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Abstract 

Intcrme hate coupling model is propos -e! to analyze the Stern-Gerlach experiment for 

tllC cluster . I n this model, he macroscopic magnetic moment and the angular momentum 

of the cl uster is coupled t hro ugh an anisot ropic potentia l origin ated from the magnetic 

a nisot ropy. We calcul ate ana lyt ica lly t he trong and ''"eak coupling limit of the magnet ic 

suscepti bili ty. Ewn fo r the SGrong coHp iLng li mit. the susceptibili ty does not reach t he 

locked moment lim it because of t he reco il effect. The susceptibili ty of the weak coupling 

li mit is dcri,·ccl as~~- T he profil e and magnetization of be rotating cluster in the mag­

netic fie ld a re ca lcula ted. T he magneti · moment and a nisot ropic coup li ng a re e.xt ractecl 

from t he ~xpc rimcnt fo r Fe12o- 14o an d Gd17,23 clusters. 
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Chapter 1 

Introduction 

Atoms, nuclei and atomi clusters haYe attracted our interest as ··finitr quantum y tems 

which are diflerent from infinite systems like cry tal. and field in its degree of freedom. 

Shell tructure is one of the typical exa mple . Thr structure or iginally found in t lw 

electrons in an atom was again proposed iu the atom ic nucleus by :\layer and Jensen in 

1950's. In 1984. the shell structure was eli covered in Sodium clusters b.1· Knight et at. 

[l. 2]. The new findings of the shell structure are clos ly related to the recrnt dr,·elopments 

of experimental technique of sn all particle ystem . Actual!~', 1 he ifJresr cl uster source 

de1·eloped in 1960's and 70·s cou ld produce the gas phase dusters of only a few atom. [3]. 

The ituation undergoc a complete change in 1983 when Knight et al. cJe,·e lop new source 

and make alkali meta l clu. tcrs of 1 to 100 atoms. The new source clarifies unexpected 

features of t he cluster of 1 to 1,000 atom like shell structure. 

The new physics of atomic clusters im·oh·ing the development of nanotechn logics is 

unique ami different from th. atom ic and nuclear physics. For electrons in an atom, the 

mean 'field goYerned by nucleus cau be well approximated to the Coulomb poteutial. lu 

the atomic clusters , Lhe m an fi eld cannot be easily calculaLed becau e of many body 

effects of the nuclei. Experiments on atomic clusters have a great advantage of one on the 

nucleus in controlling the number of atoms or nucleons, especially. in the large number 

region. The infinite matter of nucleons. or the nuclear matter, cannot be realized easily, 

e:xcept the neutron stars. Yet. bulk crystal. which is atomic counterpart of nuclear matter, 

can be easi ly obtain d. Thus. the atomic clusters are easy to handle in examining the 

finite-infinite transition in the finite y teJns. In addition. the experimental apparatuses 

for cluster physics are much cheaper than those for the nucl 'ar physics. 

The main subject of this thesis i about magnetism of atomic clusters. In atomic 

5 
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clusters. magnPlic propertit•s arc expected to be different from those in bulk due tO the 

large fraction of surface atoms. ln thin films or fine particles of magnetic element . the 

magne ic moment and the magnetic anisotropy are reponed and are larger than the bulk 

materials[-!]. ln the age of miniaturization of elect ric de,·ices, there is increasing need to 

understand magnetic properties of clu ters. In particular , investigation of the magnetic 

moment and th magnetic anisotropy i important in finding materia ls for high-den ity 

magn ic memor~· devices. 

\\"hile h11lk magnetic prop~rties of l"erromagnetic material have been widely stud­

i;~d and arc r·lati,·ely well understood , experimental works on finely di,·ided clusters of 

rnagncl ir material hm·e not been performed. To i11Yestigate unexplored properties of 

magnetism in clusters. de Heer e·t al. apply the Stern-Gerlach technique to the mag· 

netic du tcrs using the new source. Their e."periment re,·eals variou. properties of the 

magnetization of the clusters. 

Let u. consider the experimental set up. First. clusters formed by Ia er evaporation 

are cooled by ltel.iutn gas. and th n the clustPrs are expanded to form a molecular beam. 

In thr IJresent stud_,. we a. sum~ that the clu:ters are in therm<l l equilibrium. Density of 

clusters in tlw beam is low ,. o that the cluster may be assumed to be isolated beyond the 

equilibntl ion zone. Therrfore. each cluster stays in a certain qnanrurn state in the beam. 

Final ! ~·, the clusters enter into a Stem-Gerlach magnet and are deflected by the interaction 

betwceu the gradient of the magnetic field and the magnetic polarization of electron spin 

iuduc~d by the tmlgnetic field. At the entrance of the magnet, strength of the field 

changes grad ually in time. <~nd a time dependent interaction for the electron spin causes a 

transit ion from the injtial quantum state to other quantum states . If the time dependence 

is suflici nlly weak compared "·ith coupling of the spin co other modes, the transit ion 

probability to other modes can be neglected. This is called the adiabatic approximation. 

ltl tlw pr~·seut work. we ca lculate the deflection profile and the magnetizat ion of the 

dusters with this a. surnption. 

Th, Stern-G rlach experiment is first performed to atoms to im·estigate quantization 

of electron . pin . There ultant deflection profile for the sih·er atom shows symmetric two 

peaks implying qmuttization of the electron spin. We show in Fig. 1.1 the deflection 

profile obtained by the exp riment for iron cluster' performed by de Heer. The profile is 

quite differ nr. from rhe profil.e for atom : Only one peak is obsen·ed to the profile, and 

the peak tno1·es towards tu right as increasing the magnetic field. The experimental data 
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Figure 1.1: The St(!rn-Gerlach profiles of Fe120- t•tO clusLers for several value of the magnetic 
field . Note that deflect ions are uniquely in the deflection of increasing ficltl. The zero-field pm61e 

is normalized to ~. whereas the others <trc normalized to l. 

gave rise to contro,·ersy about how to interpret the data a nd the discussion st ill continues 

e1·en now. It is important to study the intrinsic magnetic moment. For this purpose, we 

need to e ·tablish a method to extract he intrinsic magnetic mom nt from the obsen ·ed 

deflection profi le in th pr sent stage of the study. This is the motimtion for the prcsem 

1\"0rk. 

The size of a cLuster i. small enough to be regarded as a single dorna.in system, and the 

electrons produce a single giant magnetic momem. We ll"il! ca ll it the super-e.! ctron spin 

in this thesis. If the electrons were completely decoupled from oth r degrees of freedom 

such a rotational motion of the cluster. the deflection profile would be a flat horizoutal 

distribution i.ndependent, of the fie ld strength like the profile of atoms. Dut the obsen ·ed 

profiles do not follow the profile mentioned above. A small coupling of the magnetic 

moment to internal coordinates of the cluster giv s rise to pin relaxation , making the 

profile different from the flat di tribution. Hence it is important to make clear how Yarious 

couplings produce observed deflection profiles. 

There are two possibilities for degrees of freedom which couples with the super-ele~;tron 
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spin: rotation and vibration of the cluster. \\"e do not belie,-e that the vibrational modes 

a re very important in the present experiment, because cYell the lowest vib ra tional exci-

1 ation energie . which a re estimated from the speed of ound in the bulk and the cluster 

diameter, are much larger than the temperature of the experiment. In the typical case 

of iron cl ustrr of 100 atoms. the lo,Yest rotational and ,·ib rational excitation energies a re 

roug!Li y est imated as 1.92 x 10-4]( and 1341<. re pect ively. Tem perature of t he clusters 

in the exp riment is st imated as 330 K at th most. 

Two models have bet'n proposed to ana lyze t he Stern-Gerl ach experim nt. T he sim­

plest mode l is superpararnagn t ism in which t he popula tion of the magnetic states a re 

proport ional to a Boltzmann factor [5]- In other \\·ord , the cluster rotat ion plays a role as 

a beat bath for the sup r-electron spin in t he magnetic fi eld . In pra tical ana ly · is for ex­

tracting the giam magnetic moment, the LangeYin formula is widely mployed. It a ·sumes 

equil ibrium wiLb a thermal resen ·oir a a temperature which is the same as the source 

of the clu tcr bea m. However , it predicts a rather sharp dPflection profil e which i quite 

different from the broad profil e tha t is often observed . Hence, the superparam agnetic 

model seems to be wo simple for the analys is of the experiments. 

AnothN simple model is locked-. pin mod I in which the uper-electron spin is frozen 

' '" i th respect to the iot ri n:ic orientation of the cluster , which is of course free to rotate 

[6. 7, ]. This model seems successful in reproducing t he small peak o bsen ·ed nea r the zero 

defl ection angle. which ·xp erimentalist call "superparamagnetism". But it is applicable 

only to Gel clustrrs. Furt hermore, the model ignore the angular momentum of t he super­

el t ron pin , which is kn wn t o gi,·e recoi.l efFects as known as t he Einstein-de Haas 

effect. 

In thi · the is . we propo e t.he inte rmedia te couplin.g model as a method to extract t he 

gia nt magnetic moment f:rom the defl ection profil e [8] . which is the main subject of the 

t hesis. In the int rmecl.iate coupling model. the giant magneti c moment couples wi th the 

ro tatioual cJ 'gree. of freedom tluough the a niso ~ropi coupling caused by the magnetic 

a nisotropy e nerg~·- Tlli~ mod I co,·ers t he superparamagnet ic and locked-moment m odels 

a . weak and st rong coupling limits, re pecrively. 

Th paper consist of fo ur cha pte rs. Chapter 2 is de,·oted to O\'erview •he Stern­

Gerladl experim nt for t he clusters. The method of the experiment is described in Sec. 

2. 1. T he method of the ana lysL i · el i cussed in Sec. 2.2 which includes the re,·iew of 

the superparamagnetism and the locked moment model. Th e experimental reswts are 

9 

d iscussed in Sec. 2.3. The main conteuts of the thesis are described in Chapter 3 in whi h 

t he full descript ion o f the intcrUl ediate coupliug mode l is giYen. The classical Ji mil of 

the pre ent model is discus. ed to interpret thr resu lt of q uant um mechan ical calc til at.ion 

of t he model in Sec. 3.2. T he calculation and analysis of the profi le, t he magnetizat ion 

and the m agnet ic suscep t ibility using t he imermecliate coupling model are also d iscussed 

in t he chapter. Th conte nts p resented here a re based mai.n ly on Ref. [9]. Exampl~'S of 

the ana lysis are gi,·en in the Ia ·t of this chap t r. Fina lly in Chapter 4, we present the 

conclusion of this study. 



Chapter 2 

The Stern-Gerlach experiment 

The Stern-Gerlach technique is orig·inally cle1·eloped to investiga te magn~tic propertie of 

atoms. The re ·ult of the experiment clarified the quantization of el~ctroD spilL To 1() 5, 

the technique is r>Yiscd and applied to the clusters. Irou clust<:rs of 2 to 17 atoms a ucl 

aluminum clusters of 2 to 25 atoms a re firstly im·e tigaled by the experinwntal technique 

[10, 11]. In the late of SO's through the beginning of9o· . . Two gro 11ps led by ell' Heer [12] 

and Bloomfield [13) intensh·ely investigated a mriety of magnet ic clusters like iron. nickel 

and gadolini um. The apparatus used in t lw Stem-Gerlach exprriment of the dusters is 

shown in Fig. 2.1. It consists of four main sections: three high 1·acuum chambers Rnd a 

magnet assembly. The metal cluster beam i. formed in the first chamber. sem through 

the gradient magn t. and then analyzed in the third chamber. In this sect ion , 1\·e r view 

the method a nd apparatus of the experiment. 

2.1 Experimental apparatus 

The cluster beam is fonn0d in the first chamber: the cluster source:; ction. The rlu ·wrs 

are produced b_1· R laser vaporization method. A pulsed :'\cl-dopecl yttrium aluminum 

garnet (Y.>\G) laser strikes a iron , nickel or some other metal disk and forms a hot pia ma. 

It is quenched in a shon pulse of helium gas in the chamber. Size of the clusl rs grows 

as the helium gas cools down the plasma. Then , mixture of helium gas and m porized 

metal passes through a tube ,,·hich term inates in a cylind ri cal nozzle. It subseq uentially 

expands into the vacuum. 

Tlte cluster beam, in whicl1 the dusters are fairly isolated. enters into the . econd 

vacuum chamber through the molecuhu beam skimmer. Inside this chamber. the cluster 

beam goes through two col limating slits. In the experiment by de Heer et aL the width 

11 
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TOFMS 

1st Aperture 

Detector 
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Figure 2.1: The whole apparatus of the Stern-Gerlach experiment of Bloomfield group. 

and height of the sli ts are 0.8 mm and -l.O mm , respectively. Bloomfield et al. select 

smalJPr s li ts of which width and height are 0.4 mm and 2.5 mm, reRpectively. Between 

the two collimat ing sl its, Bloomfield et a/. set a mechanical chopper wheel. 20 em in 

diamet.er, which ervcs two purposes. First, it pro,·ides a packet of the cluster of which 

velocity is . electt>cl. Second, it lets us dctermiue the time Tres · the clusters ha,·e been in 

the source. The chopper wheel rotates 100 times per second and nonnally blocks the 

cluster bram . . -\sit rotai.es , a narrow slit in the wheel transverse the cluster beam·s path 

and permits the beam w pa .. · for a period of about 100 ps. On the other hand , de Heer 

d ol. direct!,- pecify t h<' time "·hen the cluster creates and the cluster detected. They 

calculate velocity from the time cl.ifferenc · and length of the apparatuses. 

.-\ft<'r the collimation and chopping section. the cluster beam passes through a gradient 

field magnet. Thi magnet is 250 mm (125 mm) long for Bloomfield (de Heer) group. In 

th entrance of the magnet til ~ clusters feel the time-dependent force which may cause 

the tran ition of quantum states. We can estimate transition probability for Fe,v clusters 

using Liltldau-Zcner formu la. 

(2.1) 

The velociL.v of the clusters in the supersonic beam :i; is order of lOOOm/ . The spatial 
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,-ariation of energy level ;); carJ be estima~cd through rlw ·patial variation of magnrtic 

field and magnetic moment of the cluster. The strength of magnetic field outside the 

magnf't decreases as moving a\Yay from the magnet ant.! the magnetic field seems to be 

almost negligible in 1 rnm eli. tanr from the mag11et. The magnet ic momem of the cluster 

seems to be 3f-J.sJ\' at the most, in which ;v mean the numb -• r of <HOntS in the clu ter. The 

an isotropic interaction l -12 is 3G rnK per atom. Therefore. th~ probability~ r .V = 100 is 

much less than the order of 10 -:J and is negligible. 

The clust r beam enters the ionization region of the time-of-flight mass speclrometer 

(TOF:\IS) . located 1.183 rn clown tream [rom the gradient rnagnl't. In d J-lpcr's setup. 

the spectrometer is located 1.0 m clown tream from tb magnet. During th ir flight from 

the magnet to the mass spectrometer, the clu lers that e..xperienccd a tr:.n1 vcr e force in 

the gradient magnet will deflect away from their zero-Aeld trajcclOri('S. 

The clu ters are ionized with the light from an 193 nm .-\rF excirner lasE>r, whicb is 

..ynchronizcd with the vaporization laser. Deflections of the particles <ln-' meas ured either 

by a po ition-sensiti,-e time-o l~flight mass spect rometry or by , canning th collimaled 

ionizing light, across the beam. 

\-\' bile Bloomfield uses the latter method. de !-leer group applies both m thad to ob­

serve the cluster deflection. The beam of excit11er las~r to a narrow stripe is scanned across 

the beam. On ly those ·lusters that are expo eel to the narrow Ia f'r beam arc iouizecl. 

accelerated, and subsequent l_v detected in the mass spectromet<'r. The beam position and 

mass spectra are recorded to det.ermine spat ial loeations of each c-luster ize in the beatll. 

The time-averaged projection of a cluster's magnetization. in other "·ords the expec­

t.ation value of the quantum state of the cluster, is determined through tlte cluster·s mass, 

1nclus«r• velocity v, total deflection, d, the magnetic field gradieul. dB/riz, the length of the 

magnet, L. and the length of the flight between the magnet and the mass spectromct r, 

D. The experimenta l magnetization of the cluster per atom. l'expt is obtained as 

dmclusterV
2 

f.lexpt. = (dB/dz)(DL+£2/2)" (2.2) 

To obtain hot cluster a illuminate YAG Ia er to beat clusters is put before the entering 

the Stern-Gerlach field in experimental apparatu of de Heer group. Heating th clu ters 

by the laser at center a long the beam has several aclvautages. The main one is that the 

total angular momentum is not affected. since photons cany relati,,e]y small angular mo­

menta. TllU. the Ia. er heating increases only t.he ,-ibrational temperature. This method 
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can produce the hot cluster of which temperature are determined by t he Poisson statis­

tics. Though the magnetic properties of hot cluster i interesting. the as umptions of our 

model. do not cover the laser beating. 

The cluster tempera ture is the hardest parameter to control and al o have been in 

controver ial <lSpcct of the cxpeTiment even if the clusters are not heated by the laser. In 

fact t he experirnents performed by de Heer group [1--l] and Bloomfield group [15] apply 

the different method t.o control the temperature of the cl usters. 'V'e describe each method 

to meastue the temperat ure of the clusters by de Heer group and Bloomfield group. 

In the source, t he vapor produced by the Laser is cooled and expanded by the pul. eel 

injection of th helium gas. Cooling by the helium gas condensates the clu ters. The 

collisions between helium gas and the cluster cool the Yarious degree: of freedom of tbe 

clusters aL diffe rent rates. T he translational motions a re cooled best. The rotational 

dPgrees of freedom is cooled effi ciently but not a well. The vibrations, on the other hand , 

are cooled sub tantially less effectively. The rate of rotational and Yibrational degrees of 

frrcdom can be understood by two effects described bela"·· Firstly, the range of collision 

im· lved in the rotational cool ing is mnch longer than that in the Yibrational cooling. 

\'ibrational degrees of freedom is essentia lly cooled b~> direct impacts of t he helium atom 

with t he cluster. Secondly. the rotations con~t i tu te only 3 degrees of freedom. \\'hile the 

\'ibra tions haYE' 3N degree of freedom. 

B cause of pu lsed injection of the helium gas, pressure of he ex pansion i time depen­

dent. T he group of de Heer uses the temperature of nozzle and detect ion time to kno"· 

the tcntp rat ure of the clu ters. The detect ion time T is defin ed as the time difference 

betwcru the time when t he clu ter i cr<;ated and the time 11·1ten cl uster is detected. T he 

detection time reflects the pr('Ssure of the source. For small -r t he 1ra rm cluster is ex­

panded [16]. Therefore, they control relative vibrational temp •rature of the clusters by 

ohserYing nozzle temperature and detection timer. 
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Figure 2.2: The magnetization ob erved in the experinwut as a function of Lit<' residence 
time for Co115 clusters. T he magnetization satur~tes implying the cluster attain the tb rmal 
equilibrium 

ing vacuum chamber. Then., the cluster temperature is measured as the temperature of 

entire our e. They pmposed two evidences of lite duster equilibrating with the smuT 

Fir tly, they mea ured the magnetizat ion of cobalt clusters as a fun ct ion of the residence 

time in the source. At v ry short residence rimes, they observ a lmost no dPrkction of 

the cluster .. The longer a cluster remains in the source. the morr magnetic it appear . 

Tn the long residence time, more than 2000 ps, the maguctization saturates as seen Fig. 

2.2. Secondly, they performed the exporimeut in the different e:xpan iou condi tions and 

confirmed the results are not changed. 

From thes0 results. they confirmed the cluster vibnttional tem perature is equal to the 

source temperature, \\'hich is independent of the 'x.pausion couditions. Ho\\'ever. they do 

not mention about the translational or rotational temperatu re. In fact, for the analysi, of 

gadolinium clusters. th e~, do not adopt source temperature as t he rotat.ional temperatu re. 

Bloomfi lei et al. reported in Ref. [17, 13] t hat their sourcl' is designed to generate a 2. 2 
beam of cluster 1Yith the we ll defined vibrational temperature. In the de Heer group 's 

Method of analysis 

method, they u~c supersonic expansion to decide the relath·e temperature of the clu ter. The deflection profi le is the main result which includes information about magnetization of 

Howe,·er it is difficult to measure tbe Yibratioual temperature because a supersonic ex- clusters in the magnet. For example, the defl ect ion profile for sih•er ar.om ha. two peaks 

pansion is highly ouL-of-equili l rium prece. Bloomfield and coworkers adopt completely of which positions are ymmetric. !\ow that the quantization of angular momentum 

difl'errnt strategy. Their source permits clu ter to grow more slowly and to equilibrate is confirmed, tbe ana lysis of t he e..'l:.periment is not difficul . T he number of peak and 

thermally with their eJ tviromnent before undergoing a free-jet expansion into the surround- distance between the position of peaks represent the magnitude of Iectron spin and of 
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magnetic mom nt. respective ly Like the experiment for atom. t he deflection profil e of 

a luminum cltL~tcrs are symmetric discrete peak according to t he total spin of the cl usters. 

In 1986, D . ~ !. Cox and coworkers determi11 ed the magnitude of spin of ground state of 

aluminum clusters from tiP e.-..:peri ment [11]. The experi ment has been a pplied to a ,.aTiety 

of elements like iron. nick~ ! a nd gadoliniu m . However , unlike the profile of atoms, the 

profi les obta ined in these clu ters are asymmetric and do not have severa l peak . The 

profi les are explained ma i11ly as a result of two behaviors: superpa ramagnetism and locked 

moment. In this section . \YC r eYie" · t he rwo models a nd some ty pical results which can 

be fairly explainPd by each model. 

