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Local Rigidity of Certain Actions of
Nilpotent-by-Cyclic Groups on the Sphere

By Mao OKADA

Abstract. Let G = SU(n,1), n > 2 be the orientation-pre-
serving isometry group of the complex hyperbolic space H with an
Iwasawa decomposition G = K AN. We prove local rigidity of a family

of certain actions of a subgroup I' C AN on the imaginary boundary
OHP = §2n—1,

1. Introduction

Let I be a finitely generated group, and G a topological group. Consider
the space Hom(I", G) of homomorphisms from T" into G equipped with the
topology induced from the product topology of GI'. Two homomorphisms
p1,p2 € Hom(I',G) are said to be conjugate to each other if there exists
an element ¢ € G such that gpi(y)g~! = pa(y) for all ¥ € T'. A homo-
morphism p € Hom(I', G) is said to be locally rigid if the conjugacy class
of p is a neighborhood of p. In this paper, we will study local rigidity in
a broader sense: A family A C Hom(I',G) of homomorphisms is locally
rigid if the set of homomorphisms conjugate to certain elements of A is a
neighborhood of A. Our main interest is the case where G = Diff (M), the
group of C*°-diffeomorphisms of a compact manifold M with C"-topology
(r=0,1,...,00). In this case, we say that the family A of actions of T on
M is C"-locally rigid.

A typical example of local rigidity of a family of actions is a result of
Ghys [3], which shows C"-local rigidity (3 < r < o0) of the family of group
actions defined as follows. Let I' = m1(%,) be the fundamental group of an
oriented closed surface of genus g > 2. Consider the family of embeddings of
I into PSL(2,R) as cocompact lattices. The standard action of PSL(2,R)
on S1 = RP! induces a family of actions of I on S', which is locally rigid.
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Note that the family is locally compact since I is a finitely generated group
and PSL(2,R) is a finite-dimensional Lie group.

Asaoka [1] proved C?-local rigidity of a family of actions of the solv-
able group BS(n,k) = (a,by,...,b, | abja™' = bF, bibj = bjb; (i,5 =
1,...,n)), (n > 2,k > 2) on the sphere S™. The family of actions are in-
duced by a family of embeddings ¢ : I' — SO(n+1,1) of " into SO(n+1,1),
which acts on the real hyperbolic space Hﬁ{rl by isometries in a canonical
manner and thus on the imaginary boundary 8Hﬁ“ = S™. We remark that
the images ¢(I") of the embeddings is not discrete in SO(n+ 1,1). It should
be mentioned that the statement also holds for n = 1, while the family
is contained in a single conjugacy class, i.e., such actions are locally rigid.
This fact is a part of the work of Burslem-Wilkinson [2].

The result of Asaoka with Hpg replaced by Hg is the statement of our
theorem; we proved local rigidity of a family of actions of a solvable group
I' on the imaginary boundary 8]1—]1%"’1 = §?n+1 of the complex hyperbolic
space. The groups I' are defined as follows. Let SU(n+1,1) = KAN be an
Iwasawa decomposition, and A a lattice of N. As N is a normal subgroup
of AN, A acts on N by conjugation. Fix a nontrivial element a € A which
preserves A C N, ie., aAa~! C A. Note that since A is 1-dimensional,
the subgroup Z = (a) C A generated by a is a lattice of A. Consider the
subgroup I" of SU(n + 1, 1) generated by Z = (a) and A. Such a I" will be
called a standard subgroup of SU(n + 1,1). Note that I' is not discrete in
AN. In fact, the closure is isomorphic to Z x N.

The action of a standard subgroup on $?"*! induced by the natural
action of SU(n + 1,1) on OHEM = $?1 will be called a standard action.
For a fixed standard subgroup I' C SU(n + 1,1), an embedding of I into
SU(n+1,1) as a standard subgroup is not unique. Thus the family of such
embeddings induces that of standard actions of I'. Now we state our main
theorem.

THEOREM 1.1. Let T' be a standard subgroup of SU(n + 1,1). The
family of standard actions of T' on S?"+1 is C3-locally rigid.

Note that when we apply the above construction for SU(n + 1,1) =
KAN to an Iwasawa decomposition SO(n + 1,1) = K AN, we obtain the
family of group actions in the above result of Asaoka.

Our strategy for the proof, which is similar to that of Asaoka’s, can be
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described as follows. Since the standard actions of I' admit a common fixed
point in S?"*1, the family of standard actions induce a family of homomor-
phisms from I' into the group G(R?***! O) of germs of diffeomorphisms of
R2?"*+1 defined around O € R?"*! and fixing O. The first step is to reduce
our main theorem to local rigidity of the family in Hom(I',G(R?"*! 0O)),
which is, so to speak, local rigidity of local actions. The Taylor expansion
at O € R?"*! induces a homomorphism from G(R?"*!1 O) onto the group
of formal transformations F(R?"*1 0) of R?"*! fixing O. The second step
is to show that local rigidity of the family in Hom(T, G(R?*"*! O)) follows
from that of the induced family in the space Hom(T, F(R?"*1 O)). The
last step is to prove local rigidity of the family in Hom(T, F(R***!,0)).

A difficulty of the case G = SU(n + 1,1), compared to the case G =
SO(n+1,1), comes from differences in the dynamics of A around the fixed
point, where we fixed Iwasawa decomposition G = KAN. For example,
in [1], Asaoka applied a tool from the theory of dynamical systems called
linearization to diffeomorphisms close to the action of a non-trivial element
a € A , while in our case such diffeomorphisms cannot be linearized im-
mediately. So we used Sternberg’s normalization [6]; a modified version of
linearization.

In Section 2, we will study the standard subgroups of SU(n + 1,1). In
particular, we will give an explicit presentation of such a group. In Section
3, we will begin with reviewing a proof of linearization of a diffeomorphism
around a contracting fixed point. The goal of Section 3 is to give a proof
of a normalization which will be used later. In Section 4, we will set up
terminology for spaces on which the Lie group N acts simply transitively,
called Heisenberg spaces. The remaining sections are devoted to the proof
of Theorem 1.1; Section 5, 6, and 7 correspond to the three steps of the
proof mentioned above. The most difficult part of the proof is the last
step consisting of calculations on the group of formal transformations. In
the case G = SO(n+1,1), Asaoka rephrased such calculations, using Weil’s
implicit function theorem, as vanishing of a certain cohomology. In our case,
calculations of such cohomology will be much more difficult. To overcome
the difficulty, in Subsection 7.1, we introduce an analogy of the group of
jets of diffeomorphisms at a point. Then in Subsection 7.4, our calculation
can be rephrased in terms of certain homomorphisms of Lie algebras.
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2. The Family of Standard Actions

2.1. The action of SU(n+ 1,1) on S2"1
Let SU(n+1,1) C GL(n+2,C) be the group of special linear transfor-
mations of C"*2 = {(zg,...,2,:1)} preserving the Hermitian form
n

(z,w) = 20Wn41 + E ZiW; + Zp41W0-
i=1

Fix the Iwasawa decomposition SU(n + 1,1) = K AN, where
K={geSUn+1,1)|g" =g'},

e 0 0
A= 0 I, O seR
0 0 e°
1 =z —|2||?/2 —it
N = 0 I, z zeC"teR
0 0 1

The group SU(n+1, 1) naturally acts on the imaginary boundary 8H%+1 of
the complex hyperbolic space. In fact, since SU(n+ 1,1) preserves the Her-
mitian form on C"*2, it also acts on the light cone L = {z € C"*2|(z, z) = 0}
and its projectivization 8]1-]1%+1 = P(L) ¢ PC™*!, which is diffeomorphic to
the (2n + 1)-dimensional sphere $2"*1. This natural action of SU(n + 1,1)
on S?"*1 will be denoted by p°.

