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1. Background and Objective 

Lithium-ion battery (LIB) is widely used in electronic products and electric vehicles. The 

production of LIB keeps increasing in recent years. However, its service life is only about 3-5 

years. Huge amounts of LIB are being wasted. High-priced metals (Co, Ni, Li) exist in LIB, 

which are worth recycling. And it also contains volatile organic compounds (VOCs), 

PVC/PVDF and fluorine, which are harmful during the recycling process. In current 

technology and related researches, a complete recycle procedure usually includes 4 steps: 

preparation of waste LIB, material sorting, enrichment of metals, separation and purification 

of metals. In the second and the third steps, the main methods include high temperature 

incineration and hydrometallurgy. Though these conventional methods are useful for recycling 

metals from waste LIB, there are various setbacks. For example, high temperature 

incineration is energy-consuming and hydrometallurgy requires the use of environmentally 

harmful solvent. In addition, both methods will release waste gas such as HF and VOCs. [1,2] 

  

Fig. 1. The structure of lithium-ion battery.[1]  Fig. 2. Expected separation result by SCWO. 

Hydrothermal method is expected to be used in treating waste. For example, supercritical 

water oxidation (SCWO), utilizing water over 374℃, 22.1 MPa as reaction field, is capable of 

efficiently treating hazardous and non-hazardous wastes. Organic compounds could be 

oxidized to CO2 and H2O by SCWO [3]. In addition, subcritical water is also able to treat 

organic waste with lower temperature and pressure [4]. From this, I propose a method of using 

hydrothermal reaction for the treatment of waste LIB. It is expected that by using 

hydrothermal method, the organic materials in waste LIB will be completely oxidized to gas 

phase to effectively separate metals in solid residue or dissolved in liquid phase as ion. The 

benefits of hydrothermal method include avoiding the use of organic solvents, release of waste 

gas or production of waste acid and alkali. Furthermore, the required temperature (<450℃) is 

much lower compared to conventional methods (>600℃), which is energetically more efficient. 

In addition, some fuel gas (CH4 and H2) may also be generated according to supercritical 

gasification, which could be collected for energy reuse. [5][6] 

The aim of this research is to study the compatibility of hydrothermal method for effective 

treatment of waste LIB. Batch experiment was conducted to study on the effects of 

hydrothermal reaction on waste LIB where metal recovery, oxidation of organic compounds 

and gas production were analyzed. Continuous recommendation will be suggested based on the 

findings in the future.  

 



2. Experiment method 

The figure of the whole experiment flow and batch-type reactor (inner volume: 23.303 mL) 

are shown in Fig. 3 and Fig. 4. For pretreatment, LIB was cut by electric sew to remove the 

iron shell. Then, a food mixer was used to crush the substance inside into powder and ribbon. 

0.3 g pretreated LIB sample (0.2518 g powder and 0.0482 g ribbon) was put into the reactor 

with H2O and oxidizing agent (H2O2). The reactor was put into salt bath, which could provide 

sub- and supercritical conditions. Reaction temperature is 250 ℃~400 ℃. Amount of added 

H2O is 4 mL, 6 mL and 8mL. Amount of added H2O2 is 0%, 100% and 200% of demand O2 to 

oxidize all organic carbon in waste LIB. Reaction time is 30 min, 60 min, 90 min. 

After the reaction and cooling down, the valve was opened and gas was introduced into the 

gas sampling system. Liquid sample and solid sample were separated by filtration later.  

 
Fig. 3. Experiment flow.                 Fig. 4. Figure of the reactor.  

3. Analysis method 

To analyze the initial metal contents in waste LIB before hydrothermal reaction, metal 

dissolution is necessary. 5 mL HNO3 and 3 mL H2SO4 were added into 0.5 g waste LIB sample 

and heated for 5 h. Then, the metal containing solution was analyzed by ICP-MS.  

Total C, H in waste LIB were analyzed by CHN coder and F was analyzed by 

Combustion-IC method in Microanalytical Lab in Hongo Campus. 

After hydrothermal reaction, gas sample (H2, CO, CO2, CH4, O2) was analyzed by gas 

chromatography (GC-TCD). F in liquid was analyzed by ion chromatography (IC). Organic 

carbon in liquid phase was analyzed by TOC analyzer. Metals in liquid phase (Li, Co, Ni, Cu, 

Mn) were analyzed by ICP-MS while metals in solid phase were analyzed by XRD in X-Ray 

Analysis Laboratory of the Institute for Solid State Physics. 

4. Results and discussion 

4.1 Behavior of organic compounds 

Fig. 5 shows the carbon gasification efficiency and Fig. 6 shows the carbon separation rate 

(carbon in gas and liquid phase). In hydrothermal reaction, the utilization of H2O2 could help 

oxidize more organic carbon in waste LIB sample and separate it from metals in solid phase. 