2 .2.1 Superparamagnetism 

Superparamagnelism is origina lly found in an ensemble of fine particle. of magneti c mate­

rials. In bulk fe rromagnetic materi a ls . the direction of spin magnet ic mom ent is influenced 

by two t~·pcs of interaction. t he exchange a nd the dipole interaction . The exchange inter­

act ion is qui tr short-ranged and a ligns the directions of spin m agnet ic mom ent, wherea~ 

lh dipole interaction is long-ranged and ant i- aligns the directions. \\' hen aU spins are 

a ligned to a single direction . . it is uneconomical in dipole energy. To reduce t he dipole 

enHgy, t he specimen is divided into domains in ,,·hi ch the direc tion of spins are aligned 

[18] . 
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Recently, S. :\. Kha nna and S. Li nderoth app lies uperparamagnetism for the clusters 

[5]. They assume that the cl u ters are smaller than the cri t ical sizes for rhe single domain, 

a nd tha t the m agnetic anisotropy energy is much smaller tha11 the thermal energy. They 

considered t hat. weak coupling per t urbs Lhe d irect ion of the magn et ic moment and explOTes 

t he entire Bolt zmann di stri bution of permitted orientation in a 1·er~· hort time. To connrrn 

the behavior being ach ic ,·ed in the Stern-Gerlach c.xperiment. t hey e t imate the relaxation 

t ime r of the clusters. The uperpa ramagnetic relaxation is desc ribed b,· t he Arrhcuius 

lmY with a relaxation t ime: 

('\ . 

r = roeltjj'T, (2A) 

where C i the mft.gneti c a nisotro p~' energy pe r un it YOiume, T is t he tcm perat ure . and 

V is he volume o f the cluster. The va lue or r0 , which depend,· on t h<> g~Tomagnelic 

precession time, is usually~ 10- 10 - I0- 13sec [22]. The 1·a lue of C lu been determined 

C ~ 2 x 107 ergs/cm 3 from the magnetization m easurements on granula r Hlloys of 20-"10 

A iron in matrices [23] . l sing these values. t he relaxation t imP about 100 K is estimated 

as 1-1000 ps. On Lhe other hand , the t ime of which th cluster pa. ses t hrough t he St r n­

Gerlach magnet. is a bou t 100 ,&~. Therefore, t he fli ght tim<' of t he clu ·ter beam is much 

la rger tluUt t he rela -..:ation t imer of t hP clusters . T hey conclude fro tLl th e res nlt th<lt t he 

cl uster in the Stern-Gerlach magnet behaYe as superparamagn t ic. 

The experiment can be ana lyzed by fit t ing t he magn~tizat ion CUlT<' to th ' Lenge,·in 

function. which e.xtract the m agnetic mom ent of the clu ters. In thi s me thod onl y t he 

average property of the profile is used to extract t he magneti c momPnt. The me thod doc 

A m agnet ic part icle b clo11· t he critical size con ist of a single magneti c domain. tim , 

it has a s ingle gia nt magnetic momen t J.t. \Vheu the assembl~· of the nHlgnetic pa rticles 

ha' reached a tate or thermodyna mic equilibrium 'Yi th the external magnetic fi eld , total 
not u e the information of t he shape of the profile. Howe1·er , as will be seen in Sec. 2.:3, 

t he m ethod can extract a reasonable Ya lue for t he magneti c moment or 3d t ransit ion meta l 

(2.3) cluster withont fitting the shap e of the profil es. Therefor . thi, phenomenologica l method 

.i s believed to explain the experiment of the 3d tra nsit ion metal cl usters. T h p rofil e of 

magnetization J.l.z is calcula ted. which yields the LangeYin fun tion , 

Jl , = L (x) = cothx- .!. , 
J.l. X 

where :r = f!tt. This t hermodynamic behavior is ob ervecl ir1 an ensemble of rnagnetic fine 

pa rticl es. Heukelom , Broeder , and Van R ij n ohsen ·ecl the magnetization curve in . ome 

cliff rent tempera ures in silica-supported nickel cata lysts [19]. Their r esu lt is illustrated 

in Fig. 2.3. T he magnetizat ion curve is clear!:,· scaled by B / T and the curve does not show 

hyst~ res i , which i. ty pical in t hermodynamic quil.ibrium propert ies. These propert ies are 

also observed in fine pru·ticles of iro n uspencled in mercury [20] or a col loidal suspension 

of single domain m agnetic iron oxide particles [21]. 

superpa ramagnetic clusters is considered tO be t he Gaus. ian of which widt h is sha rp 

independent of t he magnetic fi eld !.ike Fig . l.l. Iu a superpa ram agneti c cl uster. magneti c 

moment of a s ingle cluster reacl1es t hermal equilibrium . T ime average of magnet ization 

fo r each clus ters is decided by t he phase average. Then, profil e becomes Ga u sian profil e 

of which width decided by the therma l flu ctua tions. HoweYer, it does not expla ined what 

degrees o f freedom mainly couples with the super-spin of the cl uster , a nd achieve the 

thermal equilibrium of super-spin. 
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Figure 2.3: Th obtierved magnetizat ion of silica-supported nickel catalysi ]21 ]. The lower 
curve agrees with the modified Lengivin curve obtained by assuming the particle moment distri­
bution shown in the insert. The ratio of magnet ic field and temperature a is defined as a = -J!!!r. 
Values of 1 and !

5 
means magnetization of the cluster per volume and magnetic moment of the 

clnster per volume, respectively. 

2.2.2 Locked moment 

The experimenta l work on t.he Stern-Gerlach experiment for the gadoliniwn cl usters '"as 

published in 1992 by D. C . Douglass, .J.P. Bucher and L.A. Bloomfield [24]. They find out 

2.2. :\IETHOD OF .4..:\i_.J..LYSIS 
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Figure 2.4: Deflection profile of Gd21 as a function of the maguetic fi !d. T he solid rm·v0. arp 
the predict ions of the locked moment model using 7;01 = 5.8J< J1 = 2.56/JB per atom, and 4% 
of the clusters behaving superparamagnetically. The J'linTow peak iJ1 the solid curve uoar zero 
deflection in (d) is the 4% superparamagnetic component , show separately as the das hed curve. 

:\. Onishi, and K. Yabana [7] . They assume the magn t i fi eld ar t iP entrance of t he 

magnet is adiabatic, which makes the ca lcula t ion quire ea~ ie r. 

Ho"·ever. the interpretation of the peak awund the zero d eflection (F ig. 2.4) is stU! 

in w ntro,·ersy. D.C . Douglass, J.P. Bucher <1 nd L.A. Bloomfield considered that the Gd21 

that the deflection profile of the gadolinium clusters are t rongly depend on t he number clusters are mixture of superparamagnetic clusters ancl locked mom ent clusters. The 

of atoms. In some clusters like Gd22 . the profile is sim ilar with one of the superparamag­

nct ism, whil ', in t he other cl usters like Gd21 and Gd23, the magnetic fie ld of Stern-Gerlach 

magn t drasticall y spreads out the cluster beam. The profile of Gcbt is illustrated in F ig. 

2.-l.. 

T he spread ing behaYior bas ueen c nsidered as t he re ni t of the locked moment . The 

magnetic moment is dragged cllong the rotating cluster .in the locked moment model, which 

broadens the di tribution of m agnetization. The experimentalists t hemselves regard the 

spread ing profile as the result of locked moment behaYior and calculate the profile by 

solving numerically the cia sica! equation of mo tion. later. G . Bert ch and K. Yabana 

[6] calculated the profil e by using the locked moment model in a quantum mechanical 

approach. The classical treatment of the locked moment model is developed by G. Bertsch. 

peak consists of superparamagnetic clusters in ludiJlg all ensemble of the Gd 21 clu. tcrs 

[24]. Therefore they ca ll it --superparamagnetic peak''. On the other hand. C. Bertsch , 

:\. Onishi , a nd K. Yabana con ·iclered that the peak results from the locked momenr. 

model. In facr, t heir calculation of locked moment profi le reproduces the peak around 

zero deflection [7]. We reYiew their model in t he following, together with our calculation 

on the interpretation of the "su perparamagnetic peak". 

.-\ mentioned in Introduction . in th lock d moment model, the magnetic rnomeut 

strongly couple with the cluster latt ice; the magnetic moment i. frozen to lhe cluster 

lattice. The model is t he opposite limit to the superparamag.netism in which the magnetic 

moment is considered to be weakly coup! 'd with t he cluster lattice. 

First we discuss the quantum mechanical treatment of the model. In the model. t he 
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free magnetic clusters are rotating. The rotation of the cluster i cluuacterized by the 

moment of inertia (J;) with re pect to the body-fixed frame. The magnetic moment of 

the ·lusters (J.L ) is locked and couples with the magnetic fie ld B. The Hamiltonian of the 

locked moment model is described as 

(2.5) 

where J; means the i-th component of angular momentum of rotor J 11·itb respect to the 

body fixed frame (i = 1, 2. 3). For sim plicity, we a sume al l the component of the moment 

of inerLia are sa me. 

Th0 base. for matrix elements are selected as the eigenstate of the free rotating a--xial 

symmetric rotor; I.J /Of) = ~V~,1 K(Il) . where M. I\ mean the z- and 3-component 

of the fmgu.Ja.r momentum of the rotor, respectively. 

T he matrix elements of the Hamiltonian are evaluated as 

( I IJ I / I /') .< [J (J + 1) .JJ( .\1 H 1\ .\ = UliJ ,,I('rS/{,1(' ~rSJ,J' 

(
2J' + 1)1/2 J +!loB 
2

J + 
1 

(.J'K'lOIJK)(J' .\1'lOIJM) , (2 .6) 

where the magnetic fi eld B i applied along the z-axis. In the Stern-Gerlach magnet, the 

clust -rs feel t he force which is proport ional to t he gradient of the magnetic 6eld and the 

projection of the magn t ic moment with r<>spect to z-axi · (magnetization). The strength 

of the force rapid!~· changes in the grad ient magnet. The period of rotation is much smaller 

t ha n the period that clusters pa s through t he Stern-Gerlach magnet. Then, we suppose 

the deflection of 1 he cluster are proportional to the magnetization of each clusters. To 

calculate the profile. we cli~tgonalizc the matrix. and evaluate the magnetization of each 

st.ate. The 111agnetizati 11 of each clu ter can be eval uated by 

dE; 
Jl,(B) = -dB. (2.7) 
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t he source are supposed to be in the thermal equilibrium. Then the deflection profile is 

o btai.necl by 

P(l'· B)= L , rS(p- 11,(B)) exp[- J ,(.J, + l) /2..7okRT] 
· L ,(2J + 1)2exp[-J(J + l)/2..70kaT] 

(2. ) 

The profiles are ca lculated numerically and show deflectiou lo thr trong field s ide. 

Though the profile calcul ated by G. Bertsch a nd K. Yabana did not sh w the peak around 

t he zero-deflection point. our calculation for larger angular momentum reproduces the 

peak 11·ithin the quantum treatment f the locked moment model. 

The profile iu t he absence of rbe magnetic field is ana lytica lly calcu lated. For Lhe Fe50 

clusters of 15 K, "·hich is a typical condition of the experiment. the root mea n sq uare of 

angular momentum is approximately equal to 200. T h refore. the summation for total 

angular momentum can be replaced by the integral ; 

roo ;·J 1J ~ r:e Jo rlJ . -J dJ,· -.I d:\1. 

Therefore the profi le in LhP absence of the magnetic field is calculated as 

It;= !lo(JKlOIJK)(JJllO I.7M) = 1-'o~ 
J (J + 1)' 

P (p,O) = L /-li 
roo 1J 1.1 "" Jn dJ d[( di\J/Lo x 
0 -J - .1 
1 

= -ln(po/1111), 
211o 

( 
,1][( ) 

J (J + 1) 

(2.9) 

(2.10) 

(2.11) 

where 11·o is the magnitude of the magnetic moment J.l. . The profile shows th di,·ergence 

at i'= 0. 

\'ext, we calculate the magnetic field response using the perturbation t heory for the 

magnetic field. 

(2.12) 

As di. cussed in the Introduction. the variation of the magnetic field at the entrance of Using the selection rule of the 1st rank tenso.r: J' = J ± l. av rage of the magnetization 

the magnet is small enough to be regarded as ad iabatic. Cnder the ad iaba tic condition. with a given value of J is found to be 

any tran itions between energy levels do not occur even iJ the magnet ic fi eld is applied. 

Occupation probability of each state doe not change during the Bight. The clusters in 
(Jin IJ) = B:lol15 

,..., 36.J2 ' (2.13) 
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where, we use the Cleb ch-Gorrlan coefficients; 

(JM10IJ-1 M) =-

(J.\I1DIJ+1 J.J) = 

J2- :1[2 

J(2J + 1) ' 
(H-l) 

Putting (2.13) in lhe adiabatic stati t ical ensemble, a nd replacing the sum OYer J by an 

integral , we obtain for thermal expectation of the magnetization the expression 

(p) 2 Bpo 
--;;;; = 9 kaT· 

This differs from t he superparamagnetic response, 

(~t) 1 Bpo 
Po = 3ksT 

(2.15) 

(2.16) 

by a factor of ~- The dcp nd nee on temperature is proportional to 1/T. "·hich is the 

same as the snperpa ramagneti m. 

\\·r ne."Xt discuss the classical treatment of t he locked moment model. We assume that 

the duster ha,·e '"' ial symmetr~· wi h respec to 3-axis and t he magnetic moment is fixed 

to t he d irection of 3-ax i . The Lagrangiau of t he locked moment model becomes 

(2 .17) 

2.2. :\IETHOD OF .{T\ . .4LYSIS 

Eliminating J; and 1;; from Eqs. (2.18). (2.19) and (2.20). we obta in 

~1 02 + u·.~r(O) = E'. 

\\·here U.tr(O) and E' is d fined as 

(m, - Ill a cos ej1 
Uc~r(e) = ·J,:J . 20 -JLoflcosiJ. 

- 1 Si ll 
2 

E'=E-~ 
2.:13. 

Rearranging (2 .21) , we get 

f dt = ,:J, ; · dO . 
· yf2.:JJ{ E' - Ccrr(e} 

The expre sion is integrated from t0 to I; 

J du 
t -to = -,:J, JJ(U)" 

f(u) = (e + hu)(l- u2
)- (m, - m3 u) 2

. 

e = 2.:1rE' and h = 2,:J1p.0 B, 
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(2.21) 

(2.22) 

(2.23) 

(2.2-l) 

(2.25) 

(2.26) 

(2.27) 

where u = cos 11 . We se t three solutions of f(u) = 0 to u0 < u1 < u2 . For pNiodic 

solu t ions of the equation of motion. upper and lower limit of the intt>gral are ·u1 and u2 , 

re pecti,·ely. T he period of nutation can be e,·a luated as 

r=?.:J --j 
.. , du 

- U I J7T1i'j . (2.28) 

where (0, ¢. lf;) a re t he Euler 's ang!Ps [25]. \\"e flnd the three constants of mot ion. One is The average magnetization is calculated 

the Pncrg~· E gi ,·en by, 

(2. 18) 

J·U2 udu 11T U! IJM il. =- cos !idt = v ""'-
T f '112 ti?J 

0 .J ., ~ 
(2.29) 

We assume that the ,·ariatiou of magnetic field is adiabatic. The adiabatic constant with 

Since the Lagrangian does not include ·"'· the 3-component of a ngular momentum m3 is respect to 11 cli1·ect ion keeps constant during the Hi ght and found to b 

conserved. 
(2.30) 

(2.19) 
Therefore we can solve the motion o[ the cluster under the adiabatic field without integral-

The Euler angle¢; is a cycl ic coordinate which gi1·es rise to the constant of motion; the ing the equation of motion directly. The magn tization can be obtained using adiabatic 

z-compon nt of a ngular ruomcntwn, constant , and found to be 

[)£ 5\-m · 2 · ~ --:- = ,:J1 sm Orb+ m 3 cos v = m •. 
orb 

(2.20) (d) ~ e ah -- =-~ =-n. 
dh Je De 

(2.31) 
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To consider the ensemble average. the volume of the phase space is 

j. 1 1"" 1" ["" j'2

" 1 12

" dll = - dPo dO dm, do dm3 dv. 
2r. - 0 . - oo 0 -x 0 

The Yolume can be rearranged to be 

wher n and / 2 is defined as 

H 'nee t he a1·et·age of arbitrary physic~! quantity 0 is 

1 100 1' j'' (0) = - ,-) df dm, dm30 exp -<(1 . lnJ)/kaT. 
Z(B o - r . -I 

when' Z((3) is partit ion function: 

Z(13) = .Ia dl 11

, dm, f_', dm3 exp{-<(i ,m3)/ksT} 

= 2.:lr J2r. JJ(kaT) 312 

(2.32) 

(2 .33) 

(2.34) 

(2.35) 

(2.36) 

(2 .37) 

(2 .38) 

Th0 ph,v ica l quantity (') changes accord ing to the quantities we want to calculate. For 

example, we replace 0 to o(u - u) to calculat.e profiles. To calculate magnetization , we 

ser (') to ii. The profi le calculated by the locked moment model is illustrated in Fig. 2.5. 

\Ve should note that the pcrtk around u = 0 in the profile of :r = 1 is simi lar with the 

uperparamagnctic p ak ob en·ed in Gd 21 clusters. In the locked moment model with 

quantum treatment of Ref. [6]. t1t e superparamagnetic peak is not reproduced because of 

the quaHLtuit effect. We check that the superparamagnetic peak is a lso produced in the 

quantum treatment for the large angular momentum. 

The superparamagnet ic peak main ly consist· of the state of .\1 ~ ]\' ~ 0. Figure 2.6 
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of motion towards the direction of the magnetic field. it does not considerably affect the 

<n·erage of the magnetic moment. Th~ magnetic moment tays the r1Pgati1·e dir('ction of 

the z-axis rather than the positiYe direction. The fraction of rotatioual energ~· becomes 

maller when the magnetization is smaller. Then. the angu i<ll' ,·elocity decreases for 

smaller z . The period of the magnetic moment staying in z < 0 is longer than that in 

z > 0. Therefore. the average of magnetization shifts to the negatiw directiun of z-axis. 

The locked moment model ha1·e a possibility to describe the superp<uamagnetic peak 

without assuming the ~xistence of superpramagnetic cluste rs. 

Figure 2.5: The profile calculated by the locked moment model with elassical treatment. T lr 
scaling parameter x = -/!r!r. We should note that the peak around u = 0 in the profile of '" = 1 
similar to the S\Iperparamagnetic peak observed iu Gd21 cluster. 

illu . trates the motion of tbe orbit mlcuJated by the strong coupling limit of intermediate 2.3 Experimental results 
coupling model in the classical limit described in Sec. 3.2.2. The magnet i moment rotates 

about an a.-xis perpendicul~r to the z-a:xis. 1Yhich cau. e t he average of the z-com ponent of In this section we review th re ult of experiment for the 3d ferromagnetic metals. 4J 

the maguetic moment to zero. \\-hen t he magnetic field is applied , t he orbit rotates IYith elements. 4d tran ition metals which is non-magnetic in the bulk anti alloys. We also give 

long period about the z-axis. Though the applied magnetic field slightly hift the range a short review of the bulk properties concerning the rnagnetil rn. 
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Figure 2.6: The upper figure repre ents the motion of magnetic moment and total angular 
momentm11 J in the space fix d frame for I = 10, S = 1, M = 9.4,1( = 9A. 'If = 10'1 (see Sec.3.1 
forth notations). The points means intersection between unit sphere and angular momentum 
vector in th~ ~pace fixed frame. The lower figure is the t ime dependence of z-component of 
super-spin ;md th average of super-spin with and without magnetic field. Though the magnetic 
field makes range of motion narrow and shifts upwards, average of super-spiu decrease. 

2.3.1 3d transition metals 

Iron , cobalt and nickel are fami lia r elements "·hich how magnetism a t room tPmperature. 

The crit ical temperature of magnetic-nonmagnetic transition (Curie temperature) is ob­

served for bu lk material of iron . cobalt and nickel as 1043. l388 and G27 I< , respect ively. 

The magnet ic moment of bulk iron, cobalt and nickel are 2.22p0 . 1.72tln and 0.606J1e, 

respectively. The crysta l structu re of iron <llld nickel is body centered cubic (bee) lattice 

with lattice constant 2.87 and 3.61 A, respect ively. Con idering the s_,·mmrtry of the crys­

tal latticr. the magnetic anisotropy energy of iron and nickel as a function of orientation 

of magnetic moment has the same symmetry; 

(2.39) 

where cr1's are direction cosine with respect to body fixed fram<' . . ..\nisotrop_,. constants 

K l and K 2 are kltOIYn for iron 

(2.40) 

T he constants are much smaller for nickel. 

(2.-11) 

For cobalt . its crystal "truccure is hexagonal close-packed (hcp) structure with latti e 

constant a = 2.5lt<s and c = 4.07tte . Thus. magnetic anisotropy ene t·gy has an axial 

sym metry; 

(2.42) 

where in(} i. angle between synmwtr~· axis and m.agnetic moment. The constant J<; = 
0.33[K/atom], /(~ = 8 05 X w-2[K/atom]. 

Application of the Stern-Gerlach technique to clus ters started from the ex periment 

by D.M. Cox et al. to investigate the magnetic properties of iron clu ters [10]. l,;p to 

now. t he Stern-Gerlach experiment is performed for iron. nickel , cobalt, ,·anadillm and 

chromium . The superparamagnetic behavior is obsetYed for all kinds of elements. 

The Stern-Gerlach e.-..:periment of iron clusters are firstly performed by D.!ll. Cox et 

at.[lO]. The magnetic properties of iron clusters are exten ively investigated by de Heer 

and coworkers [26]. Figure Ll shows the repre e11tativc St rn-Gerlach profiles of clu ters 
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witb 120-140 atoms per clu ter for se,-eral ,·a lues of the deflecting fie ld. The peak of profile 

moves toward the right dir ction with wcreasmg field. The Stern-Gerlach experiment for 

nickel 11·as performed by both de Heer group [12] and 1 . .-\.. Bloomfield group [27]. 