The action p° of G = SU(n + 1,1) on S?"*! can be described by the
induced homomorphism p! : g = Lie(G) — X(S?"*1) of Lie algebras, where
X(S?"+1) is the Lie algebra of the smooth vector fields on S?"*1. To see
the structure of the Lie algebra g C gl(n + 2,C) of G, put

10 0
E=[00 0 |eg.
00 —1

Then g is decomposed as g = GBIAIS?,AGZQ(/\)’ where gV = {X € g |
[E, X] = AX}. More explicitly,

z 0 0
g = 0 U 0 ||lzeCUecun),z+trU—-2=0p,
0 0

—Z
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0 0 0
g = E 0 0 |lceC},
)
0 —& 0
g(-l—l)_ 0 0 5 €€Cn ’
0 0 0
0 0 0 0 0 —ir
g™ = 0 00 |[reRp, g™ =00 0 ||reRr
—ir 0 0 00 0

Note that a = RE, n = g1 @ g(+?), where a and n are the Lie algebras
of A and N, respectively. The vector field p2(E) vanishes at the points
p’ = [1,0,...,0] € P(L) = S?"* and ¢° = [0,...,0,1]. We will use the
atlas {(¢%, 5?1\ {¢}), (¥, 52"\ {p°})} conmsisting of the two charts
defined by

¢ [1,21,. .., Zns1] — (Rezy,Imzy, ..., Rezy,, Imz,, Imz, 4 1),

Y0 (20,21, - .., 2n, 1] — (Imzg, Rez1, Imz1, . .., Rez,, Imz,).
These coordinate charts induce the homomorphisms ¢?, 90 of Lie algebras
of X(S?"*t1) into X(R?"*!). The following lemma is a consequence of a

straight-forward computation. To reduce the notation, put 9; = 9/0x; €
x(RQnJrl).

LEMMA 2.1.
(i) @Yo pd(E) = —2101 — -+ - — 22020 — 2221102041
(ii) @90 p2(g(=Y) is generated by doi—1 — T2;02n41, 02 + T2i—109n41 (1 <
i<n).
(iii) ¢2 0 p2(g=2)) is generated by Dapi1.
2.2. The standard subgroups of SU(n + 1,1)

Let SU(n+1,1) = KAN be an Iwasawa decomposition. In this paper,
we will study certain finitely-presented subgroups I" of AN.

DEFINITION 2.2. A subgroup I' C SU(n+1,1) is said to be a standard
subgroup of SU(n + 1, 1) if there exist
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e an Iwasawa decomposition SU(n +1,1) = KAN,
e a lattice A of N, and
e a nontrivial element a € A with aAa™' C A,

such that I' is generated by a and A.

Note that a standard subgroup is not discrete in SU(n + 1,1). In fact,
its closure is the subgroup (a) x N generated by a and N.

In the rest of this subsection, we will give explicit presentations of stan-
dard subgroups of SU(n + 1,1). It suffices to consider the Iwasawa decom-
position as in 2.1. We will first describe presentations of lattices in N. Let
A be a lattice of N. Using a result of Mal’cev [4] for general connected
simply-connected nilpotent Lie group, we obtain a basis { X7, ..., Xop4+1} of
the Lie algebra n of N such that

(i) {exp Xi,...,exp Xont1} is a system of generators of A,

(i1) (Xit1,...,Xont1) is an ideal of (X, ..., Xop4+1) fori =1,...,2n, and

(ii) [Xi, X5l =>4 mijk with some rational constants mfj
We will identify the Lie algebra n = gt @ g2 with C" @& R equipped

with the bracket
[(&,7), (€', 7)] = (0, —2®(¢,£)),

where ®(¢,¢') = Im(?T§ ). Then the Lie group N can be identified with the
Lie group C" x R = {(z,t)} equipped with the product (z,t) - (2/,t) =
(z + 2t +t — ®(2,2/)). By the condition (ii), we see that Xon41 €
m,n] = g2, So Xy,41 = (0,7) for some non-zero 7 € R. Thus for
i=1,...,2n, X; = (&,7), where {&1,...,&,} is an R-linear basis of C".
Since Ad((z,t))(&,7) = (&, 7 — 2®(2,£)), there exists ¢ = (2,0) € N such
that Ad(¢)X; = (&,0) for ¢ = 1,...,2n. Replacing X; with Ad(g)X; if
necessary, we may assume 7; = 0. It follows that mfj =0 for k # 2n + 1.
Z?Jn-i—l
integer if necessary, that m;; are integers. Put b; = exp X; fori =1,...,2n
and ¢ = exp Xop,4+1. Then A can be presented as follows:

Set m;; =m . We may assume, by multiplying Xs,+1 by the inverse an

A= (b1,...,bon,c| [bi,c] =1, [b;,bj] =™ fori,j=1,...,2n).
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To describe the matrix (m;;);j, fix the R-linear basis {e1,ie1, ..., ep,ie,} of
C™. Then by the condition (iii), 2GTJG = 7(m;;)ij, where G € GL(2n,R)
correspends to the R-linear basis {{1,...,&,} and J € GL(2n,R) corre-
sponds to the multiplication by i € C on C". Thus (m;;);; is contained in
the set

M={GYJG |G e GL(2n,R)} N M (2n,7Z),

where M (2n,7Z) denotes the set of integer matrices. Conversely, given a
matrix (m;;)i; € M, the group A defined by the above presentation can be
embedded into N as a lattice.

Since Ad(expsE)(&,7) = (e%¢,e%51) for (&,7) € n, the condition e® €
Z is necessary for Ad(expsE)(A) € A. With the above presentation of
A, we see that a standard subgroup I' of SU(n + 1,1) has the following
presentation:

(1) I'= <a; bla cee 7b2n7c|a’bia_1 = bf? aca_l = Ckz’ R>’

where (myj;)ij € M, k € Z,k > 2, and R denotes the relations appeared in
the above presentation of A.

