U C~il and T,(•+tl = T{i) U rJil 
are decompositions described in Propos ition 3.16. 

flecause c~i) is a 3-simplex and c[il n c~i ) is a pure 2-subcomplex on its boundary, the 

possible cases are Lhe following. 

(1) rJ•l in C~i) is an arc made of L-wo edges and T1(i) n rJ;) consists of two points. 

(2) TJ'' in C~i) is an arc made of two edges and r fil n r J'' is one point. 

(3) rJil in c~i) is an arc made of two edges and T/'1 n rJ'' is empty. 

(4) rJ'l in cJ'l is a.n edge and T1(i) n rJ'l consists of two points. 

(5) rJ'l in ct> i · an et!ge and T[1l n TJ'l is one point. 

(fi) yJi) in cii) is 3II euge and Tfi) n TJi) is empty. 

(7) rJ'' in c~i) is empty. 

(8) rJ•l in C~i) is made of two disjoint edges. (This only occurs when i = 1.) 

(9) TJ'1 in C~i) is an arc made of three edges. (This on ly occurs when i = 1.) 

Ranging i from 1 ton, we denote by nk the number of i's such that i-th step is of type (k). 

For the types £rom (1) to (6). because r J'l is a trivial spanning arc:, b(TJ1l) = 1. So 

Lemma 3.30 shows that he types (3) and (6) increase the bridge index by oue and others 

do not, when increasing the index ·i frorn 1 ton. In the cases (8) and (9), they increase the 

bridge index by two and one, respectively. Thus we have 
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On the other hand, the types (1) and (4) decrease the Euler character istic of the tangle by 

one, the types (3), (6) and (9) increase by one, the type (8) increase by two, and others make 

oo rhauge. Thus we have 

n1 + n4 = n3 + 116 + 2 · ns + 1l!), 

because both T["+I ) = K and T[1J = 0 have the Euler characteristic 0. 
Hence we have 

e(K) 2 · (n1 + n2 + n3) + n4 + n 5 + n 6 + 2 · ns + 3 · n9 

2 · (n3 +n6 +2 · ns +n9) 

~ 2. b(I<). 

(Note that the proof of the followiug theorem is ou1y valid for the case of simplicial complexes, 

not for general polytopal complexes. For the polylopal cases, see Theorem 3.31' in page 74.) 

We can show the lollowing theorem for the case of v rtex decomposabili~y in a similar 

way. 

Theorem 3.32. Let C be a 3-dirnensional simplicial ball o1· sphe1·c which is ve1·tex decom­

posable. Let [( be a knot contained in the 1-skeleton of the simplicial complex C. Then we 

have the inequality 

3 · &(K) s; e(I<) . 

Proof. II C is vertex decomposable, there is a sequence of shedding vertic:es Xn, 'Cn-l, ... , x 1 

f C [ C (nH) C c(•) dl d C(i) 1· k ( ) L , (r•+I) ( o . .Jet 1 = , 1 = c~i+l ) Xi, an 2 = x.i * tn c~'+l J Xi . et .L 1 = f. ~ 

T1(•l = 1'/i+l) n eli), and TJil = T[i+t)- Tfi l. (Tf1l = 0.) Observe that Cli+t) = cfiJ u C~i) 
aud T[•+I) = T{'l u TJil a re decompositions described in Proposition 3.16. 

By considering the fact that c1il is a star with the center vertex x;, we observe that there 

are types of the decomposition as descTibed in the proof of Theorem 3.31. But this time, the 

type (4) does not occur, that is, n 4 = 0. 

For the cases from (1) to (6), because di) is a vertex decomposab le 3-b,tll. Theorem 3.26 

shows that Tji) is a trivial spanning arc, hence b(7'Jil) = l. So Lemma 3.30 shows that types 

(3) :>nd (6) increase the bridge inde_'< by one and others do not , when increasing i from 1 ton. 

For the cases (8) and (9), they increase the bridge index by two and one, respectively. Thus 

we have 

&(K) S: n3 + n6 + 2 · ns + ng. 
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On the other baud, the type (1) decrease~ the E uler characterist ic of the tangle by one, the 

types (3) , (6) and (9) increase by one, t he type ( ) increase by two, and ot hers make no 

change. Thus we have 

n1 = n3 + n6 + 2 · ns +no, 

because both T1(n+t) =](and Tit)= 0 h<we the Euler characteristic 0. 

Hence we bave 

e( I< ) 2 · (nt + nz + n3) + 1 · (ns + n6) + 2 · ns + 3 · n9 

2': 2 · nt + n3 + n6 + 2 · ns + n9 

3 · (n3 + n6 + 2 · ns + ng) 

2': b(K). 

I 
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Theorem 3.31 is stated for simplicial decompositions, not for polytopal cases. This is 

because Lemma 3.30 allows us to add only one arc in one step. To overcome this restriction 

to stale the theorem for polytopal decompositions, some generalization of the lemma is needed. 

The key for such a generalization is a strengthening of simultaneous straightness, introduced 

by Richard Eh.renborg in our joint work. The definition is as follows: Let a set of spanning 

arcs is in a 3-ball C and B is a 2-ball in the boundary 8C of C. Then the spanning arcs 

are simultaneously straight with r·espect tu B if the arcs have mutually disjoint s mispanning 

discs each of which avoids the interior of B. 

The following lemma is a generalization of Lemma 3.30. 

Lemma 3.30'. Let C = C1 U C2 aud T = T 1 U T2 be the decompos·ition of a 3-ball and a 

tangle as in Pr·oposition 3.16. Moreover· we assume that 1'2 is .~imultaneously stmight w·ith 

respect to C 1 n C2. Assume that T 2 have 

• number· tL of ar·cs each of which inter·sect.9 with Tt in two points, 

• number· b of arcs each of which inter·sects -with Tr in one point, and 

• number c of ar·cs each of which ·intersects with Tr in zem points. 

If T2 is sirnullnneously straight with respect to C 1 n C2 , then we have 

b(T) ~ b(Tt) + c. 

Proof. B ·cause T2 is simultaneously straight with respect to Cr n C2. tbe ares of T2 have uw­

tually disjoint semispanning discs avoiding the interior of Cr n C2 . Along these sem ispauning 

discs, we can move the arcs onto 8C2 \ C 1 by elementary moves. Thus we can assume without 

loss of generality that the arcs of 7'2 are all on Lhc boundary of C. 

Now take a tubular neighborhood N(k;) for each arc k; ofT2. If we take the neighborhoods 

small enough, then they arc mutually disjoint and also disjoint from the arcs of T1. Define 

C' = C- U N(k,) and consider to add N(lc;) one by one to C". It is easy to observe that 

each step satisfies the condition of Lemma 3.30, and the inequality follows. 

Note that this lemma is not valid for the ca.se T2 is just simultaneously straight. For this, 

se<> the following figure . 

In this figure, 7'2 is simultaneously straight , but it is not simultaneously straight with respect 

to Cr n C2. In this example, 1 = b(Tr) < b(T) = 2. 
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Now the generalized theorem. 

Theorem 3.31' . Let C be a 3-dimensional polytopal ball o1· sphere which is shellable. Let J( 

be a krwl contained in the 1-.~keleton of the simplici<1l cornrJiex C. Then we have the inequality 

2 · b(K) .,; e(K). 

Proof. We may assume that I< is not the unknot. Since C is shellablc there is an ordering 

of the facets Pt ,F2 .... ,Fn (i.e., a shelling) such that (F1 U · · · U Pj-t) n Pj is a shellable 

2-complex on {)Pi. 

Set cf'l, cJil, Tlil and TJ'l as in t he proof of Theorem 3.31. Observe that TJil is iu 

BC~i) \ cf'l. This assu res that TJ'l is simu ltaneously straight with respect to cfil n cJ'l, that 

is, the coudition of Lemma 3.30' is satisfi-d ror each i. Let a;, b; and c. be t he number of arcs 

of rJil described in Lemma 3.30'. Then t he lemma shows that 

Because b(T1(l)) = b(0) = 0, we have 

b(K).,; L Ci· 
1:::::1 

Oo the other hand , since the Eu ler characteristic of the tangle increases by c.-a, as i increases, 

and both r!t ) = 0 and rl"+t) = K have Euler characteristic 0, we have 

n 

L (c;- a;) = 0. 
t=! 

Hence we have 

n n 

e(K) ~ L (a; + b; + c;) ~ L (a; + c;) = 2 · L c; ~ 2 · b(K). 
i= l 
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3.9 Compatible and weakly compatible knots 

The method we used for 'I' Iworem 3.21 can be used for the dual setting, in the same sett ing 

as Armentront's paper [2]. What he discussed is the relation between shellability of a si mple 

cell partitioning and knots contain d in it in general position, i.e., knots intersecting with 

only 3- and 2-cells and the intersection with 2-cells are disjoint union of points. To describe 

his resul s, we need t he definitions of compatib ility of knots. 

Definition 3.33. A knot IC is compatible with a cell parti tioning G if each :3-cell in G inter­

sects with J( by an empty set or one segment. 

A knot K is weakly compatible with G if each 3-cell in G in tersects with {( by an empty 

set or a simul taneously straight spanning arcs of t he cell. 

Armentro ut's results are the following relations between the bridge index of the knol. 