Other 3d elements do not ha,•e spontaneous magnetization in the bulk matter. Es­

pecially. hulk vanadium is paramagnetic at a li ranges of temperature. with a relatively 

ternpenuure-i ndependent suscep ibility of about 5.8x10-6 emu/gat room temperature. 

The crvstal stru ture of ''anadium is body centered cubic (bee). In the smaller system 

of ,·anadium. the magnetic properties are not re,·cled. still in cont rO\·ersy. \\bile A.kob 

and Ta. aki ob erwd magnetism in 90 to 300 . particles [28], more recent P-'Xpertments 

on thin films have yielded both positi,-e and negative results for magnet ism [29, 30]. A 

calcLtlation for 15-atom ,-anadiurn cluster of the bee stmcmre shows that I -~s should be 

non-magnetic at bulk lattice spacing. However, the clu ter becomes magnetic changi11g 

lattice parameters larger. For I 9 clusters, magnet ic moment is calcula ted a 2 . 89~ts per 

atOm at bul k sparing. Holl'eYer, It abruptl y disappears a the lattice spacing fall s belo11· 

90% of the bulk spacing. The experiment on the non-magnetic clusters li ke Yanadium was 

performed by L.A. Bloomfield and coworkers [31]. The resu lts of experiment are de cri bed 

in the following srct ions. 

Profile 

T he observed profi les of 3d transi tion elements are simi l:u· to cobalt . iron . niCkel, a nd 

' 'anadium . A typical profi le is sho11·n ill Fig . 2.7. The deflection is single-sided in contra t 

to the familiar Stern-Gerlach deflections of atoms. The peak move tO\\'arcls the right as 

increasi ,,g field. At the ~arly stage of t he s tudy, th is behavior seemed strange. Once the 

snpcrparamagnetic t heory of the clusters are proposed, t h.ese behadors a re considered to 

be a sign of the sup -rp<uanlagneti m. 

Temperature dependence 

1.0 r::~,.....,........,"T-...,....,...""T"'~.....,..~,_..,-.... ........ ,_.....,....,......, 
~c:- O.B Co,s • 6 =0 . dBidZ=O 
" T,o=2z4?K • Bc0.405T, dB/dZ=149.4T/m 

~c:: : :: ,:~~...:;--.~.~:540T, dB/dZ=194.9T/m 

.,/ •, ... .._._., 
~ 0.2 ......... . ..... • ............. • ..... 

o .o_2~ ..... ~.:':"1..._._..._._!o ................ ~1..:•:......~2~ ............ 3~ ....... .....&..4 ........ .......J5 

Deflection (mm) 

Figure 2. 7: Typical deflection profiles of cobalt d usters. The temperature of the profiles i• 
Tvib = 247K. Profiles are averages of Cou 1-n9 • 

zation increases as increasing temperature. Recalling t he supi'rpantmagnei ic model. tlw 

fo rmer result i readily explained . Bloomfield et at. rega rd the d<'penclencc as one of Llw 

ev.idence of justii·y i11g the ·upcrpararnagnetic th eor~--

\\'e show an result of experiment by de Heer group of iron in Fig. 2.9. T he magnetic 

field dependence of magnetization i not .linear. T he Jn agnet ization curve is S-, hap .d. 

The authors attribu te the dependence to the electron sptn resonance accord ing LO 1 h 

anisotropic crystal field. T he clusters in the beam rotate at frC'quPw:y """''' Assuming 

t hat the an isotropic crystal field ha a cubic syrnmetr~-, the lowest frequeucy component of 

this perturbation is 4w,0 ,. The electron spill e.xperieuccs a perturbation of this frequ n y. 

\\' hen t he Larmor frequenc~- is equal to rotational frequenc_v. t he electron spin shows the 

resona nce. Therefore magnetization becomes sma lL P.J. Jenseu and I<. H. BPruwmann in­

,·estigate the re. onance a pplying t h Bloch equat ion 11·hidl i a familiar 111ethod to explain 

the electron resonance [32, 33]. They explained the rc\'ersed Lemp rature dependence and 

the S-shaped magnetic cu rve. 

Magnetic moment 

Th experiments to mea ·ure temperatu re d pendence of the magnetization of clusters are The magnetic moment of 3d t ransit ion metals ha. been extracted using uperparamagnctic 

performed by de Heer et at. fo r iron clusters, alld b~, Bloomfield for cobalt, ni ckel, and model. The temperature dependence and number dependence of the magnetic mom ut are 

nwadium cluster . The tcmperatur dependence of mag11etization of Bloomfi eld group is obtatned by t he extensive S1ern-Gerlach experiment . The temperature dependence of the 

differ nt from th - result of the de Heer group. T he m agnet ization of cobalt and nickel magnetic moment is exam ined by de Heer and coworker u i11g the laser heatmg technique, 

clusrE'l' im·estigatcd by L.A. Bloomfield et (Lt. li nearly depends on the 1/T, 11·here Tis the which is the original featlU'e of his apparatus. \Ve show in Fig. 2.10 the results with the 

urce t mperature. O n the other hand, d~ Heer conclude that the measured magueti- analysis using the Heise11herg model. Cun·e 1. 2. and 3 are the maguetization curves w 
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Figure 2.8: The magnetic field dependence of the magnetizat ion for cobalt clusters. The field 
dependence is liner. which expected from both superparamagnetism and locked moment. Note 
that the experimental magnetic moment in the abscissa means the magnetization. 
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Figure 2.9: An01mllons temperature dependence of magnetizat ion of the Fet20-l •IO clusLers with 
Tsource = 300K. Under the weak expansion T = 3.0ms, the curve is li ner. For stronger conditions 
T = 2.8ms for open circles, r = 2.5ms open quares, and r = 2.2ms full squares. there are 

significant deviations from llneari ty. 

the bulk iron , the H isenberg model taking photon absorption sta tics into account. and 

th<' HC' isenberg model inducling photon statics, respectively. For a ll curves the strength of 

exchange in teraction is assumed to be t he same in the bulk. They conclude that. these da ta 

eem to st rongly suggest that the Hei enb rg model cannot be applied to small clusters. 

Once w con firming that the clusters of 3d elements are superparamagnetic, we can 

exam in rhe number dependence of the magnetic moment of the clusters . So fa r. Bloom­

field and coworkers exam in d the number dependence for nickel dusters. Figure 2.11 

shows rhe magnetic moment per atom a a function of the number of atoms i.n a cluster. 

They find the oscillation in the size d penclence of the magnetic moment. which implies 
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F igure 2 .10: The extracted magnet ic moment from the experimenl <L>surni.ug superparamag­
netism. Curve (1) (2) and (3) are bulk magnetization curve. curve with absorption stalics of 
photons are take into account, and Heisenberg model calculation with pbotou stat ics. 

a shell effect. for the magnetic momen t. Two kinds of model are proposed ro explaiJI the 

shell structure. One is an approach from g omctrical shcU. another is a n ap[.>roach from 

an electronic shell. 

In a single atom , the sp in of ,·alence electron aligned to make as large tota l spin 

as possible due to the Pauli principle. Tbus. the ma ··netic mom ent of an arom is >H 

maximum. The atoms in the clusters exchange Yalence 3d ele t rans with surrounding 

atoms, which broaden the "·idth of 3d baud . Then the rnagHelic moment i red uced as 

the number of surrounding atoms becomes larger . The magnet ic moment of atom at a 

surface is enhanced because of the small coordination numb r. Because the significa m 

number of atoms are at surface in t he clusters. the enhancement of magnetization due to 

the surface atoms are important . In th approach in Refs. [34) and [35] . they upposed 

the coordination number dependence of the magnetic moment of atoms. I.n addition. 

they assume the crystal structure of the clusters. Actual.ly the results of the ex p<'riment 

how the min imum at _y = 13. This can be e.xplained that the clusters supposed to br 

a dosed shell icosahedron, in which the coordination number of tlw atoms are largest 

for each atoms in the clu ters. Ho"·ever. the minimum of magnetic moment at .V = 56 

cannot be explained by the simple geometrical model. According to the geometrical 
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Figure 2.11: The sheU structure of magnetic moment in nickel clusters. 

model. magneti ·mom em of the clusters should be minimum for :\i,5 of which the cr ·stal 

structure is icoS<lhedron . 

Another tn ocl~>l propo ·eel by Fujima et ctl. [36] is based on the electronic struct ure 

free electron in the cavity. In their paper. the states of 4s electrons are approximated 

to the state in t he harmonic potential of which width is dctermir1ecl the number of the 

atoms. Increasing the number of the awms in the cl u ters . the energy dif!"erence or the 

bunches of .ts l.eYels close each ot her. The number or major shell be low the 3d-band are 

increased. The first principle calculat ion ugge ts that the number of hole in the minor 

component of 3d-band nh are the same as the number of-! electrons. \\"hen the energy 

of t he 4 bunch decreases and enters into below t he 3d-band. magnetic momenr per aLOm 

increases. Therefore. the magnetic moment osci llates as increasing the number of atom, 

in tbe cluster . 

However t he re ult. of t he ca lculation overest im ate the amplitude of the oscilln tion. 

V . .\'. Kondrat~cev and H. O. Lu tz propo ed a h;·br id model [37]. They consider a strong 

molecular self fi eld H which originates frotl i the excha nge iutf'rac tion of the elect ron in the 

cluster. Tbus, the potentia l for t he -ls electron is chang d to I"(T) = m.w2r2 /2 - /w.;L/2. 

The electroui shell structure of the .ts electrons are smear~·d out bt:>ca use o( the self fi ld . 

In this case the number of holes in the minor spin band is given b_,. n11 = n~ - 6n, , with 

ng = 10 - (n,. - n~), where nv aud n~ are the nu mber. of the outer- and 4s-elcct rons per 

atom, respectively. The qua uti ty on2 an be cxprc s •d through th contribu t ion Ps of Llw 

-ls band to t he level density act ive electrons, 

(2.43) 

of the dusters. Accordiog to the fi1·st-pri.nciple ca lculat ion of t he nickel clusters of N = where t (c.J.) means top energy of majo ri Y (minori ty) spin band. The F~>rmi fun ct ion 

-! , 6. 8.14, 19, the .!eYe! scheme of the nickel clusters are con. tructecl b)· two typ es of levels: f(x) = (1 + exp(x/ksTJ -
1

- To evaluate t he density of state for the 4s elect rons, t hey 

a ba nd like wide bunch of Je,·el around a Fermi surface . and other narrow bunches of applied the semiclassical theory. The density of state is separated in to ·mooth p<u·t p')" 

lewis. T he main component of the wide bunch comes from 3d atomic orbitals and one and oscillation part P!c· Eacll parr can be expressed as 

of the t\IUTow bunch comes from the ..Js component. T herefore we ca ll the wide btmch 

"3d-ba nd". Each leYels pilt in to major and minor component Fermi le,·ellies a bow t he 

3cl-ban c.l a11d below the top of t he rninor component of 3d-band. The minox component 

(2 . ..! ·1) 

of 3d-band is always fi lled. T he magnetic moment per atom f.lN of a cluster is determined The Larmor frequency WL = eH /2mc satisfies tbe condi t ion TJ = u;Lfw » I. j 0 is the 

through the muubcr of hole· at the top of minor component of 3d band nh as ''N + f.lsnh· spherical Bessel fun ction , and the factor q< measures the stability of a trajectory: it permits 

The number of holes is related to the structure of 4s I vels. Like conduction electrons a smoot h t runcation of the contribution (rom longer period ic orb its and can be chosen on 

of metals, -ls electrons of nickel atoms travel around the atoms in the cluster, . They tlw basis of the m ean free path I or the conducti ,·ity of properties of the material as qk ~ l 
cattered only at a urface of the clusters. Then. t he 4s electron can be regarded as the with q -::= exp( -L/1), where L m easures the length of the primi t ive orbit. Tbe osc illa ion 
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part cau be calculated using the abbre,·iatious .'.". = <r - <t· ~.J. = Ep - EJ.· .3., = €F - <,. 

~-(1 + X,R) [ ( q sin (x) ) ] x=
2
r.(l-q)X, 

{;nsc ~ 1 arctru1 
' .Y(.V.v,)4r.q 1- q co (.r) x=2r.(t- 11)x, 

(2.45) 

where R = ysinh(y) "·ith y = 2r.kBTf.v, and the quantity Xs = (3n~,V) 1 /3 counts the 

munber of filled shell.. 

To take i11to account geometric shell. they ass umed that total number 4s elect rons a re 

expressed as 

(2.46) 

wh re n~ulk. n~urf a nd n~"'" are contribu t ion of -ls electrons by bulk , surface and curvature. 

T he results are compm·ed to experimental data iu Fig. 2.12. The shell model based 

ou the b<tnd structure proper t ies of strong fcrromagner, ic materials provides a better de­

. cription of th magnetism of tbe ferromagnetic cluster 

l B . 
~ 16 

~ 
.Jt. • 

L, 

0 • 

1/l 

• 
l/3 

• 

Figure 2.12: The thc01·~tical curves for shell structure of magnet ic moment. (a) free nickel 
dust.ers with n~ulk = 0.62 ~tnd [bnlk:surf: curv]=[l:3.l:l.O];(b) free cobalt clusters with n~ulk = 0.7 
and [bulk:surf:curv]=[l:3.1:2.1]. The olid lines display the resul ts of the present calcu lations 
will! a self-fi eld li = 0.7T (a) and H = l.9T (b). The dashed lines correspond to zero self fi eld. 

For Yanadium cluster . the Stem-G erlach e.:<pcriment re ult in 0.59J.Ls for V9 and 

0.1 /-lB for 199 under the assumpt ion ofsuperparamagnetism [31]. In the analysis a cluster 
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vib rational temperature as umed to be the source temperature. The induced moment in 

1 T field " ·oulcl be 0.0005/-ls for bulk Yanadium. well belo\1· the result of the experiment. 

2. 3 .2 4f lanthanide 

The solid of 4f la11thanicle exhibit a ,·ari ety of magnetic beha,·ior. that are far richer thnn 

those of trau. ition metal . The magnetic moment i formed by the loca.lizecl ,!f electrons. 

These electrons are interacted through the imlirect ex hange1 called RKKY interaction 

mediated by 6s and 5d band electrons. T he interaction dependent on t hl? di stance from 

atom, which cause non-collinear st ructure of the magnetic moment. T he a nisotropic 

interaction is usua lly stronger than the 3d transition metals. 

The profiles obse rYed for gadolinium clusters aJ'c shown in Fig. 2.13. They obsen ·ed 

two distinct behav iors. The profiles of Gcl22 arc ingle idcd and arP uarro"' Ga ussia11 

hape independent of the magnetic field , while the profiles of Gcl 23 are a ll broad. and 

their shapes depend on the applied fi eld. T he profiles of Gd17 resembles wit h that of Gd2.1 

at the lowest temp rature. A.t highest temperature. the profile of Gd 17 reSI' ntbles that of 

Gcl2z. They interprets the result in the follo\\'ing way. The Gd22 clusters a re a sumed to 

be superpal'amagnetic, becau e their profil es are similar to t he profile of cobal t, nickel. 

iron. The magnetic moment ofGd 23 is assumed to be lockecl to the cluster lattice, becau e 

th profile s imilar with that of locked moment model. For the Gcl 17 . thPy suppo e th aL 

the strength of coupling C<Ul be changed accord ing with the emperature . 

For the Gcln clusters they present in thl' paper the result of ana lysis based oo the 

superparamagnetism. .-\s shown in Fig. 2.14. the experimental magnetiz~ttion is pro­

port ional to the app li ed magn t ic fi eld. The magncti z~tt i on is presented as a fun ction 

of temperatu re and im·er e of temperature in Fig. 2.15. Tile magnetization is not pro­

portional to 1/ T. This fact contradicts to the superparamagnet ism. The ' consid<"r that 

the magnetic moment of Gd clusters changes with increasing temperature. ThP Curie 

temperature of Gel is 293 K \\'hi ch is far below t he one of cobalt. Thus, the magnetic 

moment may change with the temperature range of experiment 97-247 K. The extracted 

moment based on superparamagnetism is presemed in the Table 2.1. Tile result increase 

with the temperature. Though the trend is not expl ainNl ferromagnetic ordering. it can 

expl~tined the Gel cluster is a nti ferromagnetic. 
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Figure 2.13: The profiles of gadoEuium clust •rs. Typical behavior of superpararnagnetism 
(Gd22) and lotkcd moment (Gd23 ) are shown in upper figure. In the lower figure, the behavior 
of Gcl 17 is discussed. The profile of Gd 17 resembles superparamagnetism for higher temperature. 
while it resembles lot·ked moment in lower emperature. 
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Figure 2.15: The temperature dependence of magnetization. which expected to be proportional 
to 1/T in t.be superpa.ramagnetism. But this figure shows the magnetization is not proportional 
to 1/T 
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97 K 
147 K 
198 K 
247 K 

Jl 

2.94 ± 0.35J.Is/atom 
3.33 ± 0.40J1s/atom 
3.65 ± 0.44J1e/atom 
3.88 ± O..!IJ1s/atom 

Table 2.1: The extractec.l magnetic moment of Gd22 clusters u iug superparamagnet ism. 

2.3.3 4d transition metals 

The magn tic moment of -Ld transition metals is cliscu sed theoretically. Galic ia calculated 

rhe magnetic moment of Rl1 13 using the molecular orbital approach [38] . This calcula tion 

upposed fcc cluster structw·e, which is t ructure of bulk rhodium , and bulk inter-atom ic 

spacing. The predicted moment is l.OJ1n or 13p.8 per atom. HoweYer, Galcia noted 

Lhat the ca ltulat.ion may o,·erestimate magnetic momem. Reddy. Khanna, and Dunlap 

r cently prrclict.ed the magnetic moment of rhodium, ruthenium a nd palladium clusters of 

13- <J tom by a vaJ·iational calculation [39). Their ca lcula tion ass umed two types of crystal 

. tructures: icosahedra l and fcc. The inter-atomic spacing is optimized by mini mizing 

total energy. T heir calculation predi cted l.6JLB prr atom for icosahedral RJ1 13 ancl1.46,t8 

per aLOm for l"c '. They also predict<'cl the magnetic nlom<'nt of ru then ium and palladitun 

clusters as ttmiug icosa heclntl structure. Tbe pred icted moment i 1.02p 6 and 0.12/ln per 

aton1 for Rh 13 and Pd 13 . respect ive ly. 

. PL lying the Stern-G erlach technique, the magnetic moment of rhodium cluster 

Rbt2- tOo ar invP. t ignted by Bloomfield et al. [40, 41 ). T he est imat ion of the mag­

nPtit moment ba. eel on tit (' superpm·amagnetic model. Figure 2.16 shows the magnetic 

moment per atom "·i th a clnster s ize. In addit ion to o,·eral l decreasing in 11 as increas­

ing size. orn e rhodium cluster exhibi t anomalously IRrge ,·ruues for J.t. Rh15 , Rh16 , and 

Rh1g appear to b' unu ual magnetic. The extraordinary size dependence of J1 in rhodium 

cluster. inclicatrs that the clu~ter structm · itself is important in the enhancem ent of the 

magnetic momenr. They concluded that the magnetic moment is less t han 0.40/113 per 

atom for Rh 13 and l<·ss than 0.13ps for Rh 10; . 

Ruthenium and pall adium cl usters of 12 to more than 100 are also investigated by 

Bloomfield et al. [3 1. -+1]. R uthenium clusters ·ho"" magnet ism like palladium. The 

magMtic moment of Ru 10 and Ru115 i maller than 0.32j.j8 and 0.09J1n , respectiv I.v. 

The magnet ic moment of palladium is e Lima ted as 0.000 ± O.Ol.Jpn for number of atoms 

E 
~ I 0 Rhodium C lus ters 

0.0 L...-'--UL 

0 I 0 20 30 .!0 50 60 70 ~0 QU 100 

"'umb.r of Rhodium A roms 

Figure 2.16: T he extracted magnetic moment of rhod ium clusters. 

N = 100 - 120 . 

2.3.4 Alloys 

The only one Stern-Gerlach experiment for alloy is performed by T. Hihara, S. Pokrant 

and J . A. Becker for BiNCou clusters [42]. The experimental apparat us is a lmost the sam(' 

as t he other Stern-Gerlach experiments, e.'\:c-ept for the ource. Their . ource is illust rated 

in Fig. 2.17. The BiN and Cor,- clusters a:re generated in two ind cp~ud nt regions of th ~ 

apparatus. Bi N or Co,v i e,·aporated from a rotating rod by a :\d:YAG laser beant , is 

cooled by helium atmosphere in each source. These two clust · rs are carried by t.lt e heliu.m 

flo"" and mixed in a reaction chamber. where Bi,,·CoM cluste rs ar~ ge11 ra ted. 

The deflection behavior are similar to the defl ction of FeN, CoN or ~i,v clusters. 

Therefore the~·· nna lyze their 'Xperimental data based on til<' supcrparamaguetLo;m. 

Their result for the Bi ,vCoM (M ::; .5, N ::; 10) is sho\\'ll in Fig. 2. 18. T he elect ronic 

confi gurat ion of cobalt atom is known to be 4s23d 7. Howe,·er the Co,v clusters. electronic 

con figuration gradually changes to 4s13cl8 \\"hi ch is the configmation of the . olid ph a e 

of cobalt. For the Bi,v clusters. tbey confi rmed by th ir Stern-Gerlach exp rim ent that 

the Bi ,v cl usters ar e nonmagnetic, reflect ing the diamagn lie propeny of bulk bismnth. 

If the magnetic momen of Bi,vCoM cluster originates from the el ct ron spin of cobalt 
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a a 

Figure 2.17: The source for creating Bi N COM alloy. Cobalt and bi muth are generated inde­
pendenlly with two sources . Each clusters are carried by the helium tlow <tnd mixed together o 
make Di-Co hindi11g. 

with buLk configuration , the magnetic moment i described a fJ.eff = 9s JS(S + l)ttn. 