2.3. The standard actions of a standard subgroups

Let I be a standard subgroup of SU(n + 1,1). By the action p° of
SU(n+1,1) on §?"*1 each embedding of I into SU(n+1,1) as a standard
subgroup induces an action of I' on S?"*1. We will call such an action of I’
a standard action of T on S?"*1. The following is the main theorem of the
present paper.

THEOREM 1.1. Let T' be a standard subgroup of SU(n + 1,1). The
family of standard actions of T' on S?"+1 is C3-locally rigid.

From now on, we fix a standard subgroup I' of SU(n + 1,1) with the
presentation (1). The action of I" on $?"*! induced by the inclusion I' C
SU(n+1,1) will also be denoted by p°. To prove Theorem 1.1, it is enough
to show that for each embedding ¢ of " into SU(n+1,1) as a standard sub-
group, any actions sufficiently close to p® 0. are conjugate to standard ones.
Replacing T with its embedded image ¢«(T") if necessary, it suffices to show
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that actions close to p? are conjugate to standard ones. Moreover, replac-
ing p® with its conjugacy, we may assume that the Iwasawa decomposition
appeared in Definition 2.2 is the one given in 2.1.

In the remainder of this subsection, we will give an explicit description
of the action p® of I' in terms of the coordinate charts ¢°,¢° introduced in
Subsection 2.1. Note that the map p°(a) has exactly one contracting fixed
point p? € S$?"*1 and exactly one expanding fixed point ¢° € S?"*!, while
p°(\) has exactly one fixed point p° for all A # 1 € A. In particular, p°
is the common fized point of p°, i.e., p°(7)p® = p° for all v € I'. Thus the
coordinate chart 1/° on S?"*1\ {p°} induces an action of I' on R*"*! which
will be denoted by 1%p°. Then it is easy to see the following, the proof of
which is left to the reader.

LEMMA 2.3. There are bases {u1,...,usn}, {vi,...,von} of R*" and
t € R such that for any (x¢,x) = R x R?" = R?"+1,

00" (a)(wo, x) = (Km0, k),
2% (bs) (w0, ) = (0 — (us, ), T + vy),
¢8PO(C)(1‘07$) = (‘770 - t,l‘),

where (-,-) denotes the Buclidean inner product on R*".

In general, for a diffeomorphism f that is defined around O € R™, and
fixes O, the differential (df)o at O € R™ can be identified with a matrix
in GL(m,R). For each p(y) (v € T), the coordinate chart ¢° induces
a diffeomorphism around O € R?>"*! fixing O, which will be denoted by
#2(p°(7)). A straightforward computation shows the following, the proof of
which is left to the reader.

LEMMA 2.4.
(i) The diffeomorphism ¢2(p°(a)) is linear:
+ln 0
R = Fgr Y )
k2

for x around O € R2"*1,
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ii) There is a basis {ui,...,usn} of R*™ such that
(ii)

Ion

(dfi)o = < 0 1 > ; (dg)o = Dony1,

where f; = ¢2(p°(b:)), g = #2(p°(c)).
3. Sternberg’s Normalization

We first recall Sternberg’s original proof of linearization of a diffeomor-
phism around a contracting fixed point. Let G = G(R™,O) be the group
of germs of diffeomorphisms defined around O € R™ = {(z1,...,2p) |
z; € R} and fixing O € R™. Let R[[z1,...,zy]] be the ring of formal
power series in the variables z1,...,z, over R. The set F = F(R™,0) C
(R[[z1, ..., zm]])™ of the Taylor expansions of the elements in G has a nat-
ural group structure. The group F will be called the group of formal trans-
formations of R™. Let Do f € F be the formal transformation defined by
f € G. Note that the group GL(m,R), which is a subgroup of the group
of diffeomorphisms around O € R?**! that fix O, is naturally a subgroup
of G and F. When F € F is the Taylor expansions F' = Do f of f € G,
the differential (df)o at O € R™, which can be identified with a matrix in
GL(m,R), will be called the linear part of F.

THEOREM 3.1 (Sternberg’s linearization [6]). Let f € G be the germ
of a contraction at O € R™, \i,..., A\, € C, |\;| <1 the eigenvalues of the
differential (df)o of f at O € R™, and L € G the germ of the linear trans-
formation defined by (df)o € GL(m,R). Assume the following condition,
called the non-resonant condition:

AN £ N A foralli=1,...,m, I; € Lz, > 1; > 2.
J

Then f and L are conjugate in G.

Sternberg’s proof of the above theorem consists of the following two
propositions.

PROPOSITION 3.2 ([6]). If f,f' € G are the germs of contractions sat-
isfying Do f = Do f' € F, then fand [’ are conjugate by an element h € G
with Doh =1 = Dgpid € F.
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PRrROPOSITION 3.3 ([6]). Let F' € F be a formal transformation, and
L € GL(m,R) the linear part of F. If L is a contraction satisfying the
non-resonant condition, then F and L are conjugate in F.

As mentioned in [6], the latter proposition has a natural modification
in the case where the non-resonant condition does not hold. In fact, under
some weaker conditions, one can find a (non-linear) polynomial transfor-
mation conjugate to the given transformation. Such a technique is called
normalization of a transformation. While Proposition 3.4 below, which will
be used later, is an immediate consequence of [6], we will give here a proof
of Proposition 3.4. In fact, the notation and calculation in the proof will
also be used later.

Recall the notation introduced in Section 2. We want to normalize
formal transformations close to the linear one ¢2(p°(a)) € GL(2n + 1,R)
induced by the standard action of a € I' around p°. By Lemma 2.4,

0/.0 il 0
(@) = L ) k=2
0 %
Let us denote the above matrix by I(k). Observe that I(k) does not satisfy
the non-resonant condition in Theorem 3.1. Thus formal transformations
close to I(k), in general, do not satisfy the non-resonant condition.
Proposition 3.3 was proved by solving an equation in F = F(R™, O) by
induction on the degree. More explicitly, to prove Proposition 3.3, it suffices
to find a solution of the equation

FH=HL

in H € F. Note that each F' € F can be uniquely written as an infinite sum
of maps in S (R™), where S (R™), > 1 denotes the space of polynomial
functions F' : R™ — R™ whose components are homogeneous polynomials
of degree r. Thus we can construct a solution by induction on r.

In our case, instead of the decomposition of F = F(R?*"*! 0) into the
spaces S() (R?7+1) it is convenient to use another decomposition of F. Let
F) > —1 be the collection of polynomial functions F : R2"+1 — R2n+1
such that I(k) o FoI(k)™' = k" F and that F(O) = O. So F € F") if and
only if F' is a polynomial function such that

o Fy(x) e HUTD (1 <i<2n)
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° F2n+1($) S 'H(TJFZ),

where Fj(x) denotes i-th component of F(z), and H(") denotes the R-linear
span of x| ... :U;f{jf’s satisfying r1 + - -+ 4+ rop 4+ 219,11 = 7, which is, so
to speak, the space of homogeneous polynomials of “weighted” degree r. In
particular, for F' = (Fi,..., Fopy1) € FO) the function F; : R"*! — R has

the form

2n
Fz(x) = Zaixi, (Z = 1, .. .,277,),
i=1

2n
Fopi1(2) = aons12on41 + Z bijzix;.
ij=1
Let Py C F be the subgroup defined by
Po=FnrO.