K contained in a simple cell partitioning G in a general posit ion and the ntunber p(K) of 

segments which I< is decomposed into by the partitioning C. 

• If K is compatible with G and b( K ) > 2p(J< ), then C is not shellable. (Theorem 1 or 

[2]) 

• U f( is weakly compatible with C and b(K) > p(K), then C is not shellable. (Theorem 3 

of [2]) 

The following theorem extends the latter one into construct ibili ty. The proof is essentially 

the same ru; Theorem 3.21. 

(Coustructibility of cell parti tioning can be defined that G is construct ible if (i) C has only 

on 3-ccll or (i i) there arc two constructible parts C1 and C2 such that Ct n C2 is a (J - 1)­

dimensionul ball or sphere.) 

Theorem 3.34 . If C is a constructible (no t necC$Sa7"iiy simple}cell pa1·titioning of a 3-sphe,·e 

or u 3-ball and C contains a tangle T which is weakly compatible with C then 

b(T) ::;p(T). 

Proof. T he proof is by induc tion on t he number or facets of C. If C has only one 3-cell , then 

Tis a set of simultaneoLL~ly stra.ight spanning arcR. In this case b(T) and p(T) are both equal 

to the number of spanning arcs ofT. Hence the induction base is complete. 

The induction step is the same as Theorem 3.21. Because C is constructible. we have a 

Partition of C into C1 and C2 which are constructible cell partitionings, both are 3-balls and 
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their u1terscction is a 2-ball or sphere. Let T1 = Tn C1 and T2 = T- T 1. By Proposition 3.16 

and the induction hypothesis we obtain 

This completes the induction. 

Corollary 3.35 . If C is a. const>·uctible cell partitioning of a. 3-ball oT a 3-sphere and C 

contains a knot K which is weakly compatible with C then 

b(K) :O:p(K) . 

Thus, if b( K) > p( K) , then C is not constructible. 

Armentrout's Theorem 3 in Armentrout [2] was shown as a consequence of !lis Theorem 1. 

His Theorem l can be reproved by a very simple proof using a simi1ar method to Theorem 3.31, 

which is different from bis original proof. 

Theorem 3.36. (Theo•·err1. 1 of Armentmltt [2/} 

If C is a sheltable cell partitioning of a 3-dimens-ional ball 01· sphere and C contains a knot /( 

which is weakly cmnpa.tible with C then 

b(K) :5: 2 · p(K). 

PnJof. As same as in the proof of Theorem 3.31, there is an ordering of the facets F 1, F2 , ... , F,. 

such that (F1 U · · · U Fi-Il nF1 is a shcllable 2-complex on 8Fj, and we define cf'l, d'l, rf'l 
and rj•l in the same way. 

In this case, the possible case of C~i) are class ified as follows. 

(1) rJil in c~i) is au arc and ri'l n rJil consists of two points. 

(2) rJ'l in cJil is an arc and T1(i) nrJ'l is one point. 

[3) Tj'l in C~i) is an arc and T
1
(i) n rJ'l is empty. 

(4) r!') n rJ'l is empty. 

We denote by nk the number of i's such that i-tb step is of tbc type (k). 

From the condition of compatibi lity off(, rJ'l in di) in types (1), (2) and (3) is a trivial 

spann ing arc, so b(TJ'l) = 1. Hence Lenuna 3.30 shows that type (3) decreases the bridge 

index by 1 and others do not. Thus we have 
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On the other hand, the calculation of Euler characteristic shows that 

Hence we uave 

p(K) n1+n2+n3 

2: n, + n3 

2: 2 · n:t 

2: 2 · b(K). 
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3.10 T he hier a r chy of combinatorial decom posit ion properties 
and the conjectured bound 

(Jpto the last section we have exhibited the fo llowing h.iera.n:hy of combinatorial decomposition 

properties according to the existence of knots of small size. 

Theorem 3.37. A 3-ball w'ith a knotted S]JMlrling ar·c consi.~ting of 

{ 

at most 2 edges is not constr7Lctible, 

3 edges can be shellable, but not uer·tex decomposable, 

4 edges can be ue1'tex decomposable. 

A 3-spher·e or· 3-ball with a knot consisting of 

{ 
3 edges is not constructible, 

4 or· 5 edges 

6 edges 

can be shellable, but not vertex decomposable, 

can be ue..tex decompo.1able. 

Theorem 3.38. A 3-spher·e or 3-ball with a knot K consisting of 

at mo.1t b(K) - 1 edges is not const7"udible, 

{ at most 2 · b(K)- 1 edges is not shellable, 

at most 3 · b(K) - 1 edges is not TJertex decomposable. 
I 

For Theorem 3.38, a bound for the number of edges of a knot possibly contained in a. 

complex with combinatorial d composition properties is the following, which was first pointed 

out by Giinter M . Ziegler. 

Proposit io n 3.39 . The1·e ar·e shellable 3-balls and 3-o~phe,·es 'Wh-ich lws a knot f{ with e(K) = 

2 · b(K) , and ve1·tex decomposable 3-balls and 3-sphe•·es which has a knot K' with e(K') = 

3 · b(I<'). 

Proof. The cons ruction is the same as Examples 3.6 and 3.11. In fact , the examples shown 

there are knotted spanning arcs and knots of bridge index 2, in a 2-bridgc position. To make 

higher bridge index examples. we have only to prepare a big enongh pile of cubes with height 

1, Lhcn chos k vertical edges and join their endpoints by suitable corridors of width 1 on 

the boundary of the pile. and lastly add edges along the corridors using the same teclmique 

used in Example 3.11 or 3.29. 3-spheres are der ived by making a cone over the boundary as 

before. 

Thus the case of shellability and vertex decomposability achieve the sharp bound. 

In discussions among Gli.nter M. Ziegler, Richard E hrenberg and I , we conjectured the 

above bound for shellability is the sharp bound also fo r the collStructibility case. 
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Conjecture 3.40. 

• If a 3-ball or a 3-sphcre has a knots J( with e(I<) $ 2 · b(K) - l. then. it is not 

constructible. 

The case of b( K) = 2 is already solved by Theorems 3.8. 
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Chapter 4 

Deciding constructibility 
- the case of 3-balls 

The decision prob lem of combinatorial decomposit ion properties are one of the challenging 

pwblerns in the study of this fie ld. The importance of this problem is mentioned in the 

review paper (32] of Danaraj and Klee, who showed the linear-time solvabili ty of shellability 

of 2-p cudomanifolds in Danaraj and Klce (3:3]. Except for their initial study. almost nothing 

is done for this algorithmic problem. Some exceptions are solvability of Coben-MacaulayuPss 

by Garsia (40] and P-ness of partitionability by Noble (72]. 

In this chapter, we try tile decision problem of constructibility. Because the case of 2-

pseudOO!>Lnifolds are already solved (constructibility of 2-pseudornanifolds is equivalent to 

shcllability) , our interest is in the case of 3-pseudomanifolds. 

In this chapter, our stand point is that the complexity of algorithms for simplic i<tl com­

plexes should be measured by the order of #{tacets} x log(#{ vertices}). This i. b •cause 

simplicial complexes can be represented by a list of facets such as 

2 3 4 5 

3 4 5 6 

4. 5 8 ll 

wher • each number indicates the index of a vertex and each row indicates tbat there is a 

facet with the vertices listed in the row. In this example, there are facets with vertices 

{1,2, 3,4.5}, {1 , 3,4,5,6}, {1 ,4, 5,8,11} , and so on. This way of presenting the data is the 

nmllcst one which can be used for general simplicial complexes, and the size of bits to be 

us~d is O(#facets x log(#vertices)). 



Scclion 4.1 gives a result which shows that the decision problem of 3-spberes is reduced 

to the problem of 3-balls. Thus we consider the problem of 3-balls a fter Section 4.2. In 

SccLi n 4.2 we in troduce a notion of red uced 3-balls which is the key concept in the followi ng 

discussion, and Section 4.3 gives a characterizat ion of constructib ili ty in the ea.~e of 3-balls 

without interior vert ices. An application of this result is given in Section 4.4 and 13ing's 3-

ball , formerly known to be non-shellablc, is shown to be non-constructible. Sect ion 4.5 discuss 

how to e.xtend the result of Section 4.3, and give a gene ra lization of the characterization of 

construet ibility allowing the existence of upto two interior vertices. in Section 4.G, however. 

we give an example which shows that the same extension can not be made ~ r more than 

two interior vertices. In the last Section 4. 7 we give an algorithm for the dec ision problem 

of constructibili ty of 3-balls with at most two interior vertices using the result of Sect ion 4.5. 

The algorithm runs in O(#facets) time and this shows the polynomial time so lvab ility of 

conHtructibility in this special o~•c. 
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4.1 3- balls and 3-spheres 

Our first result shown in this chapter is that the decision problem of consLructibility of 3-

sphercs is reduced to that of constructibility of 3-balls. 

Theorem 4.1. Let C be a t1'iangulation of a 3-Silhere and IJ any facet of C . Then C is 

constructible if and only if the 3 -ball C \ IJ is constructible. 