The g_v r magn~lic factor 9urr is approximately equal to 2. This approximation for Lhe 

magnetic momeut is called as ··ferromagn t ic spin only approximation". In Fig. 2.18, the 

magn tic moment. predict d by the ferromagnetic spin only approximation i: denoted by 

so lid line. The resu.lts of mixed clusters Bi.vCoM with J\J ;::> 3 are roughly described by the 

fe rrornaguet i ·spin OJll.Y approximation. However, for some species, the resul ts are smaller 

than the approximation . especially J\1 = 5. They propose that this red uction indicates 

Lhc in{luence of the Bi,v-Co5 b nd · on the Co5 cluster component. 

The results of AI = 2 can not be understood within the simple ferromagn etic spin 

only approximatiou. This indicates that the orbital angular momentum contributes to 

the magnetic lllOLllcut of the clusters. They suppose that the B iNCoM clusters consists 

of 13iN cluster aud Co2 diatomic molecule. ForD It symmetr ic molecule like Co2, orbital 

angular momenLLun does not quenched , and contributes to t he magnetization about a 

int ernuclear Co-Co axis. They estimate contribution of orbita l angulru· momentum by 

fitting ex perimental data. Tbe result. sho"· odd-even staggering with respect to the 

number of Yalence clectrOI\S in the Bi,,· unit. 
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F igu re 2.18: Magnetic moment of the clu tm·s per cobalt atom a~ a function of the number Nf 
of cobalt atoms in the clusters. The analysis of experiment i~ based on the superparamagncti$m. 



Chapter 3 

The Intermediate coupling model 

As seen in the previous chapter. the superparamagnctism and locked moment models 

seem to succeed to extract the magnetic moment of the iron aud gadolinium clusters, re­

pectively. However the profiles cannot be explained by the uperparamagnetism in which 

on ly the average is needed for analysis of the profile. The angular momentum of 111agnctic 

moment do not take into accouut in h locked moment model. Some gadolinium clust<?r 

like Gcl 17 can not be anal.vzed by both locked moment model and superpanunagnetism. 

In this chapter, we propose the in termediate coupl ing model. in w]Jich the super-spin 

couples the rotation t hrough the magnetic ani. otropy energy. 

3.1 The Intermediate coupling model 

In the present model it is supposed that all the electron spins are aligned in the ame 

direction through the exchange interaction. Thus, the electron spins arc iu su·etched 

coupli.ng states ha,·ing a giant total sp in S = tn •. N, where n, is the uumber of sp ins 

participa t ing the magnetic moment an <ttom. Si11ce the maguetic momeut i, proportional 

to the total spin . the cluster has a sing! · giant magnetic rnonJerJt expressed as JJ. = g.S, 

in terms of the electronic gyromagnetic ratio g,. 

Consider as a typical case the Fe 100 Cluster at temperature 100 1<. According to Kittel 

[43], the magnetic moment per atom for the bulk iron is 2.2p 8 . Then a . pin 1·alue of 

S ~ 2.2 x 100 x 1/2 ~ 100 and a thermal rotational angular moment un1 R ~ GOO in 

units of /i. These large nlues of Sand R justify a classical ~reaLment of the problem. In 

fact, in Sec. 2.2.2 the classical treatmen allowed the problem to be reduced to a simple 

and transparent calculation . This was examined for a simple case, by utilizing adiabatic 

invMiance 11·bid1 makes the calculation easy and tran. parent. 

43 
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T he formulation of our mod lis indebted to the t heory of deformed nuclei, especially where 11 is defined through the rela t ion K ; = uS'2 . In quantum Hamil ton ian. S' are 

rhe particle-rotor model: reader who want to know the theory can consul t standard operators and we are intere ted in their matrix elements. The ro:duced matrix element 

te-xtbooks on nuclear tructure. e.g .. Bohr and \ lotte lson [4-I J. obtained through t he \Yigner-Eckart t heorem is expressed by 

Our Hamiltonian H is expressed as a. um of t hree term : 

H = Hrol + Hcoupl + H mag· (3 1) 

wher the tcnns are defined as follows. The first term Hro, stands for the rotat ional energy 

of th ' clus•er which is expressed a 

3 R} 
Hrot = L 2J, , 

i=l 1 

(3.2) 

where R1's represent operators of t hree angular momentum components referred to t he 

body fixed fram , and Ji's express principal moments of inertia. The vibra tional modes 

are not taken imo account, because the Debye temperature (for instance. iiOO[KJ for iron) 

is much higher than the sou rce t mpera ture. In other words. h rotational motion is 

considered lo work mainly as >1 h at bath in the spin relaxation. 

Th second term H,nupl expres e a coupling potential between the cluster and the 

su p r- t' lect ron sp in . which origin ates from the cr.Ystal magnetic anisotropy energy caused 

by molecu lar or crystal fields. T he simple t form of the energy is the uniaxial magnetic 

ani sotropy, which has a lready been exilmined in Ref. [8J . We discu. s the coupling potent ial 

of uni ax ia l and cubic svmmetry in t he following. 

Tbc uni axial magnetic anisotropy is obseJTed i.n the bulk gadolininm and cobalt re­

fi cct ing s~·m rne try of its cr,·stal structure. The ani otropy constant is mea ured in the 

for Ill 

(3 .3) 

where sin (J is angle bet\l'een symmetry axis and magnetic morneut. The coefficient](~ and 

/\2 are observed in cobalt clusters ns ](~ = 0.33 [K/atom], K2 = 8.05 x w- 2 [1</atomJ. 

\\"c neglect sec-ond term of t he ani, ot ropic ener~· in (3.3) . The classica l form of the 

an isotropic interaction written in the components of the super-spin with respec t to 

intrinsic fram e 51• 

Hcoupl = tt5'2 
( si.n2 0 - ~) 

= -~uca2> (s') , 

(3 .4) 

(3 .5) 

(511 [sr JIS) =or (3.6) 

For example, for L = 1, one obta ins the familiar form JS(S + 1)(25 + 1). T he c-o upling 

potential is 

(3.7) 

Becau ' the coupling 1-lamilton.i an is scalar. the tota l angular momentum I = R + S is 

a good quantum number. ln addition, the 3-com ponenL of rotat ion HI ~ngulnr momenLUm 

R3 is consen ·ed because of the axial symmetry of th potrntial. T he basis 11re obtained 

'f! v t Mk = L (RrtSai iJI) v:d!J)f// !Sa) ' 
/lq 

The matrix element can be est imated as 

(Hcoupi) ~~R' =- !1
1 J(2R + 1)(25 + 1)( -l)S+Il' - l 

X (Rk20 IR'A:) W (RSR' S; ! 2), 

(3. ) 

(3.9} 

I 2" (SII [.S·]
2
IIS) . . . . . 

ll'bere u = 3v'2s+T which IS used m our numen cal calrula tLOn , the R acal1 coeffic:i eut 

11 -(abcd: f) is related to the 6j . ymbol [45J . 

For iron or nicked cluster . "·e assume that the clusters ha,·e au inLerna l cubic &tructnre 

and the potent ia l has cubic symmetry. Thi is true for observation of t he dircclion of ea y 

magnetization being [100], [010] and [001] for iron and nickel. The anisotropy constant is 

measured in the form 

(3.10) 

where ai ·s express the direc tion co. ines of sup er-electron spin . The ob en· cl values in 

the hul k are 1\-L = 36 [mK/atomJ and /( 2 = 13 [m!</atomJ for iron. and ](1 = -~ 
[mK/atomJ and K 2 = 0 [mK jatomJ for nickel. We consider onl y the first term in the 

present calculation . In order to formula te the a nisotropic in teraction , let us start with 
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the above classical picture for angular momentum variables. in \\'hich s;·s commute: 

8uS' 4 (oro~ + a~o5 + o~o~- ~) 
-v. { s;·' + s;4 + s~' - 6(Sil s;2 + s':} sf s7 s;2

) 

+~(S'2 + srl + sr2f} 5 1 2 3 

-uS'4 fJ { c_\"1(s) + c£1(s) + /¥ca"1(s)} . (3.11) 

Here c~~) (S) Stctnds for the spherical harmonic proportional to }-~,,( S): Si is tbe spin 

cotnponent \\'ith respect to the three axes in the body-fixed fram , S; denotes the sptn 

component referred. to the laboratory system, and 1.1 = 2/(1/n:N 3
. The electron spin 

prefers 1 he direction of four-fold axes of' the cubic symmetry. \\'hen. the direction of tile 

pin is a long the f'our-fold axes, the value of H,oupl bas a minimum energy -~1t8'·'- And 

"'hen the dtrection of the spin is along the eight axes of (± )J ± ~ ± ~) reprrsented 

by th, body-fixed coordinate. the value of 11~"""' turns out to be the energy maximum 

where v represents an index sp cifying states having the same JM. The matrix clement 

of the coupling term bet"·een the bases in Eq. (3.1-!) is esr.imated as 

(Hcoupl):lk.R'k' = J(2R + 1)(25 + 1)( - 1) +R'-I 

A~ (Rk-!" IR'k') T!' (RSR'S; !4). 

where J2S + lA~ = r!,_(SII [sr liS). 

(3.l.:i) 

In our calcu lation we use the potemial streugth parameter ·u1 = A~4 . \io\\'. the "·a,-e 

function (3 .14) and the energy in the source are determined b,v cliagonalizing Hm, + Hcoupl· 

Since there remains the (21 + 1)-folcl degeneracy in energy for.\/ , "·e ma.1· omit .1! from 

the la bel for tbe energy E,1 • 

The thi1·d term in Eq. (3.1) represents the interaction between an extc>rna.l magnetic 

field and the moments of the super-electron pin 

Hmag = - B · 11- = -flg.S,. (3.16) 

i-*uS''. In the quantum Hamiltonian, S' are operators and we are interested in their We choo e the direction of the applied magnetic field as the axis of quantization (z axi . ). 

matrix el ments. The interaction bct\\·een the -rotor and the super-electron spin in Eq. This interact ion breaks rotational symmet ry for the duster, but the magu tic quantum 

(3.LL) is gi,·en by number 11! defined abo,·e is sti ll conserved due to the choice of qnantiZ>llion axis. From 

(3.12) 

\\'Iter "takco the ,·alues of on ly 0 and ±-i and .-\±4 = ~.40 = -uJ32/35. Tlte wa,·r 

function of the rotor can be expanded in terms of the TJ functions [44], 

r,bn1,(11) = L f RkTJ,~drl). (3.13) 
k 

ince the Hamiltonian Hcoupl is again calar. the total angula r momentum I is a good 

quantum number for the first two terms of the Hamiltonians. 11,01 + Hcoupl · Accordingly, 

we select the base labeled by the total angu lar momentum and magnetic quantum number 

I , . The basis i obtained by the angular momentum coupling of the TJ function TJ1~k(l1) 
an I I 0') to 11.11). Th0refore, the total \\'ave f11nction of the rotor coupled \dth the 

snper-eleccron spin is exp1·essed as 

Eqs. (3 .14) and (3 .16), the matrix elements between two states are cAlculated as 

{3.17) 

\\'here the M -independent part h.,,,,, is expr ssed as 

h.,,,.,. = L_ Jnt·.rn'f' Js(s + 1)(2s + 1)( -1)n-s+' IV (I S I' S; RI). (3.18) 
Rk 

For the quadrupole coupling, the projection of angu lar momentum of rotor R \\'i h respect 

to 3-axis is conser"ed. Therefore the matrix element of H mag can be calculated using Eq. 

(3.8) as 

(\livkiM! Hmagl\liv'!-'1'.1·1) = -Bg,li/21' + 1( -1) 1
'+R- '+I (f'.\110!1.11) 

'L r:t !'n''' Js(s + 1)(2S + 1)1V(JSI'S: RI) . (3.19) 
R!-,_ 

Wvw = L (R~tSuliJ\1) TJ{i(O)Jni ISO'). (3.H) For implicity. we et the moment of inertia around the intrinsic axes to take the 

Rk<r same Yalue, namely, :11 = :12 = :13 = :J. In this case, total \\'ave function are classified 



48 CH.-\PTER 3. THE lXTER\IEDJ.4.TE COl.:PLI.\"G ,\JODEL 

by an additional quantum number 'iik = 0.1. 2. 3 (k mod -l), ince Hrm is diagonal and 

H coupJ couples w only the states ha\'ing k quantum numbers different by cl. This point i 

different from uniaxial anisotropy. in which k quantum mu11ber is strict ly conserved due 

w thP axial symmetry. The total wa,-e funct ions in the magnetic field are expressed as 

~ ~ar., .\1(8)) = 'I:,F~~,M(B) IWvlr.,.\1), (3.20) 
vi 

where o labels the tate in the same 1fk, M. 

To cOLnpare with the experiment, \\'1:' calculate the aYerage magnetization, which we 

regard as the · n emble aYerage of (S,). This is the sum of t he product of the expectation 

,-alu(' of S, and the occupation probability of each state. :\ow we proceed ahead with 

the important. assumption that effect of the magnetic field is adiabatic when the clu ter 

passes through Stern-G rlach magnet. Th variation of the magne ti c fi eld is s low when 

the cluster enters into and goes out from the Stern-Gerlach magnet. First tbe clusters 

arc r tained in the source regiou. In this region. as t lw cluster ensemble is in thermal 

equiJibrium , l ite occupation probability of each quantum state is proportional to the 

Boltzma nn factor cxp( -Ev~,.,/kaT), "·here Ev 1 ~. is t he energy in the ource. 

The magnetization of each state in Eq. (3.20) is calculated as 

(3.21) 

"·!Jere o (vi) tancl s fm rbe label of states connected ad iabatically with the states (vi ) 

def-ined ilt the absence of a magnetic field. 

Unde r the ad iabatic concli tion , any nansition bet"·een energy levels doe not occur 

even if a magnetic fie ld is applied. T be occ upat ion probability of each quantum state is 

not altered du ring t li e Hight. Then the deflect ion profile is obtain ·d by 

P(. B T)- 1 "' -( S ) - (-Evl•• ) s, • - Z(T) ~ cl s- z,a(v l)rr,M exp ~ . 
vlQM B 

(3 .22) 

where the pat·tilion fun ct ion Z(T) ii; gi,·en by 

Z(T) = L (2 J + 1) exp (-E,r., ) . 
vh, kBT 

(3.23) 

.-\ ccording to Eq. 3.22. the profile is const ructed b~· many spikes. HoweYer. smooth 

profilp is observed berause of cl u ter beam being spread. Then. "·e smear t.he spikes b!' 

the Gaus ian function of which width i set to O.DlS. 

3.2. CLASSICA L LL\IIT OF THE JXTERMEDIATE COL'PLJSG .\IODEL 

The magnetization. the ensemble average (S, )ennv· is expressed by 

(S,)euav = / sP(s. B. T)ds. 

-!9 

(3.24) 

3.2 Classical limit of the intermediate coupling model 

Though t he cla. ·s ica! mechanics does not play a role as a fundamental theor~· after the birth 

of t he quantum mechanic , it is sti ll meaningful in giving an intuitive in terprC'tat ion of 

quantum states. In this sect ion, we discuss the cla. ical limi t of rite intermediate coupling 

model to interpret the results which " ·ill be obtained using the quantum th ory. In the 

intermediate coupling model the rotor is coupled with the super-spin. To describe the 

classica l motion of the sp in, we ap ply the boson representation of the an •ulru· moment um. 

There a re three kinds of representation of angular monwntum. I-l olstrin Primaekoff 146] . 

Dyson [4 7J and Schwinger 148] representation. In the intermediate coupli tlg mod L t liP 

magnitude of angu lar momentum of the rotor does not consetTC b cause uf the anisotropic 

coupling. Only t he Schwinger representation of angu.lar momentunJ can represent the 

mixing of states which ha,-e different magnitude of an~?;ul ar motnen•um \vith two kinds 

of bosons. Therefore, in t he following, we d scribe thr Schwinger rep res nUt t ion of the 

angular momentum. 

3.2.1 The Schwinger boson representation of angular momen­
tum 

The boson representacion of angular moment um i a composite opeJ·ator of bosons which 

fulfill the commutat ion r lat ions of angular momentum opcrarors. Sclndnger introclucPd 

the boson representation of the angular momentum operarors using two bosons A and 13, 

\rhicb act in a space of two-dimensional oscill ator. tatcs 

1 - • 
lnr~nB) = ---(ri)"A(B)" 8 JO 0). 

JnA 1nB 1 

The Schwinger repre entation is gi,·en by 

_j+ -t (J+)a=f3trl. 

j_ -t (_f_)B=(J+)h = _4tf3, 

J, -t (_f,)H =~(f3tf3- .• jt _ _:j). 

(3.25) 

(3.26) 

(3.27) 
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These operators fu lfi ll the commutation relations of angu lar momenmm (A.1). The eigen­

states of the angular momentum operators can be written as 

(Bl)f+M(_;ity-M 
11:\I) = [(I-.\!)! (! + !\I)!] . (3 .28) 

In this pace. a generating operator of a state IL + l Lo + m) from IL Lo) (E(/m)) can be 

given as 

where i'(n) is gi,·en by 

E(lm)I LLo) = IL +I Lo + m), 

E(lm) = {( l + m) · 7)(1- m), 

(3 .29) 

(3.30) 

(3 .31) 

Jn the ynantuut mechan ics of the rotor used in t he intermediate coupling model , w 

in troduce t lt e bod~'-fixed frame and component of angular momentum from the frame . 

. -\ s w(' de. cribe in the Appendix A.l , the angular momentum algebra in the bod' fixed 

frame is different from the one in the space-fixed frame by sign . Therefore lYe describe 

the extend Schwing<'r boson representation to describe the quantized rotator introduced 

by :\1. Yamanura. T. Suzuki and H. lcbihasi [-19, 50]. 

The quant ized free rota tor ha,·e three constant of motion; the total angular mo­

mcntulll, t ile z-corn ponent of angular momentum and t he 3-component of angular mo­

rn utum . Therefore it may be rea. onable to introduce four kinds of boson operators: 

(,4 .. -\ t), (B . .Bt). (b.bt) and (iUl) which is mutual! ~· commutable. 

. < = ~(.Bt.B + jt:i _/}/;_at a) . 
2 

- 1 T t J = 2(b b + ii ii,) . 

.Jo = ~(.8 1 8- At.:i), 

]'-l(l}b ·t·) o-2 -aa. 

(3.32) 

(3.33) 

(3.34) 

(3 .35) 

T he eigenstaLe of S. i, }0 and }0 with corresponding eigenvalueS. J. J0 and J0 is gi,·en b" 

I ' - (Bl)$+J+Jo( ... \t )S+J-Jo(bt)J+Jo(at)J-J[, 
IS- JoJo) - (5 + J + Jo)!(S + J- J o)!(J + Jb) !(J - J o)! IO) (3.36) 

s J Jo Jb 
i ·i i 

t h h h 
h h i 
h h h 

Table 3.1: Possible conbinations of the label of the angular momentum. i and h means integer 
and ball~integer. respectively. 

where IO) denotes the boson 1·acuum. Betause the bo. on number and the pOII'Prs of eaci.J 

boson operator should be positil·e integers or zero.'"<' get 2(S + J ), 2./ and S +.! + ]0 . 

S + J- J o .. J + J~ . J - J0 are positiYe. Therefore. S. J. J 0 and J0 should ob y thr following 

conditions: 

s = - J. - J + 1/2. - J + 1, .... - 1/2,0, 1/2, 1, .. . ' 

J = 0, 1/2, 1, 3/2 . .. .. 

.fo = -S- J, -S - J + 1, · · · . S + J - l. S + .J. 

J~ = -J, - J + 1, .. 'J- 1, J. 

\\'e in troduce fo llowing operators in addition to s, .J. }0 and }0: 

J-tl = -~.81.4 j(J- Jo)(J + Jo + I) , 
2 y'(S+.J-Jo)(S+J+Jo + l ) 

j_J = ~Ar.B ..j(J + Jo)( J - Jo + l) 
2 y'(S + J + .lo)(S + J - Jo + 1) 

,/., - lb· t·t 
-l- 2 (l . 

(3.37a) 

(3.37b) 

(3.37c) 

(3.37cl) 

(3.38) 

(3.39) 

(3.-10) 

One can sho11· that the set (.J+1, Jo, L 1) and (.J~ 1 , J~ , }'_ 1) sati fy the algeb ra of angular 

momentum (A.7) and (A.16) in the entire boson space. Howe1·er, the entire bo~ou. pace 

is larger than the corresponding angular mornentwn space. We should map the angu lar 

momentum space to the subspace of the boson space. The possible state vectors of (3.36) 

is represented in the Table 3.1. We find t hat the subspace pccified by 8 being positive 

integ r is con istent wi h artgu lar rnotnentmn space (:\.2). Furth<'rmore. t he operators 

j ±t and .J~ 1 are closed in the subspace {ISJJoJ~) with IJo :<=;; J} . Therefore the operators 

·h1's and J J.1's can be interpreted as the bo on repre f' ntation of the angular momentum 

1·ectors .in each subspace spec fiecl by S. The 'D-operator is defined as the generation 



52 CHA PTER 3. THE I_VTER..\JEDIATE COVPLISG MOD EL 3.2. CLA SSICAL LIMIT OF THE LYTER,\IEDIA.TE COUPLL\'G M ODEL 

operator of IS+ a; J + p Jo + JJ .J~ + tt) from IS: J JoJ0): 

V(a: p.\1 J.£) 15 ; J.loJ~) = IS+ a; J + P Jo + JJ J~ + p). 

D(a: p.\1 p) = B(a + p + M ).:i(a + p- M)b(p + p)a(p- J.t) . 

