地震時の吸収エネルギー分布を評価指標とする形状最適化手法の 3次元曲面構造物への応用

Application of Shape Optimization for Distribution of Seismic Energy Absorption to 3-D Curved Structures

学籍番号	47166736		
氏 名	阪田	実	(Sakata, Minoru)
指導教員	佐藤	淳	准教授

1序

1.1 研究の背景

構造最適化は特定の制約条件のもとで構 造の性能を最大化する手法である。近年の 設計・施工技術の発展により最適化で生成 される複雑な形状も実現できるようになり ますます注目されている。実際の設計は多 目的最適化問題であるが、性能の評価指標 を限定する手法も多く提案されており、様々 な指標が試みられている。本研究ではその うちの一つ、大地震時の構造物の損傷分布 について考える。日本は地震多発地域であ り、東南海地震や直下型地震なども予想さ れている。大地震時には構造の損傷は許容 されるが倒壊や崩壊を起こさないことが目 標とされる。そのため、損傷が適切に配置 される設計を行う必要がある。多層ラーメ ン構造については秋山によりエネルギーの 釣合いに基づく建築物の耐震設計^[1]として 体系化がなされている。本研究で扱う単層 の3次元曲面構造物については中村による 先行研究^[2]があり、本研究はその手法を多 くの全体形状や局所形状に適用し、設計目 標を明確にすることを試みる。

1.2 研究概要と目的

エネルギー法^[1]の考え方では、損傷は 部材疲労の蓄積であり部材端の吸収エネル ギーによって評価できる。そこで本研究で は、地震時の吸収エネルギー分布を評価指 標として形状の評価を行う。吸収エネルギー 分布は時刻歴応答解析により求められる。3 次元曲面構造の代表としてアーチ形と4隅 支持のドーム形のモデルについて検討する。 このモデルに局所的な形状操作を施し、形 状の差異によって吸収エネルギー分布がど のように異なるかを整理する。その上で、 これらの形状操作を組み合わせることによ る最適形状の探索を試みる。

時刻歴応答解析において減衰は初期剛性 比例型とし減衰定数0.02とする。地震波は 兵庫県南部地震JR鷹取駅観測波の南北成分 を用いる。先行研究^[2]によれば吸収エネル ギーの分布形は地震波によらないことが示 されている。解析モデルの諸元は、アーチ 形は図1,表1、ドーム形は図2,表2の通 りである。ドーム形は底辺直径40mの回転 体ドームの4辺を切り落とした形状である。 2.2 エネルギー法の理論

秋山^[1]のエネルギー法の理論では振動方 程式から地震時のエネルギーに関する次の 基本式(1)を導く。

$$W_e + W_h + W_p = E \tag{1}$$

式の各項は弾性振動エネルギー W_e 、減衰 によるエネルギー吸収量 W_h 、累積塑性歪 みエネルギー W_p 、総エネルギー入力Eで ある。ここで累積塑性歪みエネルギー W_p とは、塑性ヒンジにおいて吸収されたエネ ルギーの総量である。各塑性ヒンジで吸収 されるエネルギー量は部材の損傷度と解さ れる。(1)式は振動終了時において $W_p \simeq E$ となり、また、Eは構造物の固有周期 によって定まる値である。これにより固有 周期が同一の構造物では塑性ヒンジにおい て吸収されるエネルギーの総量は概ね一致 し、その分布が安全性の指標となる。

3形状の基本操作と分類

局所的な形状操作は、モデルの対称な位 置に凹凸もしくは谷状の形状変更を加える こととする。これを1回行うことを基本操 作と呼ぶこととする。ここでは、基本操作 の前後のモデルについて吸収エネルギー分 布の違いを考察する。

3.1 凹凸形状

モデルに凹凸を設けた場合のエネルギー 分布を図5に示す。初期形状(図4)と比 較するとアーチ形ではいずれも凹凸部のエ ネルギー分布が減少することが分かる。こ れは凹凸の周囲で局所的に剛性が高まり、 応力がそちらへ移行したためと考えられる。 ドーム形では凹形状はアーチと同様に凹部 から離れる傾向がみられるが、凸形状では では膨らみ部に集中した分布となる。

3.2 谷形状

モデルに谷状の窪みを設けるとエネル ギー分布は図6のようになる。ここでは谷 の方向によって効果が異なる。振動方向に 平行な谷形状では谷線に集中した分布とな る。一方振動に直交方向の谷形状では凹形 状を与えるのと同じく分布が離れる効果が 表れる。これは、振動に平行な場合、剛性 の高まった谷部が振動に抵抗するような機 構となるためと考えられる。