Proof. The "if" part is trivial, so we show the "only if" part. Let C be constructible. Then 

by definition there are two construct ible 3-ball. C1 and C2 such that Ct UC2 = C, and C1 nC2 
is a cou truct ibJe 2-sphere. We may assume that a is contained in C2. If C2 = a, then we 

are done. Otherwise C2 is th union of two constructible :J-balls C21 and Cn that sat isfy the 

conditions for constructibility. We may assume that C22 contains IJ . We define C{ := C1 UC21 

and C2 := C22· T hen 

(i) q is a constructib le 3-ball by definition. 

(ii) c; n C2 = ac.; = ac22 is construct ible because it is a 2-sphere. 

G 

(iii) c; = Ct u C21, where both C1 and C21 are constructible 3-balls by defio.ition. Their 

intersection C1 n C21 = 8C21 \ (C21 n C22) is a constructible 2-ball, si11ce removal of a 

2-ball from a 2-sphere always leaves a 2-ball, and all 2-balls are constructible. Thus c; 
is a construct ible 3-baU. 

Soc; and 02 instead of C1 and C2 satisfy the definition of constructibili ty. Continuing this 

argument . the number of facets of C2 is reduced until G2 bas only the one facet a, showing 

that C \ IJ is co!lBtruct iblc. 

This theorem is from a joint work '"ith Gunter M. Ziegler [45). Originally this consisted a 

part of the proof of Theorem 3.8 in Section 3.3 until the simplified proof as shown there was 

given. The original argument of Theorem 3.8 using Theorem 4.1 is as follows: If a 3-sphere 

has a knot made of three edges. we remove a facet which meets with the knot by one edge. 

Ther1 w get a 3-ball with a knotted spanning a rc made of two edges, which implies that the 

3-ball is not constructible from Theorem 3.4. Tbe non-coustructibility of the ball implies that 

lite 3-sphere is not constructible from Theorem 4.1. For the case of a 3-ball containing the 

83 



knot made of three edges, we make a cone over its boundary to get a 3-sphcre with a knot 

made of th ree edges. If the ball is construct ible, then the sphere we get is also constructible. 

This is a contradiction which completes the proof of Theorem 3.8. 

Assume that we have au algorithm to decide the constructib ili ty of 3-balls. If we are given 

a 3-sph re, then we remove one facet chosen arbitrary to get a 3-ball. From Theorem 4.1, the 

IUlSwer for the 3-ball is precisely the answer to the original 3-sphere. The order of the running 

Lime of the algori thm is not changed. So the time complexi ty of the problem for 3-spheres is 

at most that for 3-balls. 

As is shown in Proposition 2.16, constructible 3-pseudomanifolds are just 3-baLL~ and 3-

sphercs. Now the 3-sphere case is reduced to the 3-ball case, if we want to try to decide 

the const ructibili ty of a given 3-pseudomanifold wi th an inforrmttioo of its topology, what we 

need is an efficient algorillmt for the decision problem of constrnctibility of 3-balls. 

Remark. If we know t he topology of simplicial complexes a priori, the situation is as above. 

But usually to know the topo logy of a given simplic:ia l complexes is a very difficult prob­

lem. For example, it is known that the problem to decide whether any two man ifolds are 

homeomorphic or not is undecidable if the dimension is 4 and higher. (For example, see 

Stillwell [88) .) Moreover, to decide whether a manifold is a sphere or not is also undecidable 

in dimensions starting from 5. (See Volodin, K uznetsov and Fomenko [91 J.) The problem to 

decide if a triangulated manifold is a :J-ball or not is shown to be decidable by Rubinstein [77] 

using normal surface theory (it is wri tten that Haken already had the result before this), 

but ' till the algorithm is far li·om efficient artd the time complexity is not known. But there 

arc many cases in which we know a priori. that the simplicial complexes are balls or spheres, 

for exru nplc the data arc produced froro triangulating balls, spheres, or polytopes. For such 

cases, we can use algorithms spocializeu for balls or spheres without worrying about bow to 

decide the topology. 
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4.2 Reduced balls 

from this section, we describe how to decide coustructibility of 3-balls and our goal is to 

give an algorithm to decide constructibility of a given 3-ball under the condition that the 

number of vertieos conta.ined in the interior of the ball is at most 2. The algorithm runs in 

O[#{facets}) time. 

Our method relies on the following definition of reduced ness of balls . 

Definition 4.2. A r·educed d-ball Cis a d-ba!J in which every (d - 1)-face in the interior C of 

C has mo re than one (d- 2)-faces inC- Equivalently, ad-ball is reduced if every (d- 1)-face 

in(; has at least (d- 1) of its (d- 2)-faces 011 the boundary ac of c. 

In particular, a reduced 3-ball is a 3-ball in which every 2-facc in the interior has at most 

1 edge on the boundary. 

To see the importance of this concept, consider the following two operations applied for a 

given d-baJI. 

(I) 1fT is a {d - 1)-face contained in C and a ll of its {d- 2)-faces arc in 8C, then divide the 

ball C iuto two balls Ct and C2 by T. 

(II) U T is a (d- i )-face contained in C and d- 1 of its (d- 2)-faces are in 8C, then split 