T he 1J-operator should satisfy t he fo!lo1Ying rela tion in each physica l space: 

i>~7~1S: RR0Jfp) = "£(J .IoL .1 IJ R + pJo + M ) 

(3. -11 ) 

(3 .42) 

x (-l)P-1' (J + p.J~ + pJ - ~t!JJ~)IS; J + pJ0 + !11J + p). (3.43) 

The opera tor can be e..-,pressed as 

where 

fj (l.) - "iJ( ~lvP-> 
Mtl- L...-J .Up (Jtl · 

p 

vi:;~= iJ (pM )(J - pJoLM IJJo + :11), 

15'~~> = V (p, p.)( - 1)"-''(J + pJ~ + pL - 1•I J Jh) , 

V (a: pMp ) = iJ (a + p . .\1)15' (p, p), 

t5 (a + p, M ) = B (a + p + M )A(a + p- M ), 

V' (p. tt) = b(p + p)a.(p - p). 

3.2.2 Classial limit of the intermediate-coupling n1.odel 

(3.44) 

(3.45) 

(3.46) 

(3.-17) 

(3.4 ) 

(3 .-ID] 

originated from the crystal magnetic anisotropy energy caused by m o lecular or crystal 

fie lds. The sym metry of the coupling potcnt i!l l is changed reflec tirtg to the s~·m metry 

of the cr)•sta l sti·ucture. In this th , ·is , we cou:;ider two types of symmetries. O ne is 

the d ipole symmetry whi r h is reali zed for the hcp structur in the bulk. T he coupling 

Hamil to nian for the quadr upole symmet ry is gh·en in Eq. (3.4). 

H '2 ( .. , 2) <oupt =uS s tu· B- 3 (3.52) 

- (1 '2) -11 3- S3 . (3.53) 

Another is the cubic symmet ry rcaliz<:>d in fcc or bee structu re for the bulk . T he coupling 

Hamil tonian of the pre en t symmetr.1· is de. cribcd in Eq . (3. ll ) a. 

H coupl 8 S ' <( 2 2 '! 2 2 2 I u a 1a 2 + u 2o.3 + o3o 1 - ::-) 
v 

-u { s;• + S~4 + 5~4 - G(s;2 s~2 + 5225~2 + s;l 5?) 

+~(5;2 + S22 + S'n2
} . (3.54) 

The third term in Eq. (3 .1 ) represents the interact ion between the ext rna! magneti ·field 

and the moments of the super-elec tron spin 

H rnag = - B · M = - B g5 S,. (3.55) 

l-la miltoni clll of the pres ut model H is a lready im roduced in Eq. (3.1 ), 

H = H cot + H coupl + H mag· 

The tr ansformation coe ffi cient in. t he Car tesian coordi nate between space-fi.,ed and body­

(3.50) fixed fram e .4.;1 is defined as 

where t he t<'rms ::~ re d~fined as follows. The first term . H rot • stands for t he rota tion al 

energy of the clu rer which is expressed as 

(3.51) 

where R,'s repre ent operato rs of three angular momentum components referred to tbe 

body fixed frame. and .:!; ' express principa l moments of inert ia. The second term , H coupl· 

xpresSl' a coupling potent ia l between the clu ter and the super-electron spin , which is 

The coeffi cient is rela ted to the 1J function which is also a t ran form ation coeffi cient in 

the sph eri ca l base . 

s~ = 1)~ysY • 

A.,; = T;1, 1J ~,,Tj·;,t. 

(3.57) 

(3.58) 
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·\ve apply the Hei enberg equation of motion to the total Hamil tonian using Eq. (3.53) 

for Hcoupl, 

/ = -i[f;. H] 

= -<tjkSJji~- gsBA,iJta31 S~ + O(li). 

' : = - ·i[S; . H] 

= -e,1.wjs~ + 2us·~s(26,.H,,J- g BA,,;f,jks~ + O(li), 
;. I • #0 1 

R, = - t[R, H] 

= -f;J•w}.k~- 2·uS~S(26,.+6,,J + O(li). 

Snpp sing Hcoupl to Eq. (3.54). we calcu la te t he Heisenberg equacion of motion, 

r: = -i[f; , H] 

(3 .59) 

(3.60) 

(3 .61) 
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tate of the Schwinger boson representation of angu lar momentum which can describe 

the variation of the magnitude of angular momentum. The coherent state of angular 

momentum is applied to a classical state of upcr-spin: 

]att'bb'A .-1. 88' ((") = Jc)J(("). (3 .68) 

"·here ]c) and ]((') ar the coherent state of the Schwinger bo. on rl:'pr sentat ion of angular 

momentum and of angular momemum. n;specti,·ely 

]c)= exp(BBI + .·L·l t + bbt + au1- B.B - r~·A- b·b- a·n ). 

ICC)= exp((S~- C S~)]SS) . 

(3.69) 

(3.70) 

'\ote that the ISS) is the state in the body fixed frame where the cornmu tat iou rule 

is different from the space fixed frame by . ign [.52]. The coherent stat<' (3 .70) i ~ th 

= -f,Jkw;iL + gs8A,Jfijks~ + O(li). 

s·: = -i[S; .H] 

(3.62) eigenstate of the lo\\·ering operator s_ with an t> ige ll\·alue (. ThP expectation value of 

s;s are calculated as 

• • • ''2 C/2 . . , ( ) = -f,1 kwj5~ + 16uS;_Hs;+2(S,+2 - .J;~1 )- gs BA,1t;jkSk + 0 li, 
..,, ~ 

R ; = -i[R;. H] 

= -<,1 k..;;j k~- 1 GttS;+ls;+2(5;~2- s;:_,) + O(li). 

where w~ = ~ -
The tinw dependence of <.:oefficient A 10 is defined by the Heisenberg eq uat ion ; 

,..iio = -iT;,,['D;,, H]T;;/ 

= EijkWj Ako· 

or 

(3.63) 

(3.64) 

(3.65) 

(3.66) 

(3 .67) 

The equations are s till in an operator form, " ·e take an expectation value of the equations 

to make a corr~ paneling cia .. ical theory. ThC' coherent state is usually defined as the most 

"cia sica!'' :tate, that is, the quantum state wi th minimum-uncerta inly [51]. However. 

the coherem s ate of angular momentum can not describe the nriation of magnitude of 

angular moment um. wlli.\e the angu lar momentum of rotor or the total angular momentum 

change the magnitude for the motion in the magnetic field. vre adopt the coberen1 

(St) = Ssinii cos1p. 

(S2) = SsinOsin u•. 

(S3) = ScosiJ , 

where the parameters 0 aud If) are defined as 

liJ . ( = 2 exp lO' /?. 

(:3.71) 

(3.72) 

(3.73) 

(3.7-l ) 

Then the coherent state is interpreted as a state that the angular momentum directiou is 

represented by (0¢). 

The coherent state (3.69) is the eigenstate of the boson. !J. A, a and b with corre­

sponding eigem·alues 8 , .4, a and b. vYe par~metPri'l..e the rl>\Ss.ical expectat ion value of 

the bo on operator B , A. b a nd rt to get t he classical interpretation of t he coherent sta te. 

8 = V2f -i¢' / 2 Jcos2 0'/2 + Sj2 Je-io' l2 , 

.4 = V2feirf>'/2 J sin2 ii' / 2 + S/2! -i>i'' /2 , 

b = V2J ei"'/2 cos 0 /2ei"'/2 . 

a= V2fe-i<>/2 sin0/2ei"/2 . 

(3.75) 

(3.76) 

(3.77) 

(3 .78) 
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The expectation Yalues of Tis.ni.nfo. and nJ0 for jc) are given by 

•
1 

n 2 2 2 2 
(cjns c)= 2(Bc +ric - be- ac) = nS. 

• /l, 2 2 
(cjlil jc) = 2(bc +a.) = ru. 

· n 2 2 (cJiiloJc) = 2(Bc - Ac) =lifo. 

• n ? 2 
(cllilbJc) = 2(b~ - ac) =hi~. 

L.: nder the paramrlerization, J/ s and ! j' s are expressed as 

[L=RsinO'cosq/. 111 =RsinB'sin¢', ! ,= R cosO', 

r; = RsinOco d!. I~= RsinOco ¢, !~ = Rcos(J , 

(3.79) 

(3.80) 

(3.81) 

(3.82) 

(3.83) 

whrre we a pply the following approximation in the derivation of Eq.(3.83) . The fluctuati on 

part of tlw coherent state which is of order of n is neglected. The approximation is j ustified 

nnder l<uge angular momentum. \Ve approximate that the Plank constant is zero. \\"e 

take tha i R is infinite and that liR is constant. The quantum number 5 i. t.he same order 

a8 that orR. and the fluctuation of S is vanished. 

If Ux-Iy· £, )and u:.I2.!~) can be rega rded as angular momentum \Yith respect to 

spa.cc-fixed frame an I body-fixed frame the angles (IJ', ¢') and (1:1. <D) specify the direction 

o r the angu lM momc'ntum vector in both fram es. The sets of the angles (¢' , 1.1' ,1//) and 

(¢. IJ , ¢) are ~xpect.cd to be regarded as the Euler angles spec ifying a frame ''"hich can b~ 

obtained by rot.ations from the space- fix ed frame and body-fixed frame, respecth ·ely. This 

frame iti cal led Q-frame of which the 3-axis coincides "·ith the direction of the angular 

momentum ,-ector. 

Th expectation Yalue of D(p.\1) and D(p.\1) <tre reduced to 

D(p.\1) -t ei.\lo'eipc• . D'(p.\f) -t e-•Poe-P''"'" 

·s ing (A.63) . the C lebsch-Gordan operators arc a l o given as 

(3.8<1) 

(R- pR0JMjRR0 + .\f ) -t (R- pRoJMIRR0 i\1) ~ d\~~(¢') (3.85) 

( -l)P-"(R + p\1o + 1tJ- J.t)R11o) -t ( -l)P- I'(R + pl1o + J.t)- J.tJR00) ~ d~;,l( -1:1). 
(3. 6) 

Thercforr. r-uumber approximations of D~~~ and V~~) can be giYen in the following forms: 

1J(J J = v (JJ ("/ IJ' w') ."-lp Alii 't'' . ' ~ 

'[)- ,(.! ) - vlJ) ( n ) PI'- M, -qJ.-u.-'liJ · 

(3.87) 

(3.8 ) 

3.3 .. \lAGNETIC SLSCEPTIBILJT) . 

Thus. '~'e can obtain the approximate expectation ,·alue of 7)(.1) 
All' 
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(3.89) 

Therefore, the coherent state is regarded as the most clas. ical . tate of the rotor. The 

~xpectation Yalue of the angular momentum operators or the 7J-fnnctions for the state 

(3.6 ) con·c ponds to one of the classical values. Therefore, t he cia. sicaJ equa tion of 

motion is obtained by replacing the q-number "'ith c-numbcr iu the equation (3.62-3.67). 

3.3 Magnetic susceptibility 

\!agnetic us ·eptibility plays an importaut rol0 in anal.1·zing the experiment in "'hirh 

the magnetic field i so \\'eak that magnetization lim'arly drpencls on the nmgnetic field. 

Examining the magnetic susceptibility. "·e can ea~i ly compare the pr sent model , locked­

moment model. and superparamagn tism. \\'e calculate thP magnetic suscepLibility for 

intermediate cou.pling model and discuss the weak and st.rong 011pling limits in following 

subsect ions. 

For the present. let u eli. cu s a general rxpres ion for magneti ·susceptibility. Using 

the Feynman theorem, "·c obtai n the expectat ion 1·alne of 52 a. 

(3.90) 

(3.91) 

The magnetic susceptibility is expressed as 

f) ' I fJZ I X=-- S, =- ---?.::;Eenav 
fJg,B ( ) enav Dgs=O fJ(Bg,)- /Jg. =O 

_ 2 "'"' l( iJi ,,i'MIS'.jili,JM)I2 ( E,1) -- z T L L , exp --.- , 
( ) viM v'l' Evt- E,/J' knT 

(3.92) 

where :::,.Eenav means the ensemble a''erage of energy birr and partition function . 

We will deal with the strong and "·eak coupling limi ts of the su. cept ibility (3.92) in 

Sees. 3.3.1 a nd 3.3.2, respectively. The susceptibility in intermediate coupling will be 

calculated uumerically in Sec. 3.3.3. 
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3.3 .1 Susceptibility for strong coupling 

'Ae first discu. s the energy eigem·alue and the eigenstate of Hco, + H coupl in t he strong 

coupling limit. Sine the good quantum numbers are total angular momentum I and its 

projection on the z axi .\1. we rewrite the Hamil tonian of the present model in terms of 

the total angular momentum ! , 

f + S'
2

- 2I . 5' H (5' ) 
2.:1 + coupl · (3 93) 

T he t hird term of t he numerator is the Corioli term , which couples the degree of freedom 

of supcr-r lectron pin to the one of the rotor. It must he not iced t ha t the Coriolis term 

is not taken into account in the locked moment model in which the super-elec tron spin is 

not iucludecl as a dynamical variable. We will be seen ho11· thi term contribu tes to the 

tnagnetic uscept ibiu ty. 

Since I-fcoupl gives the domiuant contribution to the energy eigenvalue of H rot + H coupl in 

the strong coupling. the Coriolis term can be treated by perturbation t heory. ,<\.ithou t the 

Corio lis int eraction, tbe unperturbed state is given as a direct product of the eigenfunction 

of H coupl ll"ith respect to the intrinsic frame and the eigenfunction of the total angular 

mollt<'nt \1111 aud its ;:; component: D~rg(ll) 2::::., g.,ISak)- The energy eigenvalue of th~ 

Hamiltonian neglecti ng the Cor iolis term are expressed as 

li2 
-(1(1 + 1) + 5(S + 1)) + 1/E~ , 
2.:1 

(3.94) 

wher0 tt' E;~ ~tands for the Pocrgy eigctwnlue of the coupling HamiltOnian H coupl · Thi 

energy . pect rnm is t he rotarional band of band head energy u'EfV. For the strong cou­

pling limit . bnocl bead of excited band is much higher than one of the ground band. The 

occupation probabilit~· of the higher bands cau be negligiblP. We a sume that the suscep­

tibility is described by the ground band only. This point 11·ill be cl iscu. sed more dosely 

in Appendix .-\. .2. 

Let us no"· focus on the ground band of the present model in the strong coupling. 

Figure 3.1 illn trat0s the ener~· eigenvalue of H coupl evaluated mtmericall_v in the space 

ISa): Eft. The eigenstate of H coupl must belong to a certain irreducible representation of 

the poiJlt group 0. The iJTPd ucible repres ntations .41 , E. T1 for S = 4n, A~ , E . T2 for 5 = 
4n + 2. and T1 , T2 for odd 5 appear in the lowe t energy region. Considering the dimension 

of thl'SC rcpresentalions. namPly 1.1.2.3 and 3 for A1 . A2 . E, T1 and T2 , respec tively. we 

find that the bunch of the levels a lways contains six states. The ix-fold and the eight-fold 

approximately degenerate states appl'ar at the lowest and highest energies. r spectivel.v. 

This fact. implies t hat the direction of super-electron spin is locali zed to the six ( igrll,) 

directions corresponding to the potential minima (maxima) in the lowe t (lhe highest) 

bunching s tate. for large S. Therefore, tlwse stat.cs are app roximated b~· 

kiSS) , (3.95) 

where k stands for the operator correspond ing to the rotation (rom the third ax is to the 

ith direction of the potentia l minima.. 
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Figure 3.1: The eigenvalue of H coupl/u.' as a function of the magnitude of ~uper- pinS. 

For the present. ''"e shall take into accoun t the Coriobs term in first-order perturbation 

theory. According to the first-order perturbation theory of degenerate . tates, we shou ld 

olve the secular equation in order to determine the energy sh ift and pettmbod s tates. In 
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this ca e. each level i.J1 the rotational band i 6(21 + 1)2-fold degenerate: The quantum We cal ulate the susceptibili y for t he Strong coupling limit upposing rbe wave rune-

num ber. ,u, [{ have the 1·alues - I -:;: ,\/ [,· $ I and the grnund stare of super-electron lion of the gro tmd band to be Eq. (3.99). A detai led accou nt of the derivation of the 

spin is six-fold degenera e. Tbe d imension of the secular equation is reduced by a factor 

of (21 + 1) because ,\/ is a good quantum number. As we discus ed before, the direction of 

super-electron pin corresponds to the one of the potential minima for the ground state. 

Choosing the d irection of quantization a.xis as one of the potent ial minima. we cau expre 

the Corioli s rerm as 

- - - - - - -· - j~ = ki3kt. !:, = ki±k l. 
I· S = !:)5~ + (1~5~ + 1~54.) . • • .. . ,1 5

.±; = R • . 15• ~R- ;t . 53= R'53R , _ 
(3.96) 

The second term of Eq. (3.96) doc not contribute to t he Corio lis matrix element between 

parallel, anti parallel. or orthogonal direct ions. In fact , we c;m estimate the matrix elcmeut 

of rai. ing and lowering operators of super-electron spin: 

fore = 0. 

fore= f , 
fore= 7i. 

(3 .97) 

where k(IJ) is the rotation through angle B abom the axis perpencli cular to the 3 axis . In 

addition , thr first term of Eq. (3.96) does not contribute to the matrix element between 

orlh gona l and antiparallel direction . because the ma trix elements of s~ for orthogo.nal 

and anti para llel directions arc evaluated as (1/2)8 and 0. respectively: 

{

1. 

(5Sjk'(B)JSS) = (1/2)s, 

0. 

for()= 0, 

for() =%· 

for() =r.. 

(3. 98) 

susceptibility will be described in Appendix A.2. We obtain 

2/l2S2 ( ? -l ) 2/i2S2 
A.~ 9 ~aT 1 - ;3'52 + 35(3'52)~ +. .. < 9 kaT , (3.101) 

(J I 
112 Th I cl wh re = 2:lksT · e ea ing order corresponds to su. ceptibilit,r for the lockeclmomem 

model. The higher orders mean correlations through the Coriolis term. in orhcr worcls, 

a recoi l effect clue to the angular m omentum of th~· super-electron pin or Eiustcin-d 

Haas elf ct. We find from Eq. (3. 101) that t his effect ak ays suppresses thr magnelic 

susceptibility compared "·ith the one of the locked moment. This fact i apparently secu 

in numerical calculations in Sec. 3.3.3 . 

3.3.2 Susceptibility for weak coupling 

In lrtis subsection we calculate the susceptibility for the weak coupling a nd high t<'mpcra­

ture limit . First , 11· discuss the energy (• igem·alue and the eigenfunct ion of H,0 , + H,·oupl 

in the 11·eak coupling. In the absence of coupling, the energy eigennllu e' fonn a single 

rotational band with (2R + 1)2-fold degeneracy. The coupling is treated a first-ord(;r 

perturbation theory: the energy shift and ll'avc fun ction are clete rmjned by s h·ing tlw 

secular equation in a set of degenerate srates. Siuce the degenerate levels in the rota­

tional band split up under the influence of t he weak coupling. the energ,v eigcm·a l11 es are 

expressed as 

n?R(R + 1) 
2:7 + ~Eo.tll) · (3.102) 

1rhere ,\ (R) . pec ifies the sta te adiabatically connected with R. and ~En,( n) tand. for che 

The Corioli s lll <ll rix element does not 1·ani h only between parallel directions. Therefore. energy shift obtained as the eigem·alue of the weak anisotropic coupling. The P ' rturbed 

rhe secular equation for lhe Coriolis term is approximately so lved. The waYe function wa1•e function is exprc sed as 

result.s in an eigenstate of J;; 

The first-order energy shift i obtained as 

(3.99 

'fi >.(/1) / M = L (Rf.t5uJIM ) D,~k(l!)c;( R) JSu) , (3 .103) 
kUJ) 

where the coefficient c;(/1) is de termined by the cliagonalization of Hmupl in t he degenerate 

leYels in each R. 

\\·e calculate, by employing the Eq. (3.92). the magnetic usceplibi li ty for weak cou­

(3 .100\ Piing in the form of a second-order correction to the enPrgy. The energy denominator 
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between the levels in di fferent R is much la rger t han t he one in t he same R in the weak 

coupling. Thus. we neglect the mix.i ng of states in different R in the limi t. The ma. 

t rix element of Zeeman interaction between t he weak cou pling bases. Eq. (3.103). can be 

calculated using the orthogonality condi t ion I;k c~(Rl• c;' (R) = 6~>-' as 

(\II ~< RJ tMIS,I W~•( R) t'M) = ll2 6.~ ,xJ2I'+l(-1{ (I'l1I10 IJM) 

x J S(S + 1)(25 + 1)( - l )n-s+tw (ISI'S ; Rl). (3.10-1) 

T he substi tut ion Eqs.(3 .102) <llld (3. 104) into Eq. (3.92) yields 

2 ( l(w~( RJ t MIS,I w "-(R) t'M)f En+r:.E, .. ,<m) 
X= -Z T L L e •aT , 

( ) R A(ll)M# f' ~Et ,>.(R) - !::. E t '-I (R) 

E = _ll2R(R +1 
R 2.] 

(3.10ii) 

tl. E{A (R ) 

Since ~ EI'A ( RJ is small due to the weak coupling. we can approximate e- aT to 

1 - .l~~~~ · l . Rearranging t he StLmmation , we have a form of the susceptibility being 

independent of dynamic , 

~ _ _2_ " ( " I ( i[t~(RJ!MIS,IWA'( R ) /'JII) 1
2

) -#;7 
l Z(T) ~ ~ k T 

R "- (R)M I> I' l.l 

(3.106) 

Put ting Eq. (3.104) into Eq. (3 .106), a nd expanding for R, we obtain the magnetic sus­

ceptibility 

'\'oo /l2 ( 4S(S+ l)(2S+ l ) R
2 + ... ) "_ (- h

2
R ( Fl+ 1) ) 

L-11= 0 o exp 2:IkaT 
x~z------~--~------~~~~~~ 

"' ((? R + 1)2(·JS + 1)) . ( li
2

Fl(!Ht l ) L fl=O - - exp - 2:IkaT 

(3 .107) 

AL lhe high temperature limi t. one can eYaluate Eq. (3.107), treating R as a continuous 

va ri abl r and replacing the sum by int gral; 

, ~ 2ll1S(S+ l ) 
X- 9kaT . (3.10 ) 

I t is ob en ·rcl in t his sub eclion that the suscep tibility of the weak coupling limit coincides 

with the one of the lo keel moment. One , hould note that this does not mean tha t the 

uper-electron spin is locked in the weak coupling limit. The su ceptibili ty is independent 

of the dynamics in the weak coupling limit , "'herea , in the strong coupling limit , the 

susceptibili ty originates from the locked moment dyna mics. In fac t . taking into account 
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the axial deformat ion. we fi nd the · usceptib ili t ies of the weak and the strong coupliJlg 

limi t are different. 