Thus, for F' € FO_ F € P, if and only if the linear part of F' is an invertible
matrix. Then each F' € F can be written as an infinite sum

F= Z F)

r>—1
of maps F(") € F(). In particular, there is a natural bijection between

the set 7 and the set Py x [[,5_1, 0 F). Note that the map F — P,
F — F© is a group homomorphism.

PROPOSITION 3.4. If F € F is C'-close to I(k) € GL(2n+1,R), then
F is conjugate to G = FOO) ¢ F in F.

PROOF. Suppose that F is C'-close to I(k). Replacing F with its
conjugate by a linear transformation, we may assume that F(—1 = 0. We
claim that there is a unique transformation H € F such that H(-Y = 0,
HO =id € Py, and FH = HG. We will solve the equation

(FH)" = (HG)" (r > 1), HTY =0, HO =id

by induction on r. When r = —1, the both sides of the equation vanish.
The case r = 0 follows from the fact that the map F — F© is a group
homomorphism from F onto Py. If r > 1, the equation is equivalent to

LoH" =H" oL+,
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where L is the linear part of G and ® is a sum of terms determined by F®)
(p <) and HY (¢ < r). Now the claim follows from Lemma 3.5 below. I

LEMMA 3.5. Let PoNGL(2n+ 1,R) (= GL(2n,R) x GL(1,R)) be the
group of linear parts of the transformations of Py. There is a neighborhood
U of I(k) € Py N GL(2n + 1,R) such that for L € U and r > 1, the linear
map

FO o F) Frs LoFoL ' —F
is a linear automorphism of F().

PROOF. Let || - || be a norm on R**1. Fix a constant ¢ > 1 and
a neighborhood U C Py N GL(2n + 1,R) of I(k) such that ¢* < k and
|ZI(k)~ [, | 1(k)L™| < ¢ for L € U, where ||L|| = maxq,=; || Lx||. Define
a norm on F) by ||F| = max||,=1 || F'(z)||. Since each component of
FeFisa polynomial in xj,...,z2,41 of degree at most r 4+ 2, we see
that ||F o L|| < max{||F|||L||""2, ||F||} for L € GL(2n + 2,R).

We will show that F =0if F e F0), r>2 and L 'oFoL = F. Since
I(kyo Fol(k)™' =k'F for all F e F"),

E"'||F|| = |[I(k)o F o I(k)71|| = || I(k) o L 'oFoLo I(k)flﬂ
< IR)LIFINLI(R) ™M™ < 2 .

As ¢T3 < k", we see that ||F| = 0. O
4. Heisenberg Space

Let SU(n+1,1) = KAN be the Iwasawa decomposition as in Section 2.1.
The goal of this section is to set up terminology for affine spaces modeled
on n = Lie(NN), which will be used in Subsection 7.3 and Subsection 7.4.

DEFINITION 4.1. A smooth manifold M equipped with a simply tran-
sitive smooth action p of N is called a Heisenberg space. The action p will
be called a Heisenberg structure of M.

DEFINITION 4.2. Let M be a smooth manifold with dim M = 2n + 1
and X(M) be the Lie algebra of smooth vector fields on M. A subalgebra
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h C X(M) will be called a Heisenberg connection if b is isomorphic to n as
a Lie algebra and b is linearly independent at each point of M, i.e.,

T,M ={X(z) | X € b}
for all z € M.

For the homomorphism p, : n — X(M) induced by a Heisenberg struc-
ture, p.(n) C X(M) is a Heisenberg connection. Conversely, given a Heisen-
berg connection h C X(M) consisting of complete vector fields and an
isomorphisms ¢ : n — h, we obtain an action p of N on M defined by
p(9)(z) = exp(¢(exp~tg))(z). For any Heisenberg connection h C X(M)
and a point p € M, there is a local coordinate system (. ..., xo,+1) around
p such that h is spanned by

02i—1 — T2i02n+1, 02 + T2i—102n+1, O2n+1 (1 < i < n)

where 9; = 0/0z;. The subalgebra of X(R**™!) spanned by these vector
fields will be called the standard Heisenberg connection on R?*+1,

LEMMA 4.3. Let (M, p) be a Heisenberg space.

(i) There is a Heisenberg structure o on M which preserves the Heisenberg
structure p, i.c., p(g1)0(g2) = o(g2)plg1) for all gr,gs € N

(ii) Let o be a Heisenberg structure preserving p, U C M a connected
open subset, and f : U — f(U) C M a diffeomorphism onto its image.

Assume f preserves p, i.e., f(p(g)x) = p(9)f(x) if p(g)x,xz € U. Then
there is an element g € N such that f = o(g)|v-

PrOOF. (i) It is sufficient to consider a Heisenberg structure p on R?7+!
such that p.(n) is the standard Heisenberg connection. Let " be the Heisen-
berg connection on R?"*! spanned by

02i—1 + 2i02n+1, 02i — T2i—102n+1, O2n+1 (1 <7 < n).

It is easy to see that [X,Y] = 0 for all X € p,(n) and Y € b'. Fix an
isomorphism ¢ : n — §’ of Lie algebras. Then o(exp(X)) = exp(pX) (X €
n) defines the Heisenberg structure o preserving p.
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(ii) It suffices to show that for each point € U, there is g, € N such
that o(g,) coincides with f around z. In fact, such an element g, is unique
if exists. So we obtain the map x +— ¢, U — N, which must be locally
constant. As U is connected, this map is constant.

Let g, € N be the element with o(g,)x = f(x). Then the diffeomor-
phism o (g.) ‘o f : U — p(g.) tof(U) also preserves p and o(g,) tof(z) =
x. It follows that o(g,)~! o f is the identity on a neighborhood of z. [J

COROLLARY 4.4. Let (M,p) be a Heisenberg space and h = p.(n) C
X(M) the corresponding Heisenberg connection.

(i) The centralizer Z(h) of b in X(M) is a Heisenberg connection.

(ii) Let U C M be a connected open subset and Z(h|y) the centralizer of
blu ={X[v | X € b} in X(U). Then Z(blv) = Z(b)lv.

Proor. Fix a Heisenberg structure ¢ on M preserving p.

(i) Fix X € Z(h). For t € R, by Lemma 4.3 (ii), there is an element g; €
N such that o(g;) = exp(tX). This defines a continuous homomorphism
t g, R > N. Then Y = —4|,_og, € n satisfies 0,.(Y) = X € X(M). It
follows that Z(h) is the Heisenberg connection corresponding to o.