T as the follow ing figure. (Let us call the resulting ball C'-) 

~~~ 
e3 e2 

(in the Interior) (on the boundnry} 

For these operat ions for a 3-ball C, we have the following proposition. 

Propos itio n 4.3. For the two operations above, 

(I) C is cor~struc tible if and only if both Ct and C2 are const,-,.~ctible . 

(II) C is constr-uctible if and only if C' is constructible. 

Proof. Claim (I) is triviaL 

[if part of (IT) J 

Let C' be constructible. Then there ar two d-balls q and C2 satisfying the condition of 

Definition 2.11. Let us divide C into C1 and C2 such that C; and c; have t he same set of 
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facets, for ·i = 1, 2. Tf Ct n C2 docs not contain T, then one of C 1 and C2 contains T and the 

con tructibility of C can be shown by induction on the size of the ball. If C1 n C2 contains 

T, then C1 n C2 = (C[ n C2) UT is constructible by (I) for dimension d -1, which shows the 

constructibility of C. 

[only if part of (II)] 

Let C be construct ible. Then there are two d-balls C1 and C2 satisfying the conditio n of 

Definition 2.11. There are 3 cases. 

• C1 n Cz in tersect with T by a face with dimension less than (d- 1) (including 0). 

In this case, one of C1 and C2 contain T such that only one (d- 1)-face ofT is in the 

interior and the rest are on the boundary, and the constructibil ity of C' is shown by 

ind uctiou on the size of the ball. 

• Ct n Cz contaiJts T. 

lfwc divide C' into q a.nd C2 sucl1 that Ci and c; have the same set of facets, ·i = 1, 2. 

Then C[ and C2 are constructible by definition and C[ n C2 = (C1 n C2)- Tis also 

c:onstructib le from (I) for (d- 1)-dimeusional bal ls. 

• Ct n Cz intersect with T by a (d- 1)-face. 

Let us assume that C2 contains 7'. Here T bas a ll of its proper faces on 8C2 , thus it 

divides C2 into two balls C2·1 and Cn. (Here we assume that the vertices to be split in 

the operation (II) for C are made to be different in this division.) From (I) for (d- I )­

dimensional balls. 0! 1 and C22 are constructib le. Now observe that C' = C1 UC'21 UC22. 

Let us defi.neB := C 1nC2, B1 := CtnC21, and B2 := C,nC22· Here, B = B 1 UB2 and 

B1 n B2 is a (d- 2)-simplex. Because B is constructible by definition, (I) for dimension 

d- 1 assur s that B 1 and B2 are constructible. Thus, Ct U C21 is constrnctible, and 

C' = (C1 U C2t) U C22 is constructible. The following figure shows t llis construction. 
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-08-CB-CB 
Thus if we apply these two operations for a given d-ball, we finally get a set of reduced 

d-balls, that is, ''reduced" means that we can not apply both of the operations above. Because 

the opentt ions preserve the constructib ili ty, we can decide the constructibiuty of C [rom the 

constructibili ty of the reduced d-balls. So characterizations of the construct ibility of reduced 

d-balls can be used for the decision of construct ibili ty of d-balls. 
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4.3 3-balls with no interior vertices 

First we remark that the two operations introduced in the previous section preserve the 

number of vertices contained in the interior o[ the ball. Our first step .is the case of 3-balls with 

no interior vertices, and correspondingly wh:1t we show in this sect ion is a characterization of 

constructibili ty of reduced 3-balls with no interior vedices. 

Proposition 4.4. lf a reduced 3-ball has no ·inte•·io•· vertices, then it is constructible if a11d 

only if it is a .simplex, m· equivalently, if and only if it has no spanning edge. 

Proof Let 0 be a reduced 3-ball with no interior vertices which is constructible. Assume 

thal 0 is not a si mplex. Then (Tom the Definition 2.11, there are two subcomplexes 0 1 and 

C2 sati ·fying the condit ion. In particular, 0 1 n 0 2 i a 2-b<1.ll from Proposition 2.16 without 

interior vertices. Here, 01 n 02 should be made of the 2-faces contained in the in terior of 0, 

thus at most one of the edges of each 2-face is on the boundary. But this is impossible from 

Proposition 2.32. 

Th is propos ition prov ides a very easy algoritlun to decide constrnctib ili ty for this case, 

that is. apply the reduction operation as possible and if we can divide the 3-ball into disjoint 

set o( simplices then the ball is constructible, and if we get stuck before that then it is 

not coustrnctible. We remark that we need no backtracking in ti:Us process. Corresponding 

algorithm to implement this procedure is as follows: list up all the 2-faces and nutrk the 

edges which are on the boundary. Then pick up a 2-[ace whose two edges are marked and 

mark the third edge. After repeat ing this, all the edges are marked if and only if the 3-ball 

is construct ible. 

The time cornplexiLy of th is algorithm will be discussed in Section 4.7, <Uld will be shown 

to be O(#facets). 
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4.4 Bing's house with two rooms 

Other than algorithmic application, Proposition 4.4 can be used for a construction of non­

const rucGible 3-balls which is completely different fro m that of Chapter 3. 

Example 4.5. The example of 3-ball we will describe here is called "Bing's house with 2 

roo!IlS". This example is shown in [10]. This is known to be a non-shellable 3-ba.ll, but here 

we show that it is non-constructible, either . 

upper Boor 

Biug:s house with two rooms 

This is a. house with 2 rooms as above, the walls are made out of one layer of bricks (cubes), 

one enters to the lower floor through a tunnel frorn Ghe roof and to the upper floor through a 

tnnuel from below. After constructing such an object C with cubes. we triangulate the cubes 

as follows. Let us order the vertices as follows. First list vertices v such thaG there is a cube 

D il1 which v is a connected component of D n 8C. (The vertices on the inside coruers of C.) 

Next list the vertices wl1ich is not listed yet and is on an edge that is a connected component 

of D n 8C, for some cube D. Last list the remainder. Then we triangulate each 2-facc such 

that the first vertex in the list is contained in the added diagom~L Finally we triangulate each 

cube into six simplices by taking cones from the first vertex to the six triangles contained 

in the 2-faces of the cube whkh do not contain the vertex. (T!Lis triangulation is a "pulling 

triangttlat ion", made by pulling the vertices in the listed order. The concept "pulling" is 

described in [55, Sec 14.2].) 

In Litis systemat ic triangu lat ion, we can see that each facet iutm·sects wi th 8C in a dis­

connected set, and this is the reason why C is not sheUable. Moreover. we can also see that 

there is no triangle in the interior of C such that 2 or 3 of its edges are on 8C. that is, C is 

reduced. So from Proposition 4.4, C is not constructible. (Because aU of the vertices of C 

are on 8C, the condition for Proposition 4.4 is sat isfied.) 

Th is is a thickened example of special spines mentioned in Section 5.1. In fact , the same 

can be shown for other examples of special spines of 3-cabes, for example the "house with one 

room''. These non-constructible 3-balls have no knotted spanning edges, but it has spanning 

edges in everywhere. 
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Other than the above Bing's house and its relatives, there are many cases satisfying the 

condition to be a :!-ball and having no interior verti<:es. For example, the three non-shellable 

3-balls mentioned in Section 2.3-1 have no interior vertices. By a computer calculation using 

our method, we can very easi ly check their coustructib ili ty. 

Proposition 4.6. Rudin's bull, G11inbaum 's ball, and Ziegl r's ball are r:on.,tn.tctible. 1 

Remark. The constructibility of Rudin's ball and Gri.inbaum's ball is already commented in 

Provan and BiUera [74 j, without m ntioning bow to check it . (My attempt, before noticing 

that the constructib ili ty of the balls is already known, to check Rudin's ball without us ing our 

method failed, because the number of facets 41 was too mauy to enumerate all t he possible 

divisions.) T he construct ibili ty of Ziegler's ball was already known to me before I made a 

com puter calculation, because I made a paper model of the ball to cherJ< it. 

On the other hand, Bing's house needs much more facets , over 1500, aud it is far from 

direct computer calculat ion or hand calculation. But our method also works easi ly fo r such 

big examples to check on computers . 
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4.5 3-balls with few interior vertices 

Tb.is section extends the result of Section 4.3 to the cases with a few interior vertices. The 

first extension is for the case with just one interior vertex. 

Proposition 4. 7. If a reduced 3-ba/l C has only one vertex v in the inte1im·, then it is 

constructible if and only if it has no spanning edge. 

{This is equivalent to saying that C is constructible if and only if C is a star witb a center 

v.) 

Proof. The "iP' part is trivial because a reduced 3-ball with only one interior vertex v without 

spanning edge must be a star with a center v, and a 3-dimensional star is constructible because 

2-spheres are shellable. So we only have to show the "only if' part. 

Let C be constructible. Because it is not a simplex, there are two subcomplexcs C\ and 

C2 satisfying the condition of Definition 2.11. Here, C1 and C2 are constructible 3-balls and 

Ct n C2 = n is a 2-ball. Because B is made of 2-faces in C and can have at roost one 

interior vertex, from Proposition 2.32 together with the condition of reduced ness of C, it has 

no spanning edge. Thus B must be a 2-dimensional star with a center v. 

Now remark that both of the 3-bal.ls C; (i = 1, 2) are constructible and 8C,- 8C is a star 

of v. 

Because C, io constructible, if it is not a simplex, it will be divided again into two 3-bal.ls 
0 

Gil and C,2 such that C, 1 n Ci2 = B' is a 2-ba.ll made of 2-faces in C . B' does not have 

interior vertices. If tbc boundary of B' is completely contained in 8C, then Proposition 2.32 