The matrix element of S, is independent of t he deformation. because Eq. (3 .1 0cl) is 

independent of,\. . For the axial deformation with 11·eak coupling. 3 componem of a ngula r 

momentum of rotor is a good quant um number. T hen the wa1·e fu nction b<>co mes 

" J2R+ 1 IHIRk) = ~(RMSa i iM) --2-'D,~ISa). 
87f 

(3.109) 

~u 

The energy level for the axial deforma tion is 

R2 +(a - l )k2 

EtRk = 2.]1 (3. 110) 

where a = :¥, . Putting Eqs. (3.110) , (3. 109) and (3.104) into (3.92) . we can calculate 

the susceptibility of the weak coupling wi th axial deformat ion. The resul t is same as Eq. 

(3.107) when the deformation is small 

In t he calculation. " ·e replace Stun with in tegral. and neglect the Coriolis effec t by 

taking t he limit of S goto 0. The result of susceptibili ty i given by 

2 !i2S(S + 1) (3_111) 
x~ 9 kaT · 

The dependence of deformation a in the numerator originated from the magnetic iu­

teract ion of sy t em is cattceled by par tit ion function in the denominato r. T hus, t he 

suscept ibility in the weak coupling is independent of the axial deformation. 

In the strong coupling wi t h t he axia l deformation. the energy level for Lhe ground 

b<utd is dependent on the deformation 

En<= - fi(I(I + 1) + (o - 1)1\2 +o:f\S) . (3.112) 

where {3 = 23:~BT . T h eigensta te i. not different from one of the sph ri ca!. t he mat rix 

element of S, for aJ>.ial deformed cluster coincides wit h t he spherical one. Put ting the 

energy (3.112) a nd eigenfunction (3 .99) into (3.92) and expanding iL for f( and ( I - o) , 

we can obtain after lengthly bu t traight forward calcuJ ation the susceptibili ty of the axial 

deformed locked moment model 

X~ -- 1- ::-(1 -a)+ ·· · . 2 1i
2 
5

2 
( 1 ) 

9 keT o 
(3. 113) 

Therefore, considering the ax ial deformation, we find t hat the su. ceptibili ty for tbe 

weak and t he strong coupling limits are different. The two limits ha ppen w b the same 

1·alue \\·hen t he value of .J;'s are equal. 
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3.3.3 Intermediate coupling 

We calculate the magnetic susceptibi lity for intermediate coupling in this subsection. 

In numerical calcu lations of t he deflection profil e and th magnet izat ion . a main task 

is d iagonalization of Hamiltonian matrices of large dimen ions. In the source area. the 

pa rtial Hamiltonian H mag is zero . and tberefo.re the tota l angulal' m omentum is conserved. 

The mo t major population of angular momentum is Ierr(T) = J25J,,aT for the rotational 

band with (2! + 1)2-fold degeneracy. The dimension of matrices to be di agonalized is 

approximately S x Ierr (T). "-\ typical size is of the order of 105
. In the magnetic fi eld 

where tates baring I / 2 different are mixed , the number of dimensions is magn ifi.ed by 

I /2, and becomes eventua lly of the order of 107
. It may not be feasible in numerical 

calculat ions. Let us nse a similari ty transformation in order to sca le down the angular 

momenta. ln Eq. (3. 15). t he ma.rrix element is approximated a. 

(3 .1U) 

with 

(3.ll5) 

and two angles. 01 and 02 are defined. respecti,·ely, as 

with 

and 

with 

fiJ cos03 = V 1 . eos ~ = J (T- S + R)(S - 1 + R) 
2 .JIS . 

The two additional angles 0~ and O.J <U'e a lso invariant uncl~r the cale transformation. 

E1·entua lly these four angle. arr invariant under the transformation in Eq. (3.117). The 

four d function are ill! smooth function of the four angles. 

To make S2 invariant under the 5im ilarity transformation. Eq. (3.117). t he Plank 

constant is changed according to 1). Jn other words. we ~an sca le down t he angu lar 

momentum quantum number by adjusti11g the P lank constan t as 

li' li 
! = ry' s = '7S. (.3.ll9) 

The tempera ure koT. the conpling u'. and magnetic fi eld paranwt<•r g,Bii.S. which hm·p 

di mension of energy. are im·ariant under the similarity transfornn\tion. Ln thr following, 

the units of these energy parameters ares I cted as ";j' which is ;tiso im·a.ri.an t under t h 

simi larity trilnsformation. 

\\·e are now ready to calculate numericillly the su ceptib ili ty in the inl.eruwdiale cou-

pling scheme. It is a lready known b_v the ana.l_,·s i io Sec. 3.3.1 that the gronnd state of 

H coupl bas to be approximately s ix-fold degenerate slates in t he. trong coupling limit. ft 

. eem. reasonab le that the ground state is approximately six- fold degent•rate for Sr = l 0. 

The reason for this is based on the numeri ca l (iiagonalization of H coupl in Sc = 10 (Fig. 

3.1). Three energy le1·e!s hav ing one-fo ld. t hree-fold , ancllll'o-fold d('g~ncracies [rotu lower 

enrrgy to hig her mak~ a bunch around t he ground state. The energy difl'er€'nces of th0 e 
(h 

eo. 2 
(R- S + I )(S- R + 1) 

4RS 
(3.116) states arc a bout 0.01. Lo cont rast to t his. we find from fig. 3. 1 that the ene rg,r difference 

between the bunch of the ground state and the first excited bunch is about 1.0. TL~ 
The,;e angles ue in Yariam under a sca le tr ansformR tion defined as 

(r,r'r) (R,R'R ) 
k,k'k =17 I\ , I<'K. 
s, i, m 5,1, /II 

(3. 11 7) 

energy spacings between six states aro und the ground state are much smaller than the 

energy spacing between the ground bunch and t he first excit.ed bunch. Therefore, 11·e can 

regard the ground state as approximately six-fold degenerate state. 

ln a sim ilar manner. the matrix lements gi,·en in Eq. (3 .17) are expres eel approximately 
A truncation of the angular momentum i necessary to make numerical cliagoualization 

feasible. We select I max = 80 in the calculation. T he oc upation probability . teeply 

declines as cbe energy becomes large. for the rotational band , one can neglect tates 

of high angular momentum in the cill culation of the partition function . Actua lly, for 

a 

(3.118) the ingle rotational band IYith (2! + 1)2-fold deg ·neracy, le1·els of 1rhich the angu la r 

momentum is larger than I0 (T) = J6.2Jk8Tfli? contribute on ly le s than 10 %of the 
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p~rtition function. Therefore the numerical calculat ion of the partition function is reli able 

only if Ic(T) ~ Irnax · f or Imax = 80, the re ult of the ca lc ul ~ltion is reliable in its range 

kaT < 20 .6. \\·e choose 20 for the temperature. 

\\'e display the coefficient x' of the magnetic susceptibility obtained by numerical 

calculation in Fig .. 3.2. The coefficient x' i defined as 

hzS2 
X= X kBT' (3 120) 

\\'P exactly diagonalized H ro1 + H coupl which includes full the Coriolis term . Then , tho 

Zeeman coupling Hmag is treated as perturbation th ·ory. The fir t point to be eli cus eel is 

wltNher our calculation reaches t he two eli tinct limits discussed abo\'e . The susceptibili ty 

in Fig. 3.2 d crea es and con,·ergcs on 2/9. a t he coupli11g becomes smaller than the 

t0mpcruture. Therefore the result of the calculation is consistent with the a na lysis for the 

weak coupling discussed in Sec. 3 .3.2 . 

The second point is t he strong coupling limi t . . -\s 11·e will discuss i.n Appendix A.2, Eq. 

(A.26) is the cond ition of temper(lture and coupling to attain the suscepti bility of the 

lock0d moment. Th application of Eq. (A.26) for Sc = 10 yields the condition of strong 

coupliug: 

u' 
kaT » 3 .1. (3 .121 ) 

As eli cu . cd in Sec. 3.3.1. the coefficient of susceptibility for the strong coupling~ 

not hr locked mom ·nt valne 2/9 but smaJier than it due to the recoil effect . Actually, in 

Fig. 3.2. t he result s of the strong coupling a re al o smaller than 2/9 (clashed line). and 

close to the valu of Eq. (3.101) (dotted line). A pos ible r •ason for some de\'iation fro m 

th0 dotted line is that. the quantum fluctuation of t he direction of tbe super-spin an1011e 

clifl'cr ·nl mini ma of the coupli ng potential decreases t he suscep t ibility . 

.-\ peak at k~T "" 0.55 is found in Fig. 3.2. T hjs peak account for the energy splitting 

of' the an isotropic interaction being comparable to the energy pli tti ng by Coriolis term 

fr.J.S I.rr(T). The width of the energy pli tti ng of the anisotropic interaction corresponds 

to the en rgy difference betm:>en potential maxima and minima. i. e. , 3u.' . In pra. ·tice the 

width becomes small r due tO thP quantum fluctuation of the di rection of super-spin and 

i found 2v' for S = 10 from Fig. 3.1. Then the peak is expected to b e 

(3.122' 

ln fact. this condition is consistent ~<·i th the observed position of Lh e peale 

.'\s m entioned in t he Introduction. one oftrn assumes superparamagne tism , in 1d1ich 
'b'l' . I r.25(5'+1) r h the suscept1 1 1ty IS 3---r,;r-- tOr t e clusters tO <UJal,vze t he experiment s. 'v\'c find from 

Fig. 3.2 that the superparamagnetic limit is not reached in any range of coupling, treugth. 

The last point is the temperatme dependence of the magnet ization. It i rea ·onable to 

consider that t he susceptibili ty decreases as the tempera.turl' incr ase" because of t lwnnal 

fluctuations of the direct ion of super-spin. Tn R ef. (26], it was reported that t he temper­

ature dependence of the magnet ization i reversed. Howe,·er. in our calculations. such a 

behaYior did not appear in any range of coupling. 
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Figure 3 .2: The magnet ic su ceptibi.lity calcu lated by the perturbation theory. The ordinate 
is the coefficient of the magnet ic susceptib ili ty x' (described in text). The abscissa is the ra.tio 
of the coupling strength to temperature. 

W im·estigate the quantum state which consists the peak u ing the classi a l equation 

of motion discussed in Sec. 3.2.2. Calculating the susceptibility of quadrupoll" coupling, 

1\'C confirmed that the positiou of the peak in the suscept ibility does not ·hang d in the 

quadrupole coupling. In the classical ca lculat ion. ll'e 11dopt the quadrupole coupling to 
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keep computa~ional time hart. Fig. 3.3 shows the en erg~· levels for I= 20, S = 10. k = 10 

obtained by both quantum and classical theor~· as a function of the quadrupole coupling. 

\Ye solve the equation of motion with adiabatically increasing the st rength of coup.ling. 

Tbe iu.itial condition is decided by the additional quantum number R in the absence of 

coupling. The orbit of low energy and high energy leYels in the absence of the coupling 

is confin d iJt the region of 53 > 0. However in the intermediate energy region, th~ 

orbit mOYeS betll·een the region. of 53 > 0 and s3 < 0. If the quadrupole potential is 

increased the orbit confined to t he region of either 53 > 0 or 53 < 0. The time a,·eragr 

of 53 is approximately zero. The tagge.ring seen in the clas ·ica l calculation of energy 

level originates from the confinement of orb it. The upper (lower) part of the staggering 

correspond to the confinement to the positi,·e (negative) region. The staggering starts 

when the <"oupling ~u ' S2 is equa l w the difference of the rotational en erg~ R2
/ J and tlte 

minimum of rotational en rgy (I - Sf /2:1 in the absence of coupling. Therefor , the 

points where the staggering starts are on the line of E =(I- S) 2 /2:1 + 2u'S2 /3. 

\\'hen the typical angular momentum R ~ 20. the typical energy is approximately 

400. According to the discu. ion above, the peak i. expected at v' c:e 10. The point 

(u'. E) c:e (10, .JOO) li e: on the line of staggering starts. We calculate usceptibility of each 

levels using the classical t heory. Figure 3.4 illustrates the susceptibility of each level. The 

peaks found in the figure correspond to the points wherr staggering starts. Though the 

peak is seen in the positive and negativ region. the magn.itude of positive peak is always 

larger than onP of the negative. Therefore these orbit signifi cantly aff cts the peak of 

susceptibility. 

3.4 Profiles and magnetization 

As rnemioned in the pre,·ious settion. truncation of tbe angular momentum is necessary 

to make t lt e uumerical c<tlculations feas ible. We take I max = 26 and the magnitude of 

supr•r-electron spin S,. = 10. The resul t of the cakulation is reliable if /;; 8 T < 2 for 

I max = 26. Sin e high tPmpcrature is one of the conditions to achieve <l locked moment. 

\\'C should select the temperature as high a po. sible. Then we chao e k8 T = 2. 

First , we pay attention to th magnetic field dependence of the deflection profile. 

Figure 3.3 shows the deflection profile for three values of the magnetic fi eld strength 

g,Bii5 = 0.5, 2.10, respective!~·. Our calculatiou exhibits that the position of the peak 
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always deflects to the strong field side. as observed in many experiments. By solving 

th classical equation of motion. Ballone et at. haYe demonstrated in Ref. [53] that the 

coupling between the . uper-spin and the clu ter body causes the deflection beha,·ior. vYe 

will haye a closer examination of t his statement in terms of our quanta! model. 

In ordPr to make our d iscus ion t ransparent, we start \\'ith t he weak coupling limit. 

The profile of the weak coupling in Fig. 3.5 is a fl at but slightly sloping distribu t ion 

in the weak magnetic fi eld. Figure 3.6 showing t he energy leYels of the weak coupling, 

l/.1 = 4.. -17 X w-3 . for Sc = 2. Jl = 0. 7ik = 0, and R ~ 3 or 4, helps us to understand 

the di lribution in terms of the energy level. In the absence of coupling, t he energy 

1e,·els of t he pre ent model form a single rotational band. These levels split up under 

the influence of t he weak coupling; energy leYels form a bunch of states around each 

unpertm b cl s tate in the rotational band. As the applied magnetic fi eld becomes stronger 

than t he coupling. these kvel split up again under the influence of the applied magnetic 

fi eld , and arc rearranged more likely to be the eigenfunction of S, . In other word , the 

s uper-spin preces s about t he direction of the magnetic fi eld independent ly of the cluster 

(decoupling) for g,Bil.S > v'. Occupation pl'Obabilities of lewis in the same R become 

alma t equal due to tl1 e weak coupli11g. Then. the mag11etiza tion remain small and the 

profile becomes a flat distri but ion. \\'l1en the energy difference re ·u!ring from the Zeeman 

sp litting is equal to a typical energy spacing of the rotational le,· ls; 2g, BiiS = li2 Rerr/:J. 

a p eudo-cro ·sing between different rotational levels occurs. In other "·ords. the pseudo­

cro ing takes place where the Larmor precession frequency L is comparable to the 

clns ter rotaliou frequency w,0 , : w1, ~ w,01 . Th at is to say, the pseudo-cro sing leads to 

a n exchange of the rcupation probabili ties between those levels. This proces, increases 

tlw magnet izat ion. and cle,·e!ops a peak i11 the profile at (5,} j S = 1 like the Boltzmann 

dis tribu t ion. 

The above eli. cus ion leads us to di vide the mechanisms of magnetization into two 

lypes. t hat is, the magnet iza tions by the processes of decoupling and by the pseudo­

eros ing. Thee lwo types of magnetization are apparently seen in Fig. 3.7 in "'hich 1111 

show the magneti c field dependence of the magnetization in the weak coupling. The 

magnet ization linearly increases as the magnetic fi eld in the process to decoupling; t hen 

rero ;1 in steady by the decoupling of super-spill; finally increases suddenly through the 

pseudo-c rossing. 

fn the intermediate and th~ trong coupl ing. we cannot distinguish the regions of 

3 . .J. PROFILES A.ND 1\IAG.VETIZ.UION 71 

1.8 ,., .k11T=2 ...., 
1.6 ..... 

4
----Lcx·ked moment 

Ul x,BfiS=O.S 
c 1,4 
Q) ... ----11 ·= 10.9 '0 1.2 

if u' z:: -I ,J6.xl0 1 ..... .... 0.8 ..... -·-D · .. --.:::-.-:--u'-=2. 18xl04 

~ 0.6 
D --- ... __ . 
0 0.4 <; 

"' 0.2 

-0.9 ·0.6 -0.3 <~> -s--
0.3 0.6 0.9 1.2 

1.8 ,., ksT=2 

"' 1.6 
·-I 
U! s.IJfiS=?. 
c 1.4 
(!) 
'0 1.2 Locked moment ,., 

~ /';c:~2Jijx l(1~ "' ..... .... 0.8 u'=I0.9 .... 
p __ JL .· ,.. ...... 

"' 0.6 
.0 I' 0 0.4 ./-·· ... 
"' 0.2 _ .. --· -..... --· 

0 
-1.2 -0, 9 -o.6 -().3 

d> -s-
0.3 0.6 0.9 1.2 

3 
2.8 
2.6 

k11T=I ,., 
M.BhS=I.O ...., v .... 

. ., ~.~---- 1 Ul 2.2 
c 

2 " ~ I , 
'0 1.8 "=:liSxiO If ': ,., 1.6 ,; .... 1.4 .... 1.2 . ... 

;\ 
.0 1 

11) 
D 0.8 
0 

0.6 Locked moment ---). !-> 

"' 0.4 
0.2 

0 
-1.2 -0.9 -0.6 -o.3 

~ 
0,3 0.8 0,9 12 

Figure 3.5: Tbe profile for three coup li ng st r ngth u' = 2.24 x w-4,u' = 4.4 7 x 10- 1. and 
1<' = 11.2. of magnetic field g,BhS = 0.5, 2, 10. T he temperat1ll'e is se t to kuT = 2 for 
g,BhS = 0.5. 2 and to kaT = 1 for ,q,BhS = 10. 



72 

>­
"' 

CHAPTER 3. THE 11\TER.\IEDHTE COC.iPLL\"G .\fODEL 

I 
I 
I 17.36 I 

I 
I 
I 

>-

"' " ~ 201~:::::--~=~~==~ "' c: 

"' "' 

19.9Q 

r-.1agnetic Field 

18 

14 

0.06 

I 

/. .. ····· _.,· 
.··· / 

I 
I 

17.~.7 2.8 2.9 

Magnetic Field g
5
B 

t·1agnetic Field g
5
B 

3.1 

F ig ure 3 .6: Energy levels of th we<Lk coupling (u1 = '1.47 x w-3 ) as <L fttnction of magnetic 

field for Sc = 2. M = 0. and R"" 3 or 4. 

3..1. PROFILES .4..\"D MA.G.VETIZATIO.V 

"' "' <0 ... 
"' > 

"' 

0.1 

0.01 

.. -· 

0.001 

0.0001 
0.01 0.1 1 10 

Magnetic Field g8B 

Figure 3. 7: An example of peculiar behavior of magnetization for Sc = 2 

73 

the magnetic fi eld strength in " ·hich either l he decoupliug or the pseudo-crossing oc­

cur . Accordingly, t he peculiar beba,-ior of magnetizat ion observed in the weak coupling 

disappears. 

The calculated susceptibility (Fig. 3.2) iudicateo that "U
1 = J 1.2 is in t he strorlg cou­

pling region. However, the profile in this case in Fig. 3.5 is noc ideut ical with Lh C:' locked 

moment profil . We attribute tllis to the Coriolis term. which is irnportant: at the tern­

perature of the ensemble, k8 T = 2. A. higher temperature was pos ·ible iu t he calrulation 

in Ref. [8] because a simpler ani .. otropy term there permitted ~maUcr dim nsion Ham il­

tonian matrices. In fact . we confirmed that the calculation of I = 26, S = 10 for the 

quadrupole coup.l i.n g do not; show the superpararnagnetic peak. 

Finally, let us move to the cUscussion of the profiles in intermediate coupling. We 

sel ct the cumulants to characterize the profi les. The fir t and second order cumulant 

mean the aYerage and the ,·ariance of the profile. r pecti,·~ly. A cumu lant higher than 

second-order Yanishes for t he Gaus ian probability d istribu tion. In our calculation ibe 

third- and fourth-order cumulants are le s than 10% and 1 o/c- of seconcl-orcler , respectively. 
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Thus, the profiles in the intermediate coupling can be approximated by the Gaussian 

profile. 

We uow discuss the first (Fig. 3.9} and the econd-order cumulam (Fig. 3.10) in more 

detail. The general trend of the fir t-order cumulam looks like more or less one of either 

the superpararnagnetic or locked moment. The magnetization of intermediate coupling 

is smaller t!Jan the one oft he locked moment becau e of the recoil effect. We may note. 

in passing, that: the anomalous behavior in the weak coupling. discus eel ea rlier. should 

appear 11·h n the en rgy pli ting by the magnetic field is comparable to the typical energy 

differencr of rotational levels, that is, 

. Bli5 ~ 2/i.2Rerr ~ BliS 1 1i2S2ksT ~ 0.14. 
2g, ! - 2:1 ,....,. 9s l ~ S 2:1 (3.123) 

But tllis region is out of the calculated range of the Fig. 3.9. 