(ii) Since Z(h)|v C Z(blv), we will show the converse. Fix X € Z(h|v)
and z € U. It suffices to show that there exists Y, € Z(h), such that X =
Y, around x. By Lemma 4.3 (ii), we obtain a continuous homomorphism
t — g; defined around 0 € R and a neighborhood V of x € U such that
o(gr) =exp(tX)onV. ThenY = —%]tzogt € n satisfies 0,(Y) = X around
zeU. U

Note that if h is the standard Heisenberg connection on R?**!  then
Z(h) is spanned by

02i—1 + 2i02n+1, 02i — T2i—102n+1, O2n+1 (1 <7 < n).

The automorphism f of n = gt @ g(+2) defined by

{<1og NX (X egtth)

fX)= 2log )X (X € gt+2)

is called the dilation by a constant A > 0.
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DEFINITION 4.5. Let h C X(M) be a Heisenberg connection. A vector
field D € X(M) is called a dilation by A > 0 of b if ad(D) preserves h and
the endomorphism on h = n induced by ad(D) is the dilation by A.

Note that the definition of the dilation does not depend on the choice
of an isomorphism between h and n. By definition, if D, D’ € X(M) are
dilations of h by A > 0, then D — D' € Z(b).

LEMMA 4.6. Let h C X(M) be a Heisenberg connection. There is a
dilation D of i by A > 0 which is also a dilation of Z(h) by A.

PrROOF. We may assume that b is the standard Heisenberg connection
on R?"*1. Then

Dy = —(log \)(z101 + - - - + 22,020, + 2721,4102n41)
is a dilation of both h and Z(h) by A. O

PROPOSITION 4.7. Let (M, p) be a Heisenberg space and h = p.(n) C
X(M) the corresponding Heisenberg connection. Let U be a connected open
subset of M and f be a diffeomorphism defined on a connected open subset
V of U onto its image f(V) C U. Let D € X(U) be a dilation of bly by
A#£ 1. If f preserves b and D, then f =idy.

PrROOF. Let o be a Heisenberg structure on M preserving p. By
Lemma 4.3, f = o(g)|y for some g € N.

By Lemma 4.6, there is a dilation D € X(M) by X of b and Z(h). Then
D — D|y € Z(b|y). By Corollary 4.4 (i), D — D|y = X |y for a vector field
X € Z(b). Since o(g)|y preserves D = D + X, we see that o(g) preserves
D + X. Now the claim follows from the following lemma. [J

LEMMA 4.8. Let (M, p) be a Heisenberg space and b = pi(n) C X(M)
the corresponding Heisenberg connection. For g € N, assume p(g) preserves
D + X, where D € X(M) a dilation of b and Z(h) and X € b. Then
g=1€N.

PRrROOF. We may assume that M = R>**! and b is the standard Heisen-
berg connection and D = D) given in the proof of Lemma 4.6. Since

p(9)«Dy is a dilation of p(g)«Z(h) = Z(h), p(9)«Dr = Drx+Y , Y €.
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On the other hand, p(¢)« X = p«(Ad(g9)X), where X = p,(X), X € n.
It follows that Dy + X = Dy +Y + p.(Ad(9)X). So Ad(g)X = X +7,
where Y = p*(f/) Then as n is 2-step nilpotent, we see that Y is in the
center of n. So Y € hNZ(h) = Rdapt1- By p(g9)«Dy = Dy + Y, we
see that p(g) € exp(RO2p+1). Thus g € N is in the center of N. Then
Y = Ad(g)X — X = 0. Tt follows that p(g) preserves Dy. We see that

g=1eN.O
5. Local Rigidity of the Standard Actions

As mentioned in Section 2, the action p° of I' on S?"*! admits the
common fixed point p® € §2"*1. If ¢ = p¥ 0+ is a standard homomorphism
with the embedded image «(I') is a standard subgroup whose associated
Iwasawa decomposition coincides with that of I', then the point p is also
the common fixed point of o. The coordinate chart ¢° around p° induces
a group homomorphism ¢? : Diff(S?"*+1 pY) — G = G(R*"*!, O), where
Diff (271, pY) is the group of diffeomorphism of S$?"*! that fix p°. For
each standard action o as above, ¢" induces the homomorphism ¢%c of I'
into G defined by ¢lc () = ¢2(a(7)), v € I'. Such a homomorphism will be
called a standard homomorphism from I" into G.

ProrosiTioN 5.1. The family of standard homomorphisms in
Hom(T', G) is locally rigid, where G is equipped with C3-topology.

In this section, we will prove Theorem 1.1 using Proposition 5.1. The
proof of Proposition 5.1 will be postponed to the next section.

To derive Theorem 1.1 from Proposition 5.1, we will first prove the
following proposition, which allows us to extend a local conjugacy between
local actions to a global conjugacy.

PROPOSITION 5.2. Let p € Hom(T', Diff (S?"*1,p°)) be an action with
a common fized point p° € S?"FtL. Assume that the induced homomor-
phism ¢2p € Hom(T',G) is conjugate to ¢Yc € Hom(T',G), where o €
Hom(T', Diff (5?7 +1,p°)) is a standard action. Then the homomorphism
p € Hom(T', Diff (S*"*1 p0)) is conjugate to o in Hom(T, Diff(S?"+1 p%)).

ProoF. Fix a diffeomorphism »’ around O € R?"*! fixing O whose
germ is a conjugacy between ¢0p and ¢2c. Using the coordinate chart )°
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on S§?"1\ {p'} defined in Section 2, put Kp = (¢°)~!([-R, R]*"*1) for
R > 0. Let Ugr = S?"*1\ Kg be an open neighborhood of p € $?"*1. By
the assumption, for sufficiently large R,

h~top()oh(z) =a(v)(x) (v € Ars U{a™ "}, 2 € Up),

where h = (¢°)"! o b/ 0 ¢* is a diffeomorphism around O € S?"*! fixing
O, and Ayy = {b1,b; ", ..., ban, by, ¢, ¢} is the system of generators of A.
For any x € S?"*1\ {p°}, by Lemma 2.3, there is an integer m € Z with
o(c)™(z) € Ug. Thus S*"*1 =, o(c)"™(Ugr). Let hp, : o(c)"™(Ur) —
S27+1 be the smooth map into its image defined by

hm(z) = p(c)™™ 0 hoo(e)™ ().

We will show that hy,(z) = hy(z) for z € o(c)"™(Ug) No(c)™™ (Ug) to
obtain the map h : §2"t1 — §27*1 By Lemma 2.3 and the definition of
Kpr, we see that if z € o(c)"™(Ug) N o(c)~™ (Ug), then there is a word
w=ry...71 on Ay; such that ¢ = we™ € A and that o(w;c™ ) (z) € Ug
for 1 <i <1, where w; = y;...71.