concludes that there is a 2-facc in B' with two edges in 8C, contradi ·t ing the reducedness of 

C. Thus 88' must contai n edges not in 8C. T hese edges must be taken from 8 and there are 

no cho.ice other than to take two edges from 8, both incident to v. Now if B' has a spanning 

edge e not containing u, then it divides B' into two 2-balls the boundary of one of which is 

made of e and those of 8C. By Proposition 2.32, there must be a 2-face whose two edges 

are in 88', which is impossible from reducedncss of C. Thus all the spanning edge of e must 

contain v. which shows that all the interior edges of B' is incident to v . 
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Here again the 3-balls C,k (k = l , 2) are constructible and 8C;k- 8C is a star of v. Thus 

if C;k is not a simplex, we can do the same argument as above for Cik· Contilming this 

argument , we finally have aU the balls divided into simplices and the n conclude that all the 

interior edges of the cutting faces , equivalently ali the interior edges of C, mu t be incident 

with v, which shows that C has no spanning edges. 1 

From this, it seems that h;wing spanning edges is bad for constructib ili t-y under some 

conditions. One more extension up to the case with two interior vertices can be achieved in 

this line, but more complicated argument is needed. 

Before describing it, we introduce one technical definition. In the following, for a pair of 

simplicial com plexes C :::> D, we denote by L(D; C) the set I{ u E sd2 (D) : lui n I{C- D )l = 

0}j , where sd2{D) is the second barycentric subdivision of D. 

L(D;C) 

We r mark that L(D; C) is just a point set but we can associate the cell complex structure 

from C , that is , a cell complex {u n L(D; C) : u E C} U {u n 8L(D; C) : u E C}. In the 

following , we treat L(D; C) as a cell complex in this sense and usc the terms as if they arc 

simplicial complexes. It is easy to see that this cell complex stn1cture has almost the same 

property as D, for example, Proposition 2.32 holds for L(D; C) when IL(D: C) I is a 2-ball. 

To show the following lemmas and propositio:n, we see the shapes of L(8D- 8C; 8D) 

instead of those of 8D - 8C, for a pair of 3-balls C :J D. We use this trick in order to avoid 

the singu lar case. For this, see the following figure. 

~@_ 
L(8D- 8C; 8D) L(8D- BC; fJD) 

In this figure, the right figure is a singular case of the left, but the shape of L(fJD- 8C; {)D) 

is the same, i.e., both are 1-balls. 

We use four lemmas to show Proposition 4.12. 
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Lemma 4.8. Let D be a 3-ball that is a subcomplex of a reduced 3-ba/1 C, and assume that 

C has two interior ve•·tices u and v. If D satisfies: 

• D has no vertices in its interim·, 

• L(&D- &C; &D) is a 2-ba/1 and contains two vertices u and v in its ·inte1·ior, 

• D contains a spanning edge of C, and 

• u and v ar·e not joined by an edge in D , 

then D is not constructible. 

~··· 
Proof. Assume tbat there arc const ructible 3-balls which satisfy all the conditions of the 

statement. Let D' be the smallest one arnong these. It is easy to see that D " is not a 

simplex. 

Remark that L(&D•- &C; aD•) has spanning edges because u and v are not joined by 

an edge in D. Because C is reduced, the 2-faces of L(oD· - BC; BD*) have at most one edge 

on the boundary. Thus from Proposition 2.32, the spanning edges of L(&D· - &C; &D" ) have 

lhe interior vertices ou each side as tbe following figure. 

Now because D• is a constructible 3-ball, there are two constructible 3-balls D1 and D2 

satisfy ing the condi t ion of Definition 2.11. Again from Proposit ion2.32, the possibility of the 

2-ball 0 1 n D2 is restricted. It is easy to observe that there are only the following cases. 

(a) Dt n D2 contains one of u and von its boundary and contains no spanning edges of C. 

{b) The boundary of D1 nD2 contains one interior vertex and one spanning edge of D 1 n D 2 . 

(c) D1 n D2 contains both u and v on its boundary. 

(d) D 1 n D2 does not contain u and v, and contains two spanning edges of Con its boundary. 
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[n the figure, D2 of (a), D2 of (b), D 2 of (c), and D2 of(<.!) satisfy the first two and the last 

condition in the statement. In (a) , D1 can not contain spanning edges of C, so D2 contains 

spanning edges. In (b) and {d), D 1 n D2 contains spanning edges of C, thus D2 contains 

spanning edges of C. fn (c) , D 1 n D 2 contains spanning edges of C because ·u and ·u are not 

joined by an edge in D, so D2 has spanning edges. Thus in aU cases, D2 satisfies all the 

conditions of the statement, contradicting the minimality of o·. 

Remark. For the last condition of the nonexistence of the edge uv in D, we note that if uv is 

in D, the proof fails because D2 in (c) can have no spanning dges of C if uv i~ in D1 n D 2 . 

13ut if "UV is in i:JD, we have the next lemma. 

Lemma 4.9. Let D be a 3-ball th<lt ·is a subcorn.plex of a •·educed 3-ball C, and assume that 

C has two interi01· vert·ices u and v. If D satisfies: 

• D has no vertices in its interior, 

• L(i:JD- i:JC; i:JD) is a 2-ball and contains two vertices 1; and v in its interio1·, 

• D contains a spanning edge of C, and 

• the edge U"V ·is in i:JD- i:JC. 

then D is not con.~tructible. 

Proof. Assume that there are constructible 3-balls which satisfy all the conditions of the 

statement. Let D' be the smallest one among these. It is easy to see that o· is not a 

simpleJC 

In this case, L(8D·- i:JC; i:JD") does not have spanning edges. 

Because D" is a constructible 3-ball, there are two constructible 3-balls D1 and D2 satis­

fying the condition of Definition 2.11. It is easy to observe that there are only the following 

cases. 
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(a) D1 n D2 contains one of u and v on its boundary and contains no spanning edges of C. 

(b) D1 n D2 contains both u and v on its boundary but the edge""· 

(c) Dt n D, contains the edge uv 011 its boundary 

Here D2 in (a), and one of D1 and D2 in (c) satisfy tue conditions of the statement, con­

tradicting to the minimality of n•. And in (b) D2 satisfies the conditions of Lemma 4.8, 

contradicting its constructibil.i.ty. 

Lemma 4.10. Let D be a 3-ball that is a subcomplex of a •·educed 3-bali G, and a.ssume that 

C has two interi01· ve•·tices u and u. If D satisfies: 

• D has no vertices in its interior, 

• L(DD- 8C; oD) is a disjoint 1mion of two 2-balls each of which contains one of u and 

v in its interi01·, and 

• D has a spanning ed_qe of C, 

then D ·is not con-structible. 

Pmoj. Assume that there are constructible 3-balls which satisfy all the condit ions in the 

statement. Let D' be the smallest one among these. It is ea~y to see that D' is not a 

Simp] X. 

From Proposition 2.32, the 2-balls which are the components of L(8D- 8C; 8D) can have 

no spanning edge, thus stars of u and v, respectively. 

Now D" is a constructible 3-ball, it is divided into two constructible 3-balls D1 aud D2 as 

Definition 2.11. The 2-ball D 1 n D2 is the following: 

(a) D1 n D2 has one of u and v on the boundary and bas no spanning edge of C. 

(b) D1 n D2 has both u and ·o on the boundary. 
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(a) Do 

~ 
In the case (a), D2 sat isfies all the conditions of the statement, contrad ict ing the minimality 

of D'. For the case (b), if D 1 n D 2 does not contain the edge uv (or the edge uv does not 

exist in D from the first) , D1 n D2 contains spanning edges of C and at least one of D 1 and 

D2 docs not contain the edge uv. so one of D 1 and D2 sat.isfies the conditions of Lemma 4.8, 

contradicting the eonstructibility of D1 and D2 . And if D1 n D2 contains the edge uv , then 

at least one of D 1 and D2 contains spanning edgos of C, thus Lemma 4.9 concludes that at 

least one of D 1 and D2 is not constructible, again lead to a conLrad.iction. I 

Lemma 4.11. Let D be a 3-ball that is a subcomplex of a •·educed 3-ball C, and assume that 

G has two inte.-ior ve1·tice.• u and v. If D satisfies: 

• D has u on its boundm-y and v in its inte1-ior, 

• L(aD- 8C; 8D) is a 2-ball which contains v in ·its inte.-im·, and 

• D has a spanning edge, 

then D i.; not constructible. 

Proof. Assum ' that there are constructible 3-balls which satisfy al.l the conditions in the 

statement. Let D• be the smallesL one among these. Tt is easy to see that D' is not a 

simplex. 

By the same observation as in the proof of the previous lemma, L(8D- 8C; 8D)is a >Lar 

of v. Because D· is a construct ible 3-baU, it is divided into two constructible 3-bal\s D 1 and 

D2 as Definition 2.11. From Proposition 2.32, the possibility of the 2-bal\ D 1 n D2 is only the 

following. 

(a) Dt n D2 contains 1> and no spanning edge. 

(b) D 1 n D2 contains v and no spann ing edge. 

(c) D 1 n D2 contain both u and v. 

(~·D. 
I o 

• ·u 
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ln the case (a) , D2 satisfies the conditions of the statement, contradicting the minimality 

of D'. In the case (b), D1 satisfies the conditions of Lemma 4.10, contradicting the con­

~tructibility of D1. In the case (c), if the edge uv is not contained in D1 n D2 (or it does 

not exist in D from the fLrst), then D 1 n D2 contains spanning edges of C and at least one 

of D1 and D2 does not contain uv, thus satisfies the conditions of Lemma 4.8, contradicting 

its constructibility. And if the edge tw exists in D1 n D 2 , then at least one of D 1 and D2 

contains spanning edges of C, so it satisHes the conditions of Lemma 4.9 , contradict ing the 

constructib ility of D1 and D2. 1 

Now we can show the foUowing proposition. 

Proposition 4 .12. If a red?Lced 3-ball has exactly t1vo inteTior vertices, then it is constructible 

if and only if it has no spanning edges. 

P1"Dof. 

[if part] 

Let C be a reduced 3-ba.JI with two interior vertices •u and v which has no spanni ng edges. 

Then the facets of C can be only of two types: (i) one edge and its two end vertices are in 