In lower temperature, longer reaction time could promote CGE and carbon separation rate a 

little but in higher temperature, it makes 

negative effects. The highest carbon 

separation rate (57.86%) appears under 350℃ 

with 200% H2O2, 30 min. In addition, under 

250℃ with longer reaction time (60 & 90 

min) and 100% H2O2, carbon separation 

rate (51.70% & 50.24%) is also attractive. 

So, both higher temperature with more 

H2O2 and lower temperature with longer 

reaction time are positive to decompose 

organic compounds and to separate them 

from metals in solid phase, which is expected in the research. But much higher temperature 

Fig. 5. Carbon gasification efficiency. 



and much longer reaction time might be negative, transferring organic compounds to solid 

phase while the composition of this part of carbon is unknown. 

At the same time, H2 and CH4 also generated after the reaction. However, with the use of 

H2O2 and longer reaction time, hydrogen gasification efficiency decreased as shown in Fig.7. So, 

the condition promoting organic carbon separation is not good for hydrogen gasification. 

Although H2 and CH4 could promote economic benefits as fuel gas, it is not the main target in 

this research. So, considering the treatment results of organic compounds, the optimum 

experimental condition to treat organic compounds is 350℃ with 200% H2O2, 30min. 

However, even in the best condition, the carbon separation rate is still far from 100% 

because of the incomplete utilization of O2 from H2O2 probably. To get better treatment result, 

better experiment device may be necessary. 

 

Fig. 6. Carbon separation rate.          Fig. 7. Hydrogen gasification efficiency. 

4.2 Behavior of fluorine 

Fig. 8 shows fluorine recovery rate in liquid after hydrothermal reaction. High fluorine 

recovery rate in liquid phase means the decomposition of PVDF (solid) in waste LIB sample 

and assembly of fluoride ion in liquid phase, which is helpful for safe treatment after the 

hydrothermal reaction of the whole waste LIB treatment procedure.  

The results show that fluorine in waste LIB sample could be easily recovered into liquid 

phase under high temperature (400℃). The use of H2O2 seems able to accelerate the 

decomposition of PVDF, increasing fluorine recovery rate in lower temperature (below 350℃).  

However, based on the sudden decrease of F recovery rate under 350℃ with H2O2, high 

temperature and H2O2 might lead to fluorine corrosion of the reactor, forming 

fluorine-containing solid and causing security risk. Thus, the corrosion mechanism and 

product should be researched further to guarantee the safety both in experiments and real 

application. 

 

Fig. 8. Fluorine recovery rate in liquid.        Fig. 9. Li recovery rate in liquid. 

4.3 Behavior of metals 

According to ICP-MS analysis result of dissolved metal ion, only Li was dissolved into liquid. 

Fig. 9 presents the Li recovery rate in liquid after hydrothermal reaction. It is found that 

higher temperature, longer reaction time and the use of H2O2 are all positive to dissolve more 

Li into liquid. The highest Li recovery rate in liquid is 81.42%, appearing under 375℃, 

100%H2O2, 90min. According to some reference [7], high Li recovery rate in liquid phase is 

better for next recycle treatment of Li in real application and helpful to separate Li from other 



metals, reducing the cost of separation. 

  To research about the other target metals (Co, Mn, Ni and Cu), XRD is used to analyze the 

solid powder sample separated from larger particles. The qualitative analysis through 

observing metal peaks indicates higher temperature, longer reaction time and use of H2O2 are 

effective to decrease metal concentration in powder sample. When temperature is over 375℃, 

a main metal peak (around 20 degree)in XRD analysis result almost disappeared. The other 

two metal peaks (around 40 degree) reduce to around half after reaction. They still exist but 

one peak moved in XRD results, indicating some change and reaction of metals. As for the 

disappeared part of metals, they might form larger particles which was separated from powder 

for XRD analysis. This could be seen as the enrichment of metals and is positive for the whole 

recycle process. 

 
Fig. 10. Metal peaks around 20 and 40 degree of powder samples with 100% H2O2, 30min. 

 
Fig. 10. Metal peaks around 20 degree of powder samples under 375 ℃ and 400 ℃. 

5. Conclusions 

As a conclusion, hydrothermal method is not suitable to treat waste LIB now because of two 

main problems: 

(1) Incomplete utilization of O2 makes the treatment result of organic compounds far from 

target. 

(2) Unclear of the fluorine corrosion to the reactor makes security risk. 

But the enrichment of metals and the generation of H2 are positive results, deserving further 

research.  
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