Then

p(wic™ )™ o ho o(wic™ ) (x)
= p(wi—1c™) o p(y) o hoo(yi) o o (wiac™
= p(wi—1c™) " o hoo(w1c™)(x)

/

)(x)

fori =1,...,1, where wg = 1 € A. It follows that p(c™") o hoo(c™)(x) =
p(c™) L o hoo(c¢™)(x). Thus h is well-defined.

Since h is locally diffeomorphic, h is a smooth covering map on S?"+1,
which is a diffeomorphism. As ¢ € A commutes with any v € Ay, Ay, ©
o(7)(x) = p(7) o hym(x) for m € Z and v € Ax1. Moreover, by the relation

o I 7 -1 — -1\o 7 7 —
aca” = ¥, we see that h,o0(a™)(z) = p(a™" )ohy2,,(x). So hoo(y)(z) =
p(y) o h(zx) for any v € T. OJ

To use Proposition 5.1 for the proof of the main theorem, we will prove
the persistence of the common fixed point pV:

PROPOSITION 5.3. There is a neighborhood U of p° €
Hom (T, Diff (S27*1)) where Diff(S?" 1) is equipped with C*-topology, and
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a continuous map ¢ : U — S*" such that o(p°) = p° and that v(p) is a
common fized point of p € U.

PrOOF. Fix constants k! < A < 1, 0 < € < k2. Put Ay =
{b1,...,ban,c}. For v € Ayq, define m, € Z by my, = k if v # ¢ and
My = k? if v = ¢ so that aya™' = 4™ . Put A, = d(¢° o p°(7) o (¢°) Ho.

By Lemma 2.4,
Ign U
A, = 7
=)
for some u, € R*". Let || - || be the norm on R*" ™! = {z = (z1,...,22041) |
z; € R} defined by ||z| = 1 327, || + calzans1|, where ¢1,¢co > 0 are

constants satisfying
—m2|Juy[[1e1r + (1 — €)my — N)ez > 0

for v € Ay1, where || - |1 is the norm on R?" = {2’ = (2/,...,2),) | 2} € R}
defined by ||2’[ly = 322", |#]. Note that (1 —e)my, —A > (1—k 2)k—1> 0.
Then || Z;.n:”O_l Al > ems 4+ X for v € Ayq, where ||A = max| ;|- [|Az||
for A€ GL(2n + 1,R).

There are neighborhood U; of p° € Hom(T', Diff (S?"*1)) and neighbor-
hoods V5 C V; of ¢°(p¥) = O € R?"H! satisfying the following conditions:

(i) For v € Ayy, i = 0,1, j = 0,1,...,my, ¢° 0 p(aiy?) o (¢°)7" are
well-defined on V;.

(i) [[d(6° 0 p(a) o (¢°) el < A and [|d(¢” 0 p(7) 0 (¢°)71)s — A < €
forreViand j=1,...,m,.

(iif) For v € Ay1, ¢ 0 p(v) o (¢°)71(V2) C V1.

Using the persistence of a contracting fixed point of a diffeomorphism, we
obtain a neighborhood Us C U; of p® € Hom(T, Diff($?"*1)) and a con-
tinuous map ¢ : Uy — (#°)~1(V3) such that ¢(p°) = p° and that ¢(p)
is a contracting fixed point of p(a). Since p°(y)(p°) = p° for v € Ay,
there is a neighborhood U C Us of p° € Hom(T, Diff(S*"*1)) such that
p(M(p(p)) € (¢°) 7 (V) for p € U.

We will show that ¢(p) is a common fixed point of p. Fix p € U and
v € Ayr. Putm = ma, A= Ay, 20 = 6°(f(p)), F = 690 pla) o (6°) 1,
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G = ¢’ op(y) o (¢?)7L, and y° = G(2°) — 20. It is sufficient to show that
0
y” =0.
By the definition of U, 2° € V. By the condition (iii), G(2°) € V4. By
the condition (ii),

IF(G(2®) = Fa)Il < Ally°ll
IG7H(2%) = G (2°) | = [|A7Y°]] = elly’ll (j = 0,...,m —1).

So
m—1 ' m— ‘
IGTH(2%) = GT ()] = D 1A — eml”].
j=0 =0
Using FoG =G™ o F and F(2°) = 29,
m—1 ' '
F(G(x%) — F(z%) = G™(2°) — 2° = (G711 (2% — G (")) .
j=0
It follows that
Ml = 1F(G(%)) = F(2°)]
m—1 m—1
=D (@) = G )| = || D] A0 — emlly]l.
=0 j=0

Since || Z;-n:_ol A7|| > em + ), we obtain ||3°|| = 0. O
Now we can prove Theorem 1.1 assuming Proposition 5.1.

PrROOF oOF THEOREM 1.1 FROM PRoOPOSITION 5.1. Let p €
Hom(T', Diff (%" *1)) be an action close to p° € Hom(T', Diff (S?"+1, {p°})).
By Proposition 5.3, we may assume p” is a common fixed point of p. Let
#’p € Hom(T, g) be the homomorphism induced by the chart qﬁo around pY.

If p and p° are close as elements of Hom (T, Diff (S?7*1,p%)), then the
induced homomorphisms ¢2p and ¢?p° in Hom(I',G) are also close. By
Proposition 5.1, we obtain a conjugacy between ¢Vp and ¢2c with o being
a standard action of I on §?"*!. Using Proposition 5.2, we see that p,o €
Hom(T', Diff (§?"+1, p?)) are conjugate. [J
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6. Local Rigidity of the Local Actions

By the homomorphism Dg : G — F defined by the Taylor expansions,
the standard homomorphisms in Hom(I', G) induce elements in Hom(T", F),
which will also be called the standard homomorphisms from I' into F. The
goal of this section is to show that Proposition 5.1 can be reduced to the
following proposition:

ProproSITION 6.1. The family of standard homomorphisms in
Hom(T', F) is locally rigid, where F is equipped with C3-topology.

PROOF OF PROPOSITION 5.1 FROM PROPOSITION 6.1. To reduce the
notation, the homomorphism in Hom(T,G) induced by p° €
Hom(T, Diff (S?"+1)) will also be denoted by p°. It is sufficient to show
that homomorphisms sufficiently close to p° € Hom(I',G) are conjugate to
standard ones.

Assume p € Hom(T', G) is sufficiently close to p°. As Dop € Hom(T, F) is
also close to Dop, by Proposition 6.1, there are a standard homomorphism
Doo € Hom(I', F) (0 € Hom(I',G)) and a formal transformation Doh €
F (h € G) satisfying

(2) Dop°(v) = Doh(Doo)(7)(Doh) ™
for all v € I'. In particular,
Dopla) = Do(ho(a)h™).
So, by Proposition 3.2, there exists h’ € G satisfying Doh/ = I € F and
pla) = W ho(a)h ™ h' L,
Thus, replacing h’h by h, we may assume the equation (2) and p(a) =
ho(a)h~t. By Lemma 6.2 below, for v = by, ..., bay, c,
p(v) = ho(y)h~".
So this equation holds for any v € T'. [J

LEMMA 6.2. Let m > 2 be an integer, and f € G = G(R*T1 0) the
germ of diffeomorphism defined by the matriz

0 1

1
( wln 0 )eGL(2n+1,R).
k
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If 91,92 € G satisfy Dogr = Doga, fgi = g"f (i=1,2), and
(dg1)o = (dg2)o = I + < 0 0 > € GL(2n+ 1,R),

for some u € R*™, then g = go.