ac and the rest are in c, and (ii J one 2-face and its proper race~ are in ac and the rest 
0 

are in C. From this we conclude that every facet of C belongs to either starlL or star v, 

thus C = star ·u U sta.:rv = staru U (sta.rv- staru). Here we also observe that there is an 

edge between u and v, so v lies in 8(staru). HGnce (starv- star·u) = v • (2-ball) 11nd it is 

coustruct ible because 2-balls are constructible. Also staru = ·u • (2-sphere) is constructible, 

anti (star u) n (star v- star u) = (2-ball) is constructible, thus 0 is constructible. 

[only if part] 

Let C be a reduced 3 ball with two interior vertices u and v, and assume that it is const.ructible 

and has spanning edges. Then there are two constructible 3-ba.Jis C1 and C2 satisfying the 

condition of Definition 2.11. Here D1 n D2 is a 2-ba.Jl contained in the interior of C. From 

the reduced ness of C and Proposition 2.32, there are ottly two possibility for D1 n D2 . 

(a) D1 n D2 contains one interior vertex of C. 

(b) D1 n D2 contains two interior vertices of C. 

ln the case (a), D2 sati ·fics the conditions of Lemma 4.11. In the (:ase (b), if the edge 11v 

is not contained in D1 n D2, then D 1 n Dz contains spanning edges of C and one of D1 
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and D2 does not contain uv, so it satisfies the conditions of Lemma 4.8. And if t he edge 

uv is contained in D 1 n D2 , then at least one of D 1 and D 2 has spanning edges of C, thus 

satisfies the conditions of Lemma 4.9. Thus in all the cases, at least one of D 1 and D2 is not 

constructible. A contradiction. I 

We finally come to state the fo llowing theorem, summarizing Propos itions 4.4. 4.7 and 

4. 12. 

Theorem 4 .13. If a red·uced 3-ball has at most two interior· vertices, then it is construct·ible 

if and only if it has no spanning edges. 

The ucxt sect ion provides au example which shows that the number "two'' of interior 

vertices in this theorem is sharp. 
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4.6 3-balls with many interior vertices 

From the resuHs of the last section, one may think that we can give a character izat ion of 

tonstructibility for arbitrary reduced 3-balls in a similar way, bu.t the situation already is 

different at a ll in the case with tbree interior ver tices . 

Theorem 4.14. There are shellable ,-educed 3-ball.s with spanning ed_qes. S1Lch example can 

be constructed with only three interior· vertices. 

Proof. The followiug is a list of facets of an example of such 3-balls with 8 vertices and 15 

facets. 

1257 2367 1347 1457 2567 3467 

1258 2368 1348 1458 2568 3468 

4578 4678 5678 

The vertices "4", "5" and "6" are interior vertices , and the edge "78" is the spanning edge. 

This example is con:;tructed as follows. First we take a triangulated 2-ball as the following 

figure and form a hi pyramid by introducing two new vertices "7" and "8" . T hen replace the 

two tetrahedra "4567" and "4568'" by tltrec tetrahedra "4578" , "4678"' a nd "5678'' . {This 

operation is a ' flip ' .) It is ea.~y to check "78'' is a spanning edge and the ball is reduced , but 

this example is shellab le. 

A'~~ 
'~ '~,-,~, 

3 8 8 

j\ ~t: \ 5w6 ~. -7 

8 
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Also the converse is no true for the case with many interior vertices . 

Theorem 4.15. The•·e are nonconstructible reduced 3-balls with no spanning edges. 

Proof. By Theorem 4.1, a 3-sphere C is constructible if and on1y if C \a is coustmctib le for 

any facet a of C, and Theorem 3.8 assures the existence of nonconstructible 3-spherc. If we 

take C to be non-constructible, then C\a is nonconstTuctible. And such 3-balls de ri ved from 

3-sphcres by removing one facet clearly is reduced and contains no spanning edges. 
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4.7 The algorithm 

As is mentioned in Section 4.3 , the characterization of conSITuctibili ty of reduced balls de­

rived in this chapter can be used for giving a simple algorithm to decide constructibility of 

(not necessarily reduced) 3-balli;. The algorithm first applies th two reduction operations 

introduced in Sec ion 4.2, and then check the construct ibility of derived reduced balls. 

However since producing reduced balls literally is not efficient , so we give an efficient 

algoritlun which implement the way described above. 

In our algori thm, we use Theorem4.13 in the l'•~t step to get the arc~wer, tbett is, we check 

whe her the ball has spanning edges or not. This property, having spann ing edges or not, is 

not all"ected by th operation (I) of dividing by a t riangle, so we need not do this operation. 

As for t he operation (II) of splitting a triangle, what we really need to do is to make the 

third edges appear on the boundary of the ball. So instead of doing the real split ting, we just 

keep in mind that the edge is now ou the boundary by marking the edge. 

From these observations, we propose the following algorithm. 

Algorithm 

Givrn: a list of facets of a t.r.iangulatecl 3-ball C which has at most two interior vertices. 

Step 0: Calculate the boundary complex ac of C, and make a list L of edges of C in which 

the edges on 8C is marked. Also check which vertices are in the interior. 

Step 1: List up all the 2-faces of C and if there is a 2-face whose 2 edges arc marked in L. 

then mark the tb.ircl edge. Repeat this step while there are such 2-faces. 

Step 2: Check the edges which are not marked in £. If there is a n unmru.·kecl edge with no 

interior vertex, then C is not constructible. Otherwise C is constructible. 

To make this algorithm run efficiently, we should keep the list of 2-faces and the list of 

edges, and marking should be clone on the lis t of edges. Marking the edges should be refte ted 

to the list of 2-faces, that is, each 2-face should be linked to each edge and vice versa. We 

also should avoid unnecessary checking iu Step I , so we make a partitioniug of the list of 

2-fa~es in to 4 parts by how many edges are marked. (In fact, the list of 2-faces with three 

edges marked is not needed.) While Step I is repeated ly executed, the 1mu·king of one edge 

will change the situation of the 2-faces wruch contain the edge. So as soon as one edge is 

newly marked, we move the affected 2-faces into sui table partition. By this careful treatment, 

each 2-face will be checked at most 3 times, thus the total numher of repetit ion of Step I is 

bounded by 3 x h, where J, is the nnmber of i -faces. 

In Step 0. c<.Llculation of the boundary complex can be done in 0(/J). This can be done 

in a very simple way: First produce four 2-faces from one facet and list a ll of them without 

considering the multiplication. Then, to r emove multiplication, check the list of 2-faces from 
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top to bottom and if the 2-face is new then do nothiog and it appeared already then remove 

it. This can be performed if the vertices in each 2-facc is sor ted and use a large table to 

indicate the 2-faces already appeared. The list of edges can also be made in the sawe way. 

Here we remark that the number of faces satisfies certain equations from Dehn­

Sommerville equations for sphere~ , see p. 15. For the case of 3-balls, 0(!0
2) = O(!J) = 

O(h) = O(!J). So each operations of making lists can be done in O(h) and the number of 

repetitions in Step 1 is also in 0(/3), we conclnde that the algorithm runs in O(h) time. 
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Chapter 5 

The hierarchy of combinatorial 
decompositions of 2-dimensional 
simplicial complexes 

From the drastic difference between the simplicity of 2-pseudomanifolds shown in Section 2.5 

and the complexity of 3- and higher dimensional pseudomanifold · shown in Chapter 3, one 

may think that the 2-dimensional world is very simple and 3-dimensional world is complicated. 

This is not wrong but it is a big mistake if one i tempted to include general 2-dimensional 

simplic ial complexes other than. pseudomanifolds to his "2-dimensional world." In this chap­

ter we show oevera.l examples which show that the 2-dimensional world becomes already 

complicated enough if general simplicia.! complexes are considered. 

TlLis may be related to the fact that some class of 2-dimensional simplicial complexes 

arc spines of 3-dimensional manifolds, aud 3-manifolds can be reconstructed from such 

spines. Thus the topology of general 2-dimensional simplicial complexes is complicated a.~ 

3-dimensional manifolds, far from the case of 2-pseudomauifolds. 

Alter reviewing the formerly known result that every tr iangulation of the dunce hat is not 

shellable in Section 5.1 , in Section 5.2 we extend the result and show that every triangulation 

of the dunce hat is not constructible. This shows the existence of 2-dimensional simplicial 

complexes which are Goben-Macaulay blrt not constructible. In the next Section 5.3 we give 

a modified example of the dLmcc hat and show the example is sbellable but not extendably 

shellable. In Section 5.4 we use this example to construct an example which is constructible 

but not sbellable, and in Section 5.5 an example which is non-shellable but bas a shellable 

subdivision. 
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5.1 Cohen-Macaulay but not shellable 2-complexes 

By seeing Proposition 2.31, one may guess stronger implication: every Cohen-Macaulay 2-

complex may be shellable. But unfortunately it isn't. The following fact i~ known. 

Proposition 5.1. (Stanley {87, p.84}) 

Every triangulation of the "d1<nce hat" i8 not shellable, wh·ile it i,, Gohen-MILcaulay. 

Dunce hat 

The d·unce hat is shown in the figure above. Here. three edges of the triangle is identified as 

is indicated by the arrows. 

Proof. The argument to prove this proposition is as follows: that the dunce hat D is con­

tractible (for example sec Zeeman [97]) means that D has H;(D) = 0 for all i, which means 

that h3 (D) = 0. li D is shellable, every facet F; of its shelling P 1 .... , F, should satisfy 