The second-order cumulant is ca lcu lated b~· rneans of two methods. One is the direct 

diagonalization f H , and t he other is the perturbation for the magnetic field. Figure 3.10 

illust rate the secolld-ordcr cumtt.lant, as a function of magnetic field, obtained by direct 

diagonalization. The second rder umul<tnt is sen. iti,·e to the coupling. The cnmulant 

declin<'s as eithPr the coupling or the magnetic fi<:'ld become stronger. In other words. 

the magnetic field aud the coupling make the shape of the profile narro"-er. The second­

orcl c·r ctmmlant of t he locl,ed moment profile in th absence of a magnet ic field and tl1e 

flat profile obsen·ed in the decoupling region are estimat d a ~and s~_;-5"; 1 ) . respectiwly. 

Acwally, in Fig. 3.10, the strong coupling u' = 10.9 and the weak coupling u' = 2.18 x 10-~ 

in the weak mag11ctic Held are clos to ~ and 5'Js~t), respectiYely. 

Figure 3.8 show the second order cumulant in the ab ence of a magnetic field eYaluated 

by p -•rt urbation of the magnetic field. Tlw maximum of angular momentum I max and the 

temperatur k 8 T are taken at 80 and 20, respectively. Th~· maximum of the angular 

momentum iu this ralculation is much larger than the one in the direc cliagonalization. 

The econd order cumulan t of the profile approaches the :trong coupling limit 1/9 in the 

coupling u' = 3.5. lt decrea es almost linearly in the region of the coupling beyond 20 

becau. e of the tunneling between different directions of the potential minima. 

For the weak coupling limit . the ensemble a\·erage of the profile converges on 0.122 a5 

s en itl Fig. 3 .. \\"e can estimate the econd-order cumulant of the \\·eak coupling limit. 

The magnetizati n of each !eYe! in thi limit i calculated from the diagonal part of Eq. 

(3 .104): 

(SJ = n:•./2! + 1(-1) 1 (J.\1101/JI) J5(5 + 1) (25 + 1)( -l)R-S+l Jr(!Sl5; Rl ). 
(3.124) 

The second-order cumulant for 11·eak coupling is e. lima ted to be 

• 2 _ 2 5(5+1)(25+1) ">:"' . 2 • ? En 
(Sz)cumutam- 1i Z(T) 6 (2/ + l) l (JJ/lOIIM} IIH' (l 5l5;Rl)j·exp(--. -). 

R!M>.(R) kaT 

(3.125) 

Treating R as a cont inuous variable and replacing the sums by an in tegral yields 

- ? li2 
( .}~umulam ~ g-5(5 + l ). (3.126) 

Actually, in Fig. 3.8, t he second order cumu l.<lnt of the profile is close to 5d9;tl ~ 0.122. 

Let us look at Fig. 3.10 again and discuss the behaYior Rround the A>tt profi iP which 

is een in the \\·eak coupling region of the figme. The fla distribution is achieved, as 

di cussed before, in the decoupling region. The magnetic fi.eld iti much strongrr than the 

coupling. though it is not so strong as to giq• ri e to p$~udo-crossing bet ween state~ of 

different R. Hence. we nrecl bYo assumptions for calculating the magnetic fi · ld or coupling 

dependence of (S,) 2 by perturb<:ttion of the coupling. The first one is t.hat the .magnetic 

field is much larger than the coupliug. 

g5Bii5 A> u', (3.127) 

to assume the decoupling of the super-spin from the cluster:. The second assumption is 

tbat the magnetic field is weaker than the energ_v difference between the states of different 

R, 

(3.128) 

which assure that the pseudo-crossing do not occur ar. least: for levels having typical 

angular momentum. A detailed account of the calculation is presented in Appendix A.3. 

Here we give jnst the result. Eq. (A.-!6): 

(SJ;nav ~ -li-S(5 + 1}-- -1 ? 64 ( 11' )2 
3 1215 Bg. 

{ 
~/i2 ( -190 + 395(5 + l)) - _4_/i2 5(5 + 1)} (_!{__) 2 

+ 135 l 693 3645 kBT 
(3.129) 
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Figure 3.8: The second order rumulant of the profile as a function of the rat io of coupling 
strength u' and temperature kaT. The temperature is fixed at 20. 

\ Vheu one analyzes the experiment in more detai l, the higher-order cumulants may 

bring about important information. For example, the third order cumulant (Fig. 3.11) 

characterizes the asymmetry of the profile. In the "·hole raJ1ge of magnetic field. the third 

order cumulant is smaller than the second order cumulant and is smaller as the coupling 

becomes strongrr. T he profiles are always ymmetric with respect to (5,) = 0 in the 

absence of a magnetic field. \\·hen the magnelic field is appljed, the asymmetry grows on 

account of time r Yersal ymmetry breaking. The third order cumulaut have a peak at 

9sBiiS/k8T ~ 2. In a strong magnetic field, tbe profiles ha a narrow peak at {Si ) = 1 

like Fig. 3.5. The profiles arc more likely to be symmetric but st ill not quite. In othor 

words, the third-order cnmulant deCJ·eases but is not equal to zero. 

Final!_-, we discuss tue analysis of the e..'\periment using the present model. To char­

act.erize the pmfiles. we select the first and the second order cu rnulaot. The first and 

the second order cumulant of e..xperimemal profi le are fitted by the cumulaots calculated 

using tbe present model. \\'e first discuss the gadolinium clusters. Con. idering the sym· 

metry of the magnetic anisotropy coupling of bulk gadolinium, we appl~,. the qnadrupole 

coupling. Figure 3.12 and 3.13 illustrate the first and the second order cumulants of the 

profile for Gd2:1 and Gd 17 clusters, respectively. The ratio of temperature and magnetic 

field .c = r!r is constant along the solid line. The coupling u' do not alter on the dotted 
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Figure 3.11 : The third order cnmulant of each profile as a function of the magnetic field g,BiiS. 
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lin . The coupling parameter q which i defined through the relation u' = (2.5)q 

1\'e set the temperatw·e kaT = 10 for the numerical calculation. The rotational 

tt'rnp~rature extracted by the locked moment model is estimated as T = 5 ± 3[K). On the 

other hand, the Ullit of the energy parameters in the present model is about 5 X l0-2[K). 

The temperature of the experiment is order of 102 in our unit. The cumulant in high 

temperature is scaled by the ratio of temperature and magnetic fi eld. \\'e fixed the 

temperature kaT= 10 for the numerical calculation, in which scaling low is fairly fulfilled. 

The result of the <malysis i. sho"'n in Fig. 3.1 5 for Gd11 and Fig. 3.14 for Gdn 

In both figures the analysis based on th<' locked moment model i also illustrated. The 

intermediate coupling model gives a better fitting than the <l.nalysis of locked moment 

model. 

We now ana lyze Gd 17 cluster at the Yibrational temperature Tvtb = l--l7[K). vYe fit the 

fir t aucl s~concl order cumulant of the ca lculated profile. The magnetic moment and the 

;tn isotropic coupling -u' of Gd 17 is extracted as 1.49-1.78~ta/atom and k~'T = 0.82-12.9, 

where the rotatiom>l temperature is fixed to T; 0 , = .56[K). Comparing the profiles of 

various temp rature . . we estimate the rotational temperature Trot = 5.99 - 12.2. The 

best quality of fittixtg is achieved at I' = 1.69tts/atom ami k~'T = 3.65. The profile is 

tihown in Fig. 3.15. 

For Gd 23 clu ter. "·e extract '" = Ll.2- 1.56!ts/awm and k~~ = 1.56 - 7.43 for 

thf' magnetic moment and the coupling. respectively. Th rotat ional temperature of the 

duster is set to T, . .,1 = 5.5[K] . The range of the temperature is estimated by comparing 

lhe theoretica l and the experimenta l profile as Trot = 4.65- 6.51[1<]. Figure 3.14 shows 

the best fit profile which is rea lized at M = l.49~ts/atorn and k:T = 4.09. 

As we reviewed in Sec. 2.3, the behavior of the gadolinium clt1sters changes according 

to its size. D.C. Douglass et at. discussed in Ref. [13] that Gd23 a nd Gd22 cluster 

I ehaYes like locked moruent and sttperparamagnetic, respectively. They . uggest from 

thei r x.perirnental profile tha. Gd 17 clusters undergoes a transition from locked-moment 

behavior at a low t mperawre to superpaTamagnetic behavior at a high temperature. The 

total an i ·otropic coupling of the cluster for Gd23 , k~,T = 1.03 x 23/5.5 = 4.30, is larger 

than that of Gd 17 . k~:r = 1.83 x 17/8.56 = 3.63. The results support the result of th1 

~xperi mcnl by Bloomfield et al. [13]. 

Bloomfield noel coworkers extract the magnetic moment using t he locked moment 

model. Th -· result arc 1.42 and 1.1 /ls /awm for Gd23 and Gd17 . respectively. Reflecting 

[ II M[~ts/atom) I u'/ksT I u'[K/atom] 
Gd23(Quadrupole) 1.50 (1.42 - 1.56) -L29 (1.56 - r ..+3) 1.03 (0.373 - 1. 18) 
Gd23(Cubic) l.-12 (1.30- 1.56) 0.851 (0.75- - ) 0.203 (0.179- - ) 
Gd11 1.69 (U9 - 1.78) 3.63 (0.82- 12.9) 1.8-l (0.41 - 6.49) 
Fetzo-Ho 0.613 (0.581 - 0.650) 0.655 (0.327- 1.75) 0 0252 (0.0126 - 0.0683) 

Table 3.2: The result of <J.nalysis using the intermediate coupling model 

the intermediate behavim·. the magnrr.ic moment of Gd 17 is cousiclen\bly changed from 

the result of the locked moment model. The 11111gnetic motnent of Gd13 i~ almost same as 

the result of analysis using the locked momenr model. 

J\ext 11·e analyzed the experiment for Gd23 using a differ nt potential. \\'e apply 

the cubic symmetr~' for the anisotropic potential. The expcrim ntal LcmpcraturL is cr 

to T=5[K] according to Ref. [14). Fitting the m<1g11etic su. ccptibi li ty and the sc(·ond 

order cumulant, the magnetic moment can be estimated as 1.30 - L. -a J-Ln/atom. Th 

anisotropic coupling n' is extracted to b larger than 0.163. The be. t-.fitting is obtained 

at 1.42p.a/atom and 0.185 [K/atonl) for the magnetic moment and the coupling u! . respec­

til'ely. The ratio of temperat nre and magnetic field b<"comes 9~-~~s = 0.59:3. ln the Figur 

3.16. we how the fitted profile and the profile of locked moment.. For both theorPtical 

profile, t he ratio of temperature and the magnetic field are sarnc. The tPmpcraturc for 

the present model is set to ksT = 2. For the cubic coupling. the profile of the present 

model makes a better agreement ,,·ith experiment than one of the locked mont!mt. 

The magnitude of coupling eems to be different according to thr symm try of poten­

tial. But this is simply because of our definition of the anisotropic potem.ial. The depth of 

potential is given by ~u' and ~u' for the quadrupole and the cubic symmetry. respecti,·ely. 

The depth of potential for the quadrupole and the cubic symmetry can be estim~ted as 

0.687 and 0.541 [K/atom]. re:pectively. These depth are . imilar Ht the ext.racted strength 

of coupling. 

The extracted moment is much smaller than one of the bulk (7.55/>13 /atom). It can 

be explained by the non-collinear configuration of the local spins [5~). The magnetism 

of rare-earth elements is associated with the 4.f electrons which is locaLized Lo the atoms. 

The local .JJ electrons are interacted thTougb the indirect exchange RKI<Y interactions 

mediated by conduction electrons. The interaction o ciliates a. a function of dist<tnce. 

which cause helic<ll :tructure in the bulk 4.£ rare-earth metals. Though the magnetic 

structure of the bulk Gel is ferromagnetic below the Curie ternperatnre, the structure 
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can be changed for the clusters .. -\ctually. it is found a magnetic rt>construction at the Another possible explanation for the result is thar rhe surface local magnetic momem 

Gd(OOOl) surface [55] . Antiferromagnetic coupling at the surface is predicted along with may cause the canted tructure of the magnetic n1oruent . For all t heoretica l ca lculation 

a 6.3% expa nsion of the first layer spacing in recent calculations [56]. The subsequent performed so far. the local moment did not take into accoun t. \\"e need a further study like 

IV-LEED studies show that the first layer spacing is actually contracted by 2A%. with a a first principle calculation to confirm the t!Hiller magnetic moment in t he iron clusters. 

1% ecoud layer spacing expansion [57]. Then. it is possible to assume that rhe nearest-

neighbor coupling J and the neJ>:t nearest-neighbor coupling J{ becomes ferromagnetic 

and antiferromaguetic. respectively. The atoms lie at a surface are affected by K clue 

to t he low coordination number. They calculated the Heisenberg model with exchange 

coupling J a nd K which favors parallel and antiparallel direction. respec tively. The 

model ca!culationo predict that. the strong exchange anti£erroruagnetic coupli11g f{ leads 

a noncollinear configuration of t he local magnetic moment. 

We next apply the intermediate coupling model to iron clusters. Since the magnetic 

ar1iso ropy of bu lk iron is much smaller than one of the gadolinium , the iron cluster is 

considered to be superpantmagnetic. The symm t ry of anisotropic potential is assumed 

to cubic which is ob erved in magnetic anisotropy potential of bulk iron. The result of 

analy is is illust rated in fig. 3. 17 for the profile of iron. In t his fi gure. 11·e also show 

the profile in which t be cluster 's magnetic moment fixed to the bulk magnet ic moment. 

T he fit t ing of th profile using the intermed iate coupling model is better t han the profile 

of bulk. The position of peak for t he bulk profile appears at strong field side far from 

rhe position of peak for the e."-perimental profile. \\'e extract 0.5 1 - 0.650 P-s/atom and 

12.6- 67.3 [mi~/atom] for t he magnetic mom nt and anisotropic coupLing u', respect ively. 

The qu ality of fitting is best when the magnetic moment and anisotropic coupling u' 

are 0.613/te/atom and 25.2 [mK/<ttom], respect ively. Tbe l)nisotropic coupling is mu cb 

·maller t ha n one in t he gadolinium clusters and is om parable to one of tl1C bulk i1·on (36 

[mK/ atom]). On the contrar.v, t he magn~t ic moment analyzed by the superparamagn tism 

is larger than the magnetic moment of bulk iron (2 .2tta/atorn). 

\\"hile first-principle approach for the Fe 12o-r 4o dusters is not reported. there are many 

papers for smaller size (N < 20) of iron clusters. These papers predict that magnetic 

mom nt. o [ clusters is larger than t he bulk [58, 59. 60] . However, I' phase of bulk iron seems 

to be antiferromagnetic in the lo,1· temperature of which magnetic moment 0.7tts /atom 

[61]. The ant iferromagn tic phase is obsen·ed in the fine particles of iron. The calculatiOJI 

ba d on the tight binding Hubbard HamiLtonian predict the anti ferromagnetic ph a e of 

iron. which is smaller than t he bulk magnetic moment [62]. 
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Figure 3.12: The fir t and second order Cllll!Uiant of Gd2~ clusters. x = l!f+ and 11.1 = (2.5)q is 
constant along the dotted and solid line, respectiv ly. The temperat Lu·e is fixed at T = 5.5 !<. The 
magnetic rnoment of the cluster is 11. = 30.7.ci'B The experimental data is calcu lated from the 
experimental profile in Ref. [14]. Error bars are estimated from the error bars of magnet ization 
in the same reference (Fig. 2.14). 
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are calculated by the intermed iate coupling model. The anisotropic coupling and the 

magnetic moruent is lL'<ed to bulk value in '·Bulk parameters". These parameters are fitted to 
the cxperiincnt iu "Fitted paramet.ers" . 

Chapter 4 

Conclusions 

(j ing t he intermed iate coupling mod~!. we have studied the magnetization of f~rromag­

netic clus ers in a Stern-Gerlach magnet. In this model the . uper-elcctron spin couples 

to the cluster ions through an a nisot ropic potential. This model is expectNI to de cribe 

t he intermediate beha1·ior between the superparamagnt>tic and t he locked moment. In 

eYaluating the profiles or the magnetization . we assume t hat the 1·ariation of t he mag­

net ic field in entering the magnet is slow in time . i.e. , adi~uatic. Hen o, any transition 

between quantum states is suppre sed: the occupation probabi lit.1· of each qua utltm stat(' 

is determined in the source area where the magnet ic fif'ld is absent. 

\·Ve examined t he magncti suscept ibili ty of the present model applying t h pert urba­

tion theory. Especially, the magnetic 'usceptibili ty in t he nong and weak cou pling limi ts 

is discussed analytically. We expected the in term ediate coupling model to approa h th(' 

locked moment behavior in ~he st rong coupling limi t. However. t here is a crucial dif­

ference between the strong cou pling limit of the pn' ent model and the lock d moru •nt 

model. In the present model the super-electron spin degr e of fre~dom is treated C'xpJicit l.v 

and the Coriolis term arises due to the conservation of tota l a ngular mo111 ntum , "·hile 

in the locked moment model the Cm·ioli s term is neglected. Consequent ly. the magnet.ic 

su ceptibility is always small er than the locked moment. 

The uscept ibility in the weak coupling limit coincides with one of the lock d moment 

model. The coincidence originates from the internal symmetry of the rotor. Actually 

we calculate the susceptibility of t he deformed clusters in the limit of low spin angu la1· 

momentum analytica lly. The analysis shows that these two limits are different when the 

clu ter is d formed. The suscept ibility in the present mod I obtained by the perturbation 

theory i not equal to the superparamagnetic value in any raugc of the coupling. The 
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position of peak obserYed around the coupling "·here the super-spin starts to confine to 

the an isotropic potent ial mini mum for the typical angular momentum . 

\Ye find that the irregular magnetic field response not iced in Ref. [ ] also exists in the 

weak coupl ing region of the present model. The magnetization linearly increases before t he 

decoupling and saturates after the deroupli ng. Then. once the pseudo-crossing between 

levels in different R occnrs, t he magnetization increases again . Before the decoupling, the 

susceptibi lity arises as a perturbation of the magnetic fi eld. But after t he decoupling, or 

once the pseudo-crossing takes place. t he usceptibility becomes nonpenurbative. Instead. 

we Med to diagonalize t be tota l Hamiltonian, which i.s difficul t for today 's computers for 

high temperatures a nd large cut off angu lar momentum. In Ref. [8]. \"i suthikraisee and 

Bertsch discussed the susceptibilit:· after the de oupLing using uniaxial coupling. They 

found that the susceptibili ty reaches the superparamagnetic Yalue. Therefore, if we were to 

calculate ll1e susceptibility after the decoupLing. the susceptibility for tbe cubic symmetric 

potential wou ld hP superparamagnetic. 

While au anomalous temperature dependence i reported in Ref. [26], the calculated 

. usc:eptibil ity i · always positi Ye. We could not reproduce the anomalous temperature 

depend nee. 

Tlw ··superparamagn tic peak" which is seen in the profile obtained by t he locked 

moment model is not seen in the pre ent calculation even in the strong coupling limit. A· 

discussed in Sec. 3.3.3. the strong coupling limi t of our mode l is difrerent from the locked 

moment model because of t he CorioLi.s term. It suggests that the effect of the Cori oLis term 

destroys the ~uperparamagnet ic peak. 'v\'e calculated the profile in the low temperature 

for the quad.rupole coupling and find that the peak does not appear. If we would be able 

to calcu late in such high temperature that the Coriol is term can be negligible, the peak 

would appea r in the deflec tion profil e e,·en ill th e cubic s;·mrnetric coupling. 

Finally, we di scu s how to analyze the Stern-Gerlach deflect ion function by our theory. 

\\"r calculated the cumulant of the pTofiles up to the third order to characterize the pro­

fil es. 1\'e fotmd [rom fig. 3.9 that the first and second order cumulants are dominant. lu 

particula r, valuation of the susceptibiLity and second order cumulant by the pert urbation 

technique gave us the analyt ical exp1·ession of the second order cumulant and magnelit' 

su -ccptibili ty for high temperature and the strong or "·eak coupl ing. One can extract the 

magnetic moment and the coupling strength by fitting the ob en·cd magnetic suscepti· 

bilit,,· and the second ord r curnula nt in to the calculated second order cumulant and the 

89 

magnetic susceptibility. 

For example, we analyze the experiment of Gd 17 • Gd23 and Fe 120_ 1,10 . \\'e obtai n 

better agreeruent than the locked moment model for Gd13 . T hl" extracted anisotropic 

coupling in Gd17 i ·smaller than the coupling of Gd23 . The result agrees wi t,h the resul t 

of experiment [15]. The ana lysis of profi les become a better fit tha n the profile calcula ted 

by the magnet ic moment a ud coupling for the bulk. 

The extracted magnet ic moment of ga rl oliniulll cluslt>rs an' rnoch smaller t ba11 one 

of the bulk gadolinium. which indicat e the noncollinear configuration of l ca l magnetic 

moment. The profile of iron clusters can be fitted by the intermediate coupling model. 

The magnet ic moment i again smaller than one or the bulk irou. The antiferrornag-netic 

coupling, like a 'Y phase of iron, may support small moment of iron clusters. Othen\"ise. ir 

suggests t hat the localized surface spin cause a cant d configura I ion of t l1 iron dusters. 

The e configurations of spins decrease the t.otal magnet ic momCJ Jr of irou clusters. To 

confirm the results. we need further stndy like a first-principle eakulat iou including the 

effect of local magnetic moment. 
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Appendix A 

A.l Angular momentum 

The main purpose of this appendix is to pro,·ide some useful rela tions u. eel in tll.i. t hcsi ' , 

The fundamental commu ta tion relation between componems of angular mome!ltulli is 

(A.l) 

an eigenstate of the angular moment um i labeled by the size of angular mon1 nturn J 

and the projection of the angular momentum ,\{ on the quanti zed ax i ,. 

J2JJM ) = J(J + l )j JJI}, Jki.J .II ) = .1/ jJ M). 