3.3 形状とエネルギー分布の関係

以上の検討によって凹凸形状と谷形状に はそれぞれ図7のような特徴的な分布があ ることが示され、次のようにまとめられる。 (1) アーチの凹凸、ドームの凹形状では吸

- 収エネルギーは凹凸から離れるように 分布する。
- (2) 振動方向の谷形状では谷線に吸収エネ ルギー分布が集中する。

図7 形状とエネルギー分布 模式図

また、異なる形状操作でも結果的に類似 した形状となる場合があり、例えば図8は 異なる形状操作によって得られる形状であ るが、空間の大きさが異なるものの、エネ ルギー分布には類似性がみられる。共通す る形状の特徴がこのエネルギー分布に寄与 していると考えられる。

図8 類似の形状とそのエネルギー分布

図9のように凹みの位置を変えると、エ ネルギー分布は連続的に変化することが観 察される。

複数の形状操作を同時に行う場合には、 図 10 のように個別の操作時の分布の組合せ で考えられる。

4 最適形状の探索

以上のような形状とエネルギー分布に関 する知見をもとに、実際に最適形状の探索 を行い最適化手法について考察する。

4.1 最適化問題の設定

試行を行う前に目標とする損傷分布を考 える。損傷分布は、アーチ形であれば例え ば図11のようなものが考えられる。図の(a) のような分布は多くの部材にエネルギー吸 収を負担させる分布形であり、最も材料効 率は良いが不安定度が高いと考えられる。 一方(d)のような分布形は塑性ヒンジの発 生箇所がスリーヒンジ状の3ヶ所だけであ り、安定度の高い崩壊形であるといえる。(a) (b)(c)のような損傷分布は機構的に危険で あるといえ、ここでは(d)の分布を与える 形状を求めることとする。

4.2 探索の過程と結果

繰り返しの形状操作によって分布を目標 に近づける。また、基本操作の組み合わせ により分岐探索を行う。

図12にアーチ形の探索の概略を示した。 肩部の操作は凹みとし、足元の形状操作に ついて脚部の形状操作は外向きの凸と内向 きの凹形状を試みたが、凹形状については

凹部1つでは下部の分布が集中せず凹部を 2つに変更した。肩部の凹みを上下に拡大 してゆくと次第にエネルギー分布は頂部と 足元に集まり、結果、モデル742と746の 2種類のスリーヒンジ状エネルギー分布を 持つ形状が得られた。モデル746は足元の 基部ではなくやや上方に分布を持つ。

図 15 はドームに対する最適化の過程で ある。ドーム形の場合は目標とする損傷分 布について検討の余地があるが、本検討で はアーチ形と同様の脚部と頂部の分布とし た。対角の位置の4ヶ所を凹ませる操作に よってモデル 620 のような分布が得られる。 ここからさらに凹凸操作を繰り返しモデル 684 を得た。おおよそ頂部と脚部に集中し これをもって終了とした。

探索過程では、基本形状で確認された以 外の部分にもエネルギー分布が発生するが、 いずれにしても凹みの操作によりその部分 の分布を少なくなるように変更できること が判明した。またエネルギー分布は各形状 操作の繰り返しによって連続的に目標へと 近づけられることが確認された。

5 結

本研究では、形状最適化における評価 指標として大地震時の吸収エネルギー分布 に着目し、アーチ形とドーム形という3次 元の曲面構造に対して形状操作によって吸 収エネルギー分布を操作する手法を検討し た。結果、凹凸の操作では凹凸部から離れ るように、振動に平行な谷状の操作では集 まるように分布の形が変わることを示した。 さらに最適形状の探索法として、形状操作 の線形的な組み合わせによって分布を連続 的に目標へ近づけられることが示され、形 状とエネルギー分布の関係性が吸収エネル ギー分布を指標とする形状操作の指針を与 えるものとして有効であると確認された。 本研究は定性的な分析を行ったが、今後さ らに力学的、定量的な検討を重ね、最適化 手法として体系化されることが期待される。

参考文献

^[1] 秋山宏: エネルギーの釣合に基づく建築物の耐震設計, 技法堂出版, 1999

^[2] 中村卓史,佐藤淳:地震時の吸収エネルギー分布に着 目したドーム型曲面の局所操作による形状最適化,日本 建築学会大会学術講演梗概集,2017