(F1 U · · · U F,_J.) n .F, f oF, because h3(D) = 0 (see Proposition 2.26), but this is impossible 

because !:::. has no boundary. 

That D is Cohen-Macaulay is verified by checking the links one by one. For 2-faces and 

1-facCR, there is nothing to be checked especially. For 0-faces, their links are .!-dimensional 

conuected comple.'<, so ii_t = flo = 0. For the empty face, i~s link is the whole D and 

il,( D) = 0 for all i because D is contra ·tible. Thus D is Cohen- Macaulay. 

This e.xa.mple, the dnnce hat, arises from the stody of simplicial collapsing in combinatorial 

topology. In lhe context of combinatorial topology. if 1'vf2 is obtained from M1 by a sequence 

of elementary collapse, M2 is called a spine of NJ1• The dunce hat is a famous example of a 

spine of a 3-cube which is not collapsible. That every triangulation of the dunce hat does not 

simplicially collapses to a point is easily seen because there is nowhere to start with: it ha.~ no 

botLOdnry, thu there are no free faces . Other such examples, spines of 3-cubes which are not 

collapsible to a poiut , are knOW1l for example, "Bing's house with two rooms", "house with 

one room"(or "abalone" ). (See Hog-Angeloni and Metzler [50J, Matveev and Rolfsen [64J, 

etc.) 
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Bing's house with two rooms House with one room (or abalone) 

Especially, the two examples shown in the picture above have the property that the 

singularities are in gen ral position. More precisely, the neighborhood of each point is one of 

the following. 

(I) (II) 

LJ'~ 
~ 

(fll) 

ln this figure, (II) and (III) are singularities. A 2-s im plicial complex is a standard polyhedron 

or special polyhedron if the neighborhood of each point is one of the above and that the 

singularities form a cell complex, that is , the points (II) forms n disjoint set of open arcs. 

(It should be noted that iu combinatorial topology "polyhedron" is used for the geometric 

real ization of a simplicial complex, different from the term of combinatorics wllich means an 

unbounded polytope.) So we can say that "l3ing's house with ~wo rooms" and the "bouse 

with one room" are spines of 3-cubes which is at the same time special polyhedra. Such 

spines a.re called .1tandard spines or special spines. These standard spines are extensively 

studied in relation with 3-manifolds, for example Benedetti and Petronio [6], Hog-Angeloni 

and Metzler [50]. Matveev and Rolfsen [64]. 

In the next section, we want to discuss a class of 2-sirnplicial complexes slightly larger 

than that of standard polyhedra. 

Definition 5.2. A 2-simplicial complex is a near-standaTd polyhedron if the neighborhood of 

each point is one of the above th.I:ee types except for one point. The exceptional point is the 

non-standard point and the rest arc standard points. 

For example, the dunce hat is not a standard polyhedron, but is a near-standard polyhe­

dron, see p. 107. 
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5.2 Dunce hat is not constructible 

Now the dunce hat is Cohcu-Macaulay but not sheUable, it is natural to ask whether it is 

constructible or not. The following is an example of a triangulation of the du nce hat. 

I 

A 
I 

[f one examines the constructibility of this example by computers or by hands, he will 

figure out Lhat it is not constructible. In fact, we can show that any triangulations of the 

dunce hat are not corutructi blc, which giveti a different proof of Proposition 5. 1. For tilis, we 

need the following lemmas. 

Lemma 5.3. If a simplicial complex C is the union of its subcomplexes C1 and C2, i.e., 

c = cl u c2, then 

(-l)dirnChdimC+I (C) (-l)dimC'hdimC1+t(Ct) + (-l)dimC'hdimC,+I(C2) 

( -l)dirn c,nc,hdimc,nc,+t(CI n C2). 

Proof. From Lhe defin it ion of It-vector, 

( -l)dimchdimC+I (C)=-f-1 (C)+ fo (C)- fJ(C) + · .. + (-l)dim c fdimC· 

Tim statement follows immediately from Lhis. 

(This is just the same to say that the reduced Euler characteristic is a valuation.) 

For a 2-dimensional simplitial complex, the liu.k of a vertex is a 1-climensional s.impEcial 

complex, i.e. , a graph. We say a vertex is splittable if the graph appeared as its link has a 

bridge, where a b•·idge is a vertex of a grap h such that the removal of the ver tex increases the 

number of connected coruponents of Lhe graph. 

An eas ily observed fact is the following lemma. 

Lemma 5.4. A ssume that Cis a pure 2-dirnensional.simplicial complex and it i.s divided into 

two pa•·ts C1 and C2 such that CtnC2 is a 1-dimensional simplicial complex and C 1 uC2 =C. 

lf C has at most one splittable vertex, then C 1 n C2 is a gra1>h with cycles. i.e., it is not a 

tree. Especially, h2(C1 n C2) > 0. 

106 



Proof. If a graph is a tree, then it has at least two end vertices. But in C1 n C2 , a vertex is 

an end vertex on ly if it is a split table vertex in C. Thus the graph C1 n C2 can not be a tree. 

The inequality h2(C1 n G'2) > 0 is easily deduced from the calculation of h-vectors of 

!-dimensional complexes that h2 =#edges- #vert ices+ 1. 

For example, the standard points are not split table. In the dunce hat , the neighborhood 

of each point is as follows: 

So there is only one point which is splittab le (t he non-standard point at the top of the hat), 

and the other points are all standard. Thus any division of the dunce hat into two parts 

;tlw<tys produces a grapb with positive h2 in the ir intersect ion. 

What we sbow is the foUowing proposi t ion. 

Proposition 5.5. A contr·actible 2-dimensional simplicial complex C with at most one split­

table ve1·te1L is not comtn,ctible. Especially, <11lY triangulations of a contmctible near-standar·d 

polyhed1·on are all non-constructible. 

Proof. Let C be const ructible. Then there are two subcomplexcs G't and Cz satisfying the 

condition of const ructibili ty. Here, dim C1 = dim Cz = 2 ami dim G't n Cz = l. We observe 

that: 

• B cause Cis contractible, h3(C) = 0. 

Hence one of h3 (Ct) and it.3 (G'2) should be negative. This contradicts the fact that C, and 

Cz are constructi ble because Goben-Macaulay complexes has non-negative h-vcctors from 

Proposition 2.23. 

Since the dunce hat is a contractible near-standard polyhedron, we have the following 

CoroUary. 

Corollary 5.6. Any triangulation of the dunce hat is not constructible. 
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5.3 Shellable but not extendably shellable 2-complexes 

Slight modificat.ion of the dunce bat gives a very i11teresting example. See the followi11g figme. 

(The vertices with the same labeling are identified. ) 

3 

In this exampleD', the boundary is just one edge {1,3}. On he other h<tnd , counting 

the number of faces shows that f(D') = (1, 7, 19.13), thus h(D') = (1, 4, 8, 0). So h3( D') = 0. 

(This can be shown from the fact that D' is contra.ctib l.e. ) Again this shows that every facet 

F; in a shelling F1, F2 , ... , F( should satisfy (F1 U · · U Fi- I) n F; I 8Fi. Thus the only facet 

which can be chosen for the last facet is the facet F indicated in the figure. That there is 

a shelling can be checked easi ly as indicated in the figme below. So we wnclude that this 

simplicial complex D' is sbellablc and that a ll its shelling ends at the unique beet F. 

This property that all shelling ends at one unique facet implies that the simplicial complex 

D' is not exteudably shellable because every partial shelling which starts from F wW not 

extend to the whole shelling of D'. 

3 

1 

Proposition 5.7. The1·e an 2-dimensional simplicial complexe.~ which a1·e shellable but not 

extendably slwllable. 
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By taki ng a careflll look of the triangulation above, one will uotice that it is no vertex 

decomposable, i.e., any deletion of one vertex produces a non-shellablc complex. Thus we 

have shown tile following at the same time. 

Proposition 5.8. There ar·e 2-dimensional simpl·icial complexes which a1·e shellable bttt not 

t~etiex decomposable. I 

Rema1-k. The existence of shellablc but not e.xtendably shelb.ble 2-cornplexes is not new. 

Bjiirncr [14, p.277, Exercise 7.37] shows a smaller example: 

123, 125, 126, 134, 136, 145, 234, 235, 246 , 356, 45(i. 

This is a triangulation of the projective plane plus one additional facet ·' 12:!'' . This example 

is shellable in this order of facets, however 145-456-246-356 is a pa.rtial shelling but this will 

not extend fwtber. The /-vector of this e.xample is (1, 6, 15, 11). 

(For this. I thank Glint r M. Ziegler for the information of this example, and also Pumihiko 

Takeuchi. for letting me know the example of the partial shelling can not be extended. Bji:irner 

and Eriksson [16] also bas a reference to this example.) 

4@' . 
3 4 

6 l 

+6 
I 2 3 

4~·: · 
3 4 

6 

Remm-k. If we take a barycentric subdivision of D' , then it is vertex decomposable because the 

barycentric; subdivision of a sheUable complex is vertex decomposable, see for example Bji:irner 

and Wachs [22]. On the other hand, it is still not extenclably shellable. The author does noL 

know whether there are extendably shellablc but not vertex decomposable 2-cotnplexcs or 

not. 

Remm·k. After the remark above was written, Moriyama and Takeuchi [68] answered the 

question. That is, they made two 2-dimensiona.l examples which are extendably shellable but 

no vertex decomposable. Both of their examples consist of 6 vertices and 10 facets. 
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Remark Simon [82] showed an example of 2-dimeusional shcllable simplicial complex with 7 

vertices and 14 facets: 

123, 134, 125, 14i, 157, 234, 235 247, 857, 267, 367, 246, 356, 456, 

which has the property that every shelling ends by "456'' as same as our example D'. Although 

this one bas a larger !-vector (1, 7, 20 , 14) than our D', it has precisely the same property as 

D' , that is, h3 = 0 (in fact it is contractible) while it has Ollly o.ne edge "45" as its boundary. 

Thus this example can be seen as a variant of our exampleD'. (I thank Pumihiko Takeuchi 

for letting me know about tlus paper.) 