PROOF. Fix constants ro > 1 and 1 < ¢ < k satisfying me™ot! < kmo—2,
Let || - || be the norm on R?**! defined by ||z]| = ¢; 2321 |zi| + col|Tantil,
where c1, ¢ > 0 are constants satisfying

ci(m+ Dlulls +c2(1 —¢) <0,

where || - ||1 is the norm on R?" defined by ||z|1 = ZZ?ZI |z;|. Then it is
easy to see that ||(dg1)5(v)]], [|[(dg2)o(dg1)h ()| < c|lv]| for all v € R*™H!
and i =0,...,m.

Then there exist representatives of germs §; € g, f € f and a constant
Ry > 0 satisfying the following condition:

e G'G17 is well-defined on Bg, fori,j=1,...,m,

o fGi=g™f on Bp,,

~ -

o [lg1' (@)l lgzg1* ()| < ellvll, llg2(v) = g2 (V)| < ello—v'|| for v,v" € B, ,
1=0,...,m,

where Bg, C R?"*! is the ball of radius Ry with respect to || - || centered at
O € R2"1 Fix a constant 0 < Ry < Ry with

g~11f(’l)), ~2_g~1if(1)) (S BR1 (’l) (S BRz,i = 0, Ce ,m).

Since Dog1 = Doy,

Al oo 1) = @)
S I

is a finite number. It is sufficient to show that A = 0. For any v € Bp,,

191 (v) = G2 ()| = 1 F 1™ f(v) = F ' g2 F " (v)|
< K™ f(v) = 2" ()]
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m
<KDY (62" @ fv) — g™ g ()]
=1

<kKe) N6 f(v) = g F()
=1

< KA gt fo)ll

=1

2 LI
< k*cAm CkHUH

mCTOJrl

= Aw””’\m-

It follows that
6:(0) = ()] _ mero+
[[v]|0 = ko2

Taking the supremum for v € Bpg,,

merotl
L —
— k’ro—Q
As%of;<1,wehaveA:0.D
7. Local Rigidity of Homomorphisms into the Group of Formal
Transformations

In this section, we will give a proof of Proposition 6.1. First, we will show
that, while the group F is an infinite-dimensional Lie group, Proposition
6.1 can be reduced to a problem (Proposition 7.1) of homomorphisms into
a finite-dimensional Lie group P,. The finite-dimensional Lie group P,
will be defined in the next subsection. Next, we will show that the proof of
Proposition 7.1 can be divided into three steps. Each steps will be discussed
in subsections 7.2, 7.3, and 7.4, respectively.

7.1. The group of jets of diffeomorphisms at a point
The group P, (r > 0) is defined as an analogy of the group J,.(R™,O)
of (r + 1)-th jets of the diffeomorphisms defined around O € R™ that fix
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O € R™. Note that Jo(R™,0) = GL(m,R) and that the Lie group Py was
already defined in Section 3 To motivate our definition of the group P, (r >
0), we begin with an observation on J,.(R™,0). Let X(R™) be the Lie
algebra of the smooth vector fields on R™, and Poly(R™,O) C X(R™) the
subalgebra of the polynomial vector fields that vanish at O € R™. We will
observe that J,.(R™,O) arises naturally from a gradation on Poly(R™, O).

Let Poly"™) (R™, 0) c Poly(R™, O) be the subspace of vector fields whose
coefficients are homogeneous polynomials of degree r 4+ 1. The Lie algebra
Poly(R™, O) has a gradation

Poly(R™, 0) = @5 Poly" 0),
r>0
in the sense that [Poly (R™,0),Poly™)(R™ 0)] c Poly"+")(R™ 0).
Note that Poly(®(R™, 0) = gl(m,R). For r > 0, the subspace

ir= €D Poly@(®™,0)
0<g<r

can be equipped with the Lie bracket [, -];, defined by the following condi-
tion: For X € Poly®® (R™, 0), Y € Poly!?(R™, 0),

’ 0 (otherwise)

Note that j, C Poly(R™,0), r > 1 is not a subalgebra. Let

= P Poly@®R™,0) C i,

1<q<r

be a nilpotent Lie subalgebra of j,., and IV, the connected simply-connected
nilpotent Lie group with its Lie algebra n,.. The group GL(m,R) acts natu-
rally on n, by GL(m,R) x n, — n,, (g, X) — ¢+ X, where g, X is the push-
forward of X € X(R™) by the diffeomorphism g € GL(m,R) C Diff(R™).
Then the diffeomorphism exp : n, — N, induces an action of GL(m,R) on
N,. The semidirect product GL(m,R) x N, is the group J,.(R™, Q) with its
Lie algebra j,.

To define the group P, = P,(R?"*1 O), we consider a certain gradation
of Poly(R?"*! O) associated with the matrix

¢2(p"(a)) = < ff" ! ) € GL(2n+ 1, R).

k
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In fact,

POly(R2n+1, O) — @ p(r) (R2n+1’ O)

r>—1
is a gradation, where
p()(R21,0) = {X € Poly(R*™1,0) | $2(p"(a)). X = K X}.
For » > 0, in the same way as j,, the subspace

b= P p@®"0)

0<q<r

can be equipped with a Lie bracket. Note that the group Py C
Diff(R?"*1,0) defined in Section 3 is a Lie group with its Lie algebra
po C X(R?*"*1 0). Let Q, be the connected simply-connected nilpotent
Lie group with its Lie algebra

qr = @ p(q)a

1<q<r

on which Py acts naturally in the same way as that of GL(m,R) on N,.
Finally, we obtain the semidirect product Py x Q,, which will be denoted
by Pr.

Recall that each F' € F admits a decomposition F(z) =, | F("(x)
as in Section 3. It is straightforward to see that there is a natural identifi-
cation of P, with the subspace

(FeF|F9D =0forq=—1,¢>r+1}CF.
Let FT be the subgroup of F defined by
Fr={FeF|FY =0}

There are natural surjective group homomorphisms 7+ — P, and P, — P,
for ¢ > r > 0 defined by forgetting higher-order terms. By abuse of notation,
such homomorphisms will be denoted by 7, : F* — P,, m, : Py — P,. Note
that for a standard homomorphism S € Hom(T', F), by Lemma 2.4, we see
that S(I') C F*, or S € Hom(T', F1).
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To reduce the notation, the homomorphism Do¢?p" € Hom(T', F*) in-
duced by the action p € Hom(T, Diff(S?"*1)) will be denoted by R°. We
will show that Proposition 6.1 follows from the next proposition, which
claims that the family of the standard homomorphisms in Hom(T', P,) (r >
2) is locally rigid if P, is equipped with the topology induced from P;:

PROPOSITION 7.1. For f € Hom(T',P,.), r > 2 with w1 f € Hom(T", Py)
sufficiently close to m R, there exists a standard homomorphism S €
Hom(T', F1) such that f,7.S € Hom(T', P,) are conjugate.