(J = 0.1 , 2 .. .. ' .\1 = - J, - ./ + l . ... ' J ) 

In the case of three dimensional rota tion, w f:l user the Euler angles n 

( .. 2) 

(a , 8, ~. )[-! .J.). 

Cncler a rotation of the coordinate frame a round angles 0 the. wm·ef11nctions t ra nsformed 

to 

Jill') = R(O)J il! ). (A.3) 

with the llllitary rotat iona l operator 

(A.4) 

The Wigner V-func tions are defined as 

(..\ .5) 

Corresponding the transformation (AA), we can define the spherical \'ector and tensor 

operators T: 
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Because two successive finite ro at ions are represented by a single finite rotation of differ- \\'e introduced three kind of angular momentum R.S and I = R+S in the intermediate 

en · angle. The D function itself behave. as a spherical tenser. The commu tation rela tion coupling model. The comm utat ion relation of the momentum can be calculated using 

between J and an arbitrary spherical tensor T,,. can be expressed in the form commutat ion relations described above. The commutation relation between the space 

(.-\.7) 

The angular momentum behaves as a spherical tensor of rank one: 

(J1 , Jo, L1) = ( ~(J.- i.!y), J,- ~(.J~ + i l y)) . (A.8) 

lv = T;vJ;. where T;v = ~ (il ~: ~) · (A.9) 

For a n arbitrary ten or operator T~,, we ca n define intrinsic components T~,, th rough 

the relation; 

(A.10) 

T~,, = L v;~(ll)T~v- (A .ll) 
/1 

Th angula r momentum component in the body-fixed frame .1;, is de fined as 

(A.12) 

It can be written in intrinsic comp onent of angu lar momentum , 

(A.13) 

(A.1.J) 

Tht> commutation ru le of angular m omentum in the body-fixed fram e can be ca lculated: 

(A.15) 

fixed component; 

[s, s,] = iE,jksk . [I ,. s,] = if;1kSA-· 

[I;. I;] = iE,]k l k-

For the body-fi'led fram e, the commutation relation i~ calculated: 

[R:, Rj] = -iE;1kR};, [s;, n;J = -i.E,1 kR~.. [r;. Rjl = -iE,1ki~. 

[s;. s;J = -iE;;ks~. [I ;. s;) = o. 
[I;.Ijj = -ic,1 k l~. 

(.-\.17) 

(.-\ .18) 

(.-\.19) 

(.-\.20) 

(.-\ .21) 

(A.22) 

\\'e should note t hat the relations a re qui te c}jfferent for I he commu tat ion relations bctw<'f-11 

different kinds of angular momentum. The comrn utatiou relations b •tween a me kinds of 

angu lar momentum differ one of the space fixed frame by a minus sign. 

The commutation rela tions bet11·een angula r momeutum of different fran1c a re calcu­

lated as 

A.2 

[R; . R1 ] = 0, [S!, Ri] =[I ;, R;] =f 0. (:\.23) 

[R;.sj] = o. [S;. SiJ =[I;, 51 ] =f 0. (A.24) 

[R;. I1 ) = 0, [s;. I1 ) = [I; ,I;] = 0. (.-\ .2:i) 

The derivation of susceptibility for the locked 
moment limit 

In tllis appendix , we show the dcril·ation of he nscept ibility for t·hc lo keel moiUent limi t 

[Eq. (3. 101)] . In Sec. 3.3.1, 11·e supposed that the susceptibi li ty 11·as rlcscribed by t he 

ground band only. The assumpLion is YaUcl if t h ~ band bead of excited bauds is much 

'"hich is diA.cr nt from the com mu tation ru le of anglJlar moment tun in the space-fixed higher t han the energy of the cut of!' level. that is. 

frame by sign. The commutat ion relation bet11· en angular momentum and intrinsic corn· 

p nent of spherical tensor is expressed as 

(A.lG) where N ~ 7 because the ground band consist · of six-fold degenerate levels. 

(.-\.26) 
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The wa.-e function and the energy shift of Coriolis term for the ground hand were 

a lready discussed and turn out to be Eq. (3.99) and Eq. (3.100), respectiYely. The energy 

level of the ground band results in 

(r\.27) 

The suscepLibi li ty is ev<J luated Lluough Eq. (3.92) as 

2 I(I' i\J!Ci'IS,IJ AJJ<i)l 2 e.,xp ( - EtMK;i 
X ::e- Z(T) L L a (I (I+ 1)- 1'(1' + 1)- (.1IJ( - M /('))- u'(Et\- E;"?) kaT 1 

I.\-IK•l1 K'•' 
(A.28) 

where (t = !i?/2.1. The second term of energy denominatoT, £;'- Ej). ,·an ishes because 

of th 6-fold degeneracy of ground band. The matrix element of S, is evaluated by the 

wa,-e fundio11 of the ground ban I Eq. (3.99), 

(.-\ .29) 

One should n te that the matrLx Iemen! is sa rn(' as the one of the locked moment model 

[GJ. Sub tit uting Eq. (.-\.29) i11L0 Eq. (.--\ .28). "·c gN 

1 "" • 52~I(IM1 0i l'MWI(J I\lOI I'I<)I 2 

y ::e- Z(T) L.., L.., ·U ! (I + 1)- !' (!' + 1) 
~ I !\ fi (J 11 

( 
ali2 (I(J + 1) + S(S + 1) + 21< 5) + u.E;'\ ) 

x cxp - kaT . 

(A.30) 

This i~ different from the suscepL ibilit~, foT r.he locked moment [6] only in the Corioli s 

tcnu. Since the average angu lar mom ntum is about I ::e 600, onP can . afely evaluate 

Cq. (.r\ .30) . treat ing J. 1\ as a continuous variab le and replacing the sum by an integral. 

T hus wc gt• t 

(.-\.31 ) 

.:11 n' wh re w = 2:JkuT' 
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A .3 The second order cumulant for the decoupling 
regime 

Tb e ensemble average of the econd order cumuJa.n t is determined by (S,) 2 of each level 

in the a magnetic fi eld and the energy in the absence of magnetic field. \ \'c first cakulatP 

the wave function in the decoupling region using t he perturbat ion Jor t he coupling. 

According to Eq. (3.127). the oupling i much Wli'aker tha11 the mag11etic field. If 

t he coupling were to ,·ani. h. the super- pin is completely decouplecl from the cluster and 

precess about the direction of the magnetic fi eld independent ly of the rotor. Th us. the 

wave funct ion of super-spin becomes I Sa). and one of t he clu ters i. a linear combinnt ion 

of V1~k( ll ) for intrinsic quantum number I;. The total wave function is constructed as 

direct product of them. 

The actual wave function i not deco upled but perturbed by the weak coupling. The 

matrix elemen t of the coupling Hamiltonian of dPgeneratc space (Hcoupl):~'; can be cal­

culated as 

(A.32) 

According to the perturbation t heory for cl egenera1 case. the unperturbed base w~ltuv 

is obtained as t he eigenstares of (Hcoupl):,'{':: 

M = I·'+ a. (.-\ .33) 

\Ve fmther take into accoun t the coupling up to the second-order pertu rbation. If 

lYe apply second-order perturbation naively, the wa,·e function (A.33) is mixed with the 

state of different a a11d one in different R. But we can neglect the mixing with sca res 

in different R because of Eq. (3 .128) iu wh ich the energy diffe.rences between states of 

different R are much larger than the magneti c field. T he perturbed wm·e fun ·&iOH iji ~~'"" 
can be evaluated as 

= { 1 - u~ " f(w ~lta'v'IHc! lli ~l-tavlf } iJi (O) 
2 L.., (a _ a')2 11.Huv 

r;:f.u' 

(wroJ IH lwco) ) 
+u " nA!q'v' c 11Mav \[1 (0) + u2 " (const ) \[1 (0) ( 3_.) 

B L.., (a_ a') IIMa'v B L.., · R.\ofu1v• · · 
uf-<7' u;lu1 

where Us= 8 ;:n and He= Hroupl/u'. ·sing the perturbed wa,·c f1mction Eq. (A.34), \\·e 
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calcu late (S,)2 up to second order for the coupling: 

(S.)2 
----ri2 ~ r:J

2 
+ u~C2. 

l( q,{O) IH \lli (O) )I? 
where c2 = 2r:J L RMu'v' c RMUI' -. 

u'f.u' (r:J ' - (J) 
(.-\.35) 

Till' energy in the absence of a magnetic field is al o treated as a econd order pertur­

bation oft he coupling. The first-order energy sbiit zt'~~~~ is e,·aluated as the expectat ion 

Yalue of H coupt for the Ultperturbed state: 

(A.36) 

II' here !':J.,n reprc$ent the (' igenvalu · of [hkk' = L ~~ (Rk4t;IRk') ]. \\"e can neglect 
~~::=0.±4 

~be second-order nergy shift , since the second-order energy shift comes from the mixing 

with th!:' states in different R. 

\\'e ca lcu late the ensemble awrage of (S,) 2 using Eq. (A.35) and Eq. (A.36) . The 

Boll4m<mn factor is expanded for llT = k~'T. \'eglecting terms higher than second order 

for I!T and 1Js, we obtain 

(.-\ .37) 

Tl ' f (I) ·l . ·]· . l ; . J f ( f{. )Rpu " • h . · (H ) RJ<a . IC Slllll 0 (v/1 \\ 11C I IS t 1C u getn a ue 0 coup! k,k' \alliS es. Sin Ce coup! k,k' iS a 

traceless wa Lrix. Expansion of Eq. (A.37) up to second order of UT and us yield · 

(A.38) 

where S(.r) i defined as 

S(x)= L xex.p (-{JER)· (A.39) 
R.vu.\ 1 

Let us e. timale the S(.1:)' appearing in Eq. (A.38): 

S(l) = L (2S + 1)(2R + Jfexp (-8ER) , (A.-10) 
R 

1 
(a2

) = L 3'5(5+ 1)(25+ l )(2R + l?exp(-fJER). 
R 

(A.41) 

.-·U. DERJ\ :-HI01Y OF THE MATRIX ELE!\IE.\'T 

Before calculating the other 5(.t)'s, we eYaluate 2:;, l.3.vRI2 . 

(2R+ 1) 
15 

K=0,±-1 
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( . .\..42) 

Substituting Eq. (.-\.42), we make a calculation of the other 5(.r)'s 

S(((IJ2) = '1\' 8(2R + 1) 2R + 1 25 + l _ (-(J ) 
vR ~ 15 9 9 exp ER . (.-\.43) 

ll 

S'(r:J2((1Jz) = '1\' 8(2R + 1) 2R + 1 (1 + 25')(-190 + 395(.5' + 1)) . 
vR. ~ 15 9 693 exp ( -JEn)' (.-\.44 ) 

ll 

S(C) = '1\' 8(2R + 1) 2R + 1- (25' + 1) . ( . ) 
2 L: 15 9 9 exp - ER . (.-\.-!5) 

Finally, putting Eqs. (.-\.40) . (A-41 ), (A.-1.3 ), (A.44) and (A.-15) into Eq. (.-\.38). we obtain 

t he ensem ble a,·erage of (S,) 2 a. a functi on of tlw coupling st rengt h 

(s )2 1 2 64 ( U
1 

) 

2 

' enav ~ 3/i. S(S + 1)- 1215 B_gs 

+ { _i_n.2 (-190+395(5 + 1) ) __ -l_fi2S(S } (~)
2 

135 693 3645 t + 1) k8 T (AA6) 

A .4 Derivation of the matrix element 

A.4. 1 Anisotropic interaction 

The bases are obtained by the angular momentum conpling of IS'r:J) and 'D1~k(n) to J JIJ: 

"' v2R + 1 I w I M(Rk ) = ~ (R,,Sr:Ji l !'vf) ~'D~k(n) [Sr:J). (.-\.47) 
u 

Tbe anisotropic interaction is 

m 

Tb.e matrix element is defined as 

• '1\' j(2R + 1)(2R' + I) 
Wltlf(R,q Hc(S, ri )Ww(Rk) = ~ 8n2 

fflf!U 1 

X (R'J.L'Sr:J'I I Jf)(R,.tSr:Ji lM)A,(Sr:J'I[S];,ISr:J) 

X J 'D1~';,D~;" 'D~.dr1. (A. -I!)) 
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Using Telation foT V-fu net ion J Vf,', ;n 1 v~;;n, 1)~~ .... d\2 = 2J;~J (J ttLJi2tl2li3f13) (Jt mti2m.2lj3m3)­

and WignN-Eckart theorem. ll"e get 

= " j(2R + 1)(2R' + 1) 
~ 'iT2 
tnuu' 

x (R'p'Sa'i J.U)(Rfl-Sal lJ !) (S~') .-l"(Sii[S);~IIS) 
25 + l 

8rr2 

--(R',t'<-~ m1Rtt)(R'k'41\IRI\). 
2R+ 1 

(.\. 50) 

Th thrcr Clcbsch-Gorclan coefficient of the matri:x element can be merged into t he Racah 

coefficient using the fo rmula, 

L (anb.Jie<)( td6iq)(bt1d6IJ<b) = )(2e + 1)(2! + l )W (abcd; ef)(aafl/>ic"i)· 
a 

Then, thr matrix lemcnt an be rear ranged as 

x (R'p'Sa'I J.\1) ~A.,(SII[SJ:nlls) 
v2S+ 1 

'iT'2 I I · • 
X --(R k-li\IR1\ ) 

2R + 1 
= (- I )R+5 - 11\"( RSR 'S: !4)-/2R' + 1r(. 

wlwre A~= A.(SII[S];,,IIS). 

A .4.2 The matrix element of Zeeman coupling 

\ \ 'c> cakulcttc t.h0 mau·ix element of Zeeman interact ion usiug the base (3.14) 

I S- I ) " B j'd •jv' l'• (WvtAI Bgs , Wv'l'-'1' = ~ 9o t1k R'k' 
Rll'kk1rm·1 

x (R11Sai f M )(R' 11' Sai l ' M ) (SaiS,ISa') 

x j(2R + 1;~2R' + 1) J V,~v:·k,dl!. 

(.-\.51) 

(A. 52) 

ti ing the ortbogouality of V-funct iou J V£', m, v ;;:,,.,d\2 = 8tr28J,J,61., .~,6m,.m, /(2j1 + 1) 

and Wigncr-Eckart theorem. we obtain 

L Bq.J'R~.J~[,·(RiJSaiiM)(R'!lSai i'.\J) (~) (Sa'lOISa) 
RR'kk'uu' . 25 + 1 

j(2R + 1)(2R' + 1) rr 2 on.wc>~.~·Okk' 
x 8111 2R + 1 (.·\·53) 

A . .J THE LARGE AS GC-"LAR .\IOME.VTU.\I L IMIT OF ... 

where S is integer. :\ ferging the Clebsch-Gorclan coefficient to Racah coefficienr; 

= L Eg f'RU'R!' (- 1)2R+2S-(h/') j(2S + 1)(:2!' + 1)1\"( l S/ R; S I ') 
Rk 

X (10J ' MI I M) jS(S + 1)(2S + 1) 
-/2S + 1 

= Bgs-/21' + 1( - ll (I'J f1 0j1.11) 

x 2:(-WR+S+l J'Ri: r;;{Tr (lsf's: n 1) Js(s + 1)(2s + 1J. 
flk 
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(:\.54) 

(A.55) 

A.5 The large angular momentum limit of the Clebsch­
Gordan and Racah coefficient 

A .5.1 The Clebsch-Gordan coefficient 

The genera l form of the Clebsch-Gordan coeffici nt is 

( . . ,. ) [ (2J+ 1)(j,+j2-j)!(JJ+j-j2) 1(j+h-.h) '] 112 
)l'TllJ)2'Tll2 )'Tll = 

· Ch+Jz+.i+1)! 

x L (-1)' _ . ~(j1 +n~J) ! (j, -ml ) ! ~.i2+m2) ! (j2-:-m 2 ) ! (j +m)'(j ~m_)' . 
, .z !(JJ + ]2-J - z)!(Jt - mt -z)!(y2-m2-z) !(J-Jz+m1 +z)!(.J- )J -rn2+z)! 

(:\.56) 

Rewriting AI wi th .i- )J, ,,-e get 

= J
21 

+ 
1 
2: c _

1 
l' v"(J.,--.2 ----,-'"'! )"' (012-+.,---.-.11"")"' (7J2-+,-~-n'2)"! c-;-i2---n-1'""'2l, 

, z l(jt -.II - z) !(j2 - m2- z) !(.\f - m2 + z) ' 

(jt + j- i2) ! j(j1 - 7nt) !(j- m, - mz) 1 j(j, + mt) 1(j + m1 + m2) 1 

(j, + J2 + j + 1)! (j, - mt- z) 1 (j- h + 111t z)! 
(:\ .57) X 

\Ve defin e 2J = j + j1 . 2Jf = m + m 1. We e,·aluate the itSym ptotic form of j 1 . j » )2 , 

(2J- h) ! - -~ 
(2J + )2 + 1)! ::: (2.7) ' ' (.US) 

1 · . f(J- i\1 M-'"') ' (J I\~{ + M-m')1 v (Jt-m,)1(J-m,-m2)! V - - 2 · -. 2 · - - ·"_,,,_,, 
(j,- m, - z)! = (J - .\I- M-,z'"'- z) ! ~ (J - M ) ' . 

(A. 59) 

- . f( J + ,11 M+m')'( J + \l + M+'"')' J(Jt + m,)!(J + m1 + m2)! _ V · - 2 · ' 2 · _ (- - 'r-";-,.,_,, 
( 

. . - - \1 - J + .1!) . . 
J - )2 + 'Tllt + z)! (J + JIJ- h + ~ + z)! 

(.\ .60) 
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Defining cos~ = JTifi and sin ~= jlif-. ll"e can r!"arrange t he Eq. (A.~7) 

( 
0 ) 2n~m,-M-2• ( . O)M -m2-2: 

X CO. 2 SUl Z (:\ .61) 

P utting the d finition of d-function. 

J(j + m) '(j- m)!(j + m')!(j- m')! ( 0)2J+m'-m-2v (. o) m-m'+2v 
X ( . ) ( . COS - Sill -

.J- m - 11 ! J + m'- v)!(m- m' + v) !z;! 2 2 ' 

into Eq. (.-\ .61) ,11"C obtain the asymptotic form. 

A.5.2 The Racah coefficient 

Tit genera l C rn1 of th' Racah coeffici ent is \\"ri tten as 

II" here 

S(abe) = 

I I "(abed: ef) = S(abe)S(cdj)S(acf)S(bde)w(adcd; ef). 

(a+b-e) !(b+ -a) 1(e+a-b)! 

(a+ b+e+ l)! 

w( rtbcd: e!) = 2:::.": ( - l) '(a + b c+ d + 1 - z) !/ {(a+ b-e- z) !(c +d-e- z) ! . 

(A.62 ) 

(A.63) 

(:\ .. 6-±) 

(A.65 ) 

x (rt + c- f- z) !(b + d- f- z) !z!(e + f-a-d+ z)!(e + J- b - c + z) '}. 

(.-\.66) 
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The transformation c- a= rn. d-b= m', a+ b-e- z = z' yields 

lr(abcd:ef) = (-1)•-H I)- 1)'' J(! + rn)!(f- m)!(f + m')!(f- m')! 
,, (J- m- z')!(J + m- z') 1(m - m'- z')'z' ! 

x (a+ c- J)!(b+ d- !)! 
(a+ c + f + 1)!(b + d + f + 1)! 

x J(a b+e) 1(b-a+e)!(c-d +e)'(d-c +e) ' 
(c- b + e- f + z')!(d- a+ e- .f + z')! 

X 

Reairauging a= (a.+ c)/2, b = (b + d) /2. 1\"C get 

ll "(abcd: ef) = ( - 1)•-a-b 2:::.": ( - r )'' JU + m)!(.f- m) !(.f + m')!(J- m') ! 
,, U- m- z' )!(.f + m - :') !(m- m' - z')!z'! 

X (20:- j)(2b- f) 
(2a + 1 + j)!(2b + 1 +f) ! 

X 

x (ii+b- -¥)!(ii+b-e+¥J! 
(a+ b +e + 1 -m 2"'')

1(a + b+e+ 1 + "'~"'')! 
(a,+ b + e + 1 + m-rn' + z') I 

X 2 · 

(a+ b-e- m2m' - z')' 

\\"e apply rhe assumption of a. b, c, d, e » m. m', f. Theu we get usymptotic form 

(2a- J)(2b- f) ~ (?- _)_(2/ +ll/2 
(2a+ l +fl !(2b+ 1 +f)!- ~ax2b , 

(A.67) 

(.-\.68) 

(.-\.69) 

(a- ii+e- ¥l!(a- b+e+ ¥J!(ii-a+e+ ¥l!(b- a+e- ~)! 

(a b + e + "' 2'"' f + z' )!(b- a- e + "' 2'n' - f + z')! 
""'((ii- ii e)(b- a+ e))(m'-m+2f-2z')/2_ (.'\..70) 
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b-e- ¥l!(i.i+b-e+¥)' (a+&+e+1+¥+z')! 
(o + b+ e+ 1- "'-;m')!(ii + b+e+ 1 + m 

2
m')! X (ii+b- e- '" 2'"'- Z

1)! 
- / ~ :

1+m-m 1 
- :

1 
- ::'+m-"11 

~ (ii + b- e)'(ii. + b- e)-•-(a+ b+e)'(a + b +e) ' 

= {(ii+ b+ e)(n+b- e) }~ . (.-\ .71 ) 

L'sing cos(0/2) = JCa- b + e)(b- a+ )/4Jib, sin(0/2) = J(a + b + e)(b +a- e)/4ab, 

and definition of d function (:-1..62). we obtain the asymptotic form of Racah coefficient . 

. (-1)•-a-b-m-rm' f (-1)'-d-c f 
1\ (abed: ef) = J4ii.b rlmm' (0) = J4ii.b dc-a,b-d(O). 

4ab 4ab 
(A. 72) 
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