lu Simon [82], the following 2-dimensional simplicial complex with 6 vertices and 10 facets 

is also given: 

123, 234. 134, 146, 156, 125, 235, 246, 356, 456. 

This example is she\lable but not vertex decomposable, so Proposition 5.8 is not a new result. 

Though the latter example was given as an example of sheUable but not vertex decom­

posable one, it is also an example of sheUable but not extendably shellable sirnpucial complex 

which is even ~maller than Bjiirner's examples remarked in the preceding page. This fact is 

pointed out by Moriyama and Takeuclti below. 

Remar-k. Recently Moriyama [67] and Moriyama and Takeuchi [68] made an attempt to enu­

merate small 2-dimensional sl.tcllable simplicial complexes, and found out many examples of 

shellable but not extendably shellable ones. Among them, two examples have only 6 ver­

tices and g facets {both ha,; !-vectors (1, 6, 14, 9)), even smaller than Simon's example in the 

remark a,bove. The lists of facets of these examples are the following: 

1-V6F9: .124, 126, 134, 135, 245, 256, 346, 356, 456, 

aud 

2- V6F9: 123, 126, 135, 234, 245, 256, 346, 356, 456. 

These examples are shown by computer enumeration to be the minimum among the 

examples which are shellable but not extendably shellabl simplicial complexes. 

These two examples are contractible and the reasoning of their non-extendable sheliability 

are similar to our D' , though the boundaries of both of them consist of two edges. 
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5.4 Constructib le but not shellable 2-complexes 

The next question is whether there are construct ible 2-complexes which are not shellable. 

The answer is yes . 

An example arises from the example shown in the previous section. Let D1 and D2 be 

two copies of D' in the previous section and D" the simplicial complex derived by joining 

them by the edge {1, 3}. 

It is easy to check that D" is constructible, because D 1 and D2 are shelh1ble and D 1nD2 = 

{1, 3}. But D" is not shellable. The non-shellability is shown as same as the case of the dunce 

hat: D" bas no boundary but h3 = 0. (Tn this example, f = (1, 12,37, 26) and h = (1, g, 16, 0). 

The fact that h3 = 0 is also deduced from the fact that D" is contract ible.) 

Thus we have the following proposition. 

Proposition 5.9. Th er·e ar·e 2-dimens·ional simplicial complexes which aTe constructible b'Ut 

not shellable. 

Remark. Tltis example ba~ two splitlable vertices, 1 and 3. 
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5.5 Subdivisions and shellability 

One more question arises from Proposition 2.31: whet l:ter sl:teliabi li ty is topological for general 

2-dimensional simpli cial complexes or not. We have the following proposit ion which answers 

this question. 

Proposition 5.10. There a.·e 2-dimensional simplicial complexes which are not shel/able b"t 

has a shel/ahle s"bdivision, that is, she/lability for 2-dimensional simpl-icial complexes is not 

a topological property. 

Pr-oof. An example is the following. namely. two co pies of D' of Section 5.3 are joined by a 

triangle. 

3 

8 

The example shown in the figure is not shellable: its h.-vector is (1, 10, 16, 0) (!-vector is 

(1, 13, 39, 27)) and h3 = 0. (This again can be calcu lated from the fact that this example 

is contractible.) This shows that the 2-face {1,3, } must be the last facet in every shelling 

because the edge {3, 8} is the only edge on the boundary, but it cannot be the Jast one 

because removing it gives a non-shellablc complex because the link of the vertex 1 beeomes 

disconnected. Thus no facet can be the last facet in a shelling, wbicb means that the complex 

is not shellable. 

But let us stellarly subdivide it as follows. 
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3 

8 

Then it becomes shella.ble: t he small numbering in the figure shows a possible example of 

its shelling. 

As for stellar subdivisions of 2-dimensional simpJicial complexes, the following theorem is 

known. 

Theorem 5.11. (Ewald {37}) 

Let G and G' be two Bimplicial complexes such tiwt JGI :::;, JG'J, then ther·e is a simplicial 

complex G" which is a common stella~· subdi-vision of G and G'. 

There are two types of stellar subdivisions for 2-dimensional simplicial complexes: (i) p is 

taken in the interior of a 2-face, and (ii) p is taken in the inter ior of a 1-fac:c. Drugesser and 

Mani has shown the fo llowing theorem. 

Theorem 5.12. (Br·uges.ser and Mani {25}) Every stellar· subdi-vision of a shellable d­

dirnen.sionat simpl•icial complex is agrLin shellable. 

T hus if the reverse operat ions of stellar subdi visious of the above two types preserve 

shellability, shellability becomes topological property, but the example above shows that the 

type (ii) will not presm·ve shell;lbility in general. However the type (i) preserves shellability 

as follows. 

Proposition 5.13 . Let G be a 2-dimensional simplicial complex and a be a 2-face ofG- Let 

p be an inte1·io7· point of a and G' be the stellar subdivision of G by p. If G' is shellable, G is 

shellable. 

Proof. Let the facet a= abc be divided into three facets CJL = abp, a 2 = bcp and a3 =cap by 

the stellar subdivision. Let 'If': Tt,-r'2,····rk,ul,rk+lt···,Tl,a2,TL+I 1 · - - 1 Trn 1 a3,Tm+l···· 1 Tt 
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be a shelling of C'. (Permute a, band c if needed.) We will show that an ordering of facets 

1T: rt , r2 , . . . , rk , 'Tk+ I····~Tt ~ a , rt-L,Tm , Tm+ ! 1 ····_,-t is a shelling of C. 

Let u~ check that each facet sat isfies the condi tion of shelling in th is new ordering. Let 

us denote by Prcvrr(-r:i) the union r 1 U r·; U · · ·, r,_ 1 in an ordering rr of facets. 

• First, Tt to Tk satisfies the ~ondition of sheU.ing is obvious because there is no difference 

from the shelling -K of C'. 

• Because Prevrr' (at) n a 1 is an edge ab and the edges ap and bp will not appear in 

Prev,.•(ri) whilei ~ l, Prev,.•(r,)nr; = Prevrr(ri)nr, for k+l $ i $l. Thus Tk + l to r1 

satisfies the condition of shelling. 

• The edge ab is i.n Prev,.(a) because Prev,.(a1) = Prev.-• (at) C011taius it. Thus if a do 

not satisfy the condition of shelling in rr, then there is only one possibility: th vertex 

b is contained in Prevrr (a) but two edges be and ca are uot contained in it . But if so, in 

1r
1

, Prcv.-• (a2) should be the union of the edge ap and the vcrte.x b, contradicting that 

1f
1 is a shelling. So a satisfies the cond ition of shelling . 

• From Tt+J to Tm, the difference between Prev~·( r;) n .,., and Prev,(r,) n r; is that the 

edge ca is always coutaiued in the latter but it may not be contained in the former. But 

thi~ difference will not corrupt the condition of sh>lli.ng. Thus 7J+L to Tm satisfies the 

condi.tion of shelling. 

• From Tm+ t tort, Prev,•(r;) nr, = Prev,.(r,)nr;. so the condition of shelling is satisfied. 

'rhus 1r is a shelling of C, which shows that C is shellablc. 
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Index 

barycentric; subdivis ion, J 4 
Bing's house with 2 rooms, 89, 105 
boundary complex, 10 
boundary complex (of a polytope), 11 
bridge (of a graph), 106 
bridge index (b) 

of knots, 57 
of tangles, 58 

bridge index (II), 61 
bridge index (II' ), 62 
bridge p osition 

of knots, 57 
of tangles, 58 

closure, 10 
Collen-Macaulay, 27 
collapsible, 32 
combinatori a l manifold, 16 
combinatorially equivalent, 12 
compatible, 75 
connect d sum (of knots), 42 
coustructible, 22 
contract ible, 15 
cubical barycentric subdivisi n, 66 
cubical cornple.x, 11 

'W complex, 11 
regular, 11 

d-ball , 16 
Dehn-Sommcrville equations, 15 
deletion, 25 
dimension (of a simplicia l comple.x), 9 
double suspension theorem , 34, 55 
d-sphere, 16 
dunce hat, 104 

edge, 9 
elementary move 

of knot, 38 
of panning arc, 40 
of tangle, 40 
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elementary simplicia.! co llapse, 32 
equivalent 

knot , 38 
span11iug arc, 39, 40 
tangle, 40 

extcndably sbellable, 18 

/-polynomial, 14 
f -vector, 14 
face, 9 
face poset, 12 
facet , 9 
free face, 32 
Furch's knotted ho.Ic ball. 47 

geometric realiz<ttion, see underlying space 
Griinbaum's 3-ball, 20 

h-polynornial , 14 
h-vector, 14 
height function of, 61 
homology sphere, 33 
House with one room, 105 

interior , 10 

join, 13 

k-decomposable, 25 
knot, 38 
knot group, 43 
knotted 

knot, 38 
spaunj11g arc, 39 

link , 12 
link, 41 
local mao"timum, 61 
Lockeberg's polytope, 26 

Mani and Walkup 's sphere, 26 

near-standard polyhedron, 105 



non-standard po int, l05 

pair 
ball pair, 43 
sphere pai r , 43 
standard ball pair, 43 
standard sphere pair. 43 

partitionable, 30 
PL, 16 

PL-d-ball , 16 
PL-d-sphere, l6 

Poincare sphere, 33, 56 
polyhedral complex, see polytopal complex 
polytopal ball, 16 
polytopal complex, 11 
po!ytopal decomposition , 16 
polytopal spl1ere, 16 
prime knot, 42 
projection, 61 
projective plane, 34 
pscudomanifold, 10 
pure, 10 
pyramid, 13 

red uced d-ball , 85 
reduced Euler cha racterist ics, 15 
Rudin's 3-ball, 20 

sernispanning disc, 4 1 
shedding vertex, 25 
shellable, 18 
shelling , 18 
simpli cia l complex, 9 

abstract, 9 
simplicia.lly collapsible, 32 
simultaneously straight, 41 
simulta,neously straight with respect to a 

disc, 73 

skeleton , 9 
spanning arc, 39 
spann ing disc, 41 
spanning edge, 39 
special polyhedron, see s tandard polyhe-

dron 
special spine, see standard spine 
splittab le, 106 
standard point , 105 
standard polyhedron, 105 
standard spine, 105 
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star, 12 
stellar subdivision, 13 
straight, 41 
strongly connected, 10 
subdivision, 13 
suspension, 13 

tame. 38 
tangle, 40 
tangled, 4l 
trefo.il knot, 42 
triangulation, 16 
trivial 

knot , 38 
spanning arc, 39 
tangle, 41 

type 
of knot , 38 
of spanning arc, 39 
of tangle, 40 

underly ing space, 16 
unknot, 38 
unknotted 

spanning aTe, 39 

vertex, 9 
vertex decomposable, 25 

Walkup's sphere, 26 
weakly compatible, 75 

Ziegler's 3-ball, 20 
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