To prove Proposition 6.1 assuming Proposition 7.1, we need some lem-
mas:

LEMMA 7.2. If a homomorphism R € Hom(T',F) is C'-close to RY,
then R is conjugate to a homomorphism in Hom(T', F1).

PROOF. There is a natural group homomorphism d : F — GL(2n +
1,R) defined by the differential at O € R?"*1. Then for v = by,...,bay, ¢,

1
(5 %) o= (4 1)
k

for k > 2, u, € R?". Let us denote these matrices I(u,) and I(k), re-
spectively. Let f : M(2n 4+ 1,R) — R?" be the map defined by f(X) =
(X2n+1,i)i=1,...2n, where M (m,R) denotes the space of m x m matrices. If
Y € GL(2n + 1,R) is close to I(k), then replacing Y with its conjugate, we
may assume that f(Y) = 0. Thus it suffices to show the following: Assume

e XY € GL(2n + 1,R) are sufficiently close to I(u), I(k), respectively,
e f(Y)=0, and
e YX =XY

for some u € R®® and [ > k > 2. Then f(X) = 0.
Let € > 0 be a constant satisfying

i( )t <

1=2
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and

Elbe<k(k™l—e) — (K72 +e).

(2| and (k7 = )If (B < IFZY)] < (k71 + )| f(E)] for Z
M (2n + 1,R), where | - || denotes the Euclidean norm on R?". Put X

I(u)+ E, E€ M(2n+ 1,R). Then f(X) = f(F). If X is sufficiently close
to I(u), we may assume that [|E|| < €, where [|E|| = max|,—; [|[Ex|. We
see that

If Y is sifficiently close to I(k), we may assume that ||f(YZ)| < (k72 +
S

IF Y X)) < 672+ Il F N = (72 + )L F(B)]I.

On the other hand,

XY =I(u (Z I(u )Y+\I/Y

i+j=l-1

where ¥ denotes the terms of (I(u)+E)! in which E appears more than once.

Note that f(I(u)Z) = f(ZI(u)) = f(Z) and |f(ZW)|| < [[F(Z)IIW] +
I fOW)||Z]| for Z,W € M(2n + 1,R). Then f(I(u)'Y) = f(Y) =0, and

1 (O 1@ Br@?) Y ) 1= 0 = ollf (3 1) By ) |
=k~ 6)Hf(E)II
Moreover, we can show that

l

sl < IS () ) 1wl < 1),

=2

Thus
T+ I F B = IF @Y = {k (k™" =) = (k7> + }IA(B)]
and we see that ||f(E)|| =0, or f(E) = f(X)=0.0

LEMMA 7.3. Let S € Hom(T',F") be a standard homomorphism. As-
sume R € Hom(T', F 1) satisfies the following condition:
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e R(a) = S(a),
e mR(y)=mS(y) foryeTl.

Then R=S.

PROOF. Set F = R(b;), and G = R(a) = S(a). Since ab; = bfa and
G € Py, we see that

GoF" = (FF" 6@,

We will show that F'is uniquely determined by this equation and F () =
0,1. For r > 2, by F(-1) =0, F(O = id, we see that

(FM") = kF™) 4+ &,

where @ is a map determined by F') (+ < r). Using G o F( o G~1 =
k" F(") we see that F(") is determined by F) (' < r). Thus F = R(b;) =
S(b;).

It remains to show that R(c) = S(c). Fix b;,b; with [b;,b;] = ™,
m # 0. As we have seen that R(b;) = S(b;) and R(b;) = S(b;), we obtain
R(c)™ = S(¢)™. Since S(c)® =id and S(c)™M) =0,

mR(c)? = (R(e)™)® = (5()™)? = mS()®.

Thus R(c)® = S(c)®. Since ac = **a, by a similar argument to that
of F' = R(b;), we see that F = R(c) is determined by F() r = 0,1,2. Tt
follows that R(c) = S(c). O

PROOF OF PROPOSITION 6.1 FROM PROPOSITION 7.1. If a homomor-
phism R : I' — F is C3-close to R", by Lemma 7.2, we may assume that
R(T") € F*. Moreover, the homomorphisms 71 R, 71 R® € Hom(T',P;) are
also close. By Proposition 7.1, we obtain h € P; and a standard homomor-
phism S € Hom(T', F*) such that h(m.R(y))h~! = 7.S(y) for v € T. In
particular, h(m R(y))h ™! = m19(7).

Fix H € F with mH = h € P;. Then m(HR(a)H 1) = m1(S(a)).
Thus by Proposition 3.4, replacing H if necessary, we may assume that
HR(a)H ' = S(a). Then Lemma 7.3 shows that HR(y)H ! = S(v) for all
yel. O
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The proof of Proposition 7.1 can be divided into three steps as follows.
Recall that T' is a subgroup of AN in the Iwasawa decomposition SU(n +
1,1) = KAN defined in Section 2, and that the closure of I" in AN is
(a) x N. As the first step of the proof, we will show that homomorphisms
of " can be extended to (a) x N:

ProposiTiON 7.4. If f € Hom(I',P,), r > 2 is a homomorphism with
71 f € Hom(T, Py) sufficiently close to m1 R?, then f can be uniquely extended
to a continuous homomorphism f : (a) x N — P,. Furthermore, if f(a) €

Po, then f(N) C Q,.

As the next step, using the extension f, we will show the persistence of

f(a):

ProposiTiON 7.5. If f € Hom(I',P,), r > 2 is a homomorphism with
mf € Hom(T',Py1) sufficiently close to mR° and f(a) € Py C P, then
f(a) = m-R%a) € Po.

The final step of the proof is to prove the persistence of f(NV):

ProposiTION 7.6. If f € Hom(I',P,.), r > 2 is a homomorphism with
7 f € Hom(T, Py) sufficiently close to 11 R° and f(a) = m-R%(a) € Py C P>,
then there is an element h € Py such that hf(N)h~t = 7, RO(N), where f
is the extension of f obtained by Proposition 7.4.

The proof of the above propositions will be given in the remaining sub-
sections. Proposition 7.1 can be derived from these three propositions as
follows:

PROOF OF PROPOSITION 7.1 FROM PROPOSITION 7.4, 7.5, AND 7.6.
Let f € Hom(I',P;), r > 2 be a homomorphism with 71 f € Hom(T', P;)
sufficiently close to 71 R®. By Proposition 3.4, after replacing f with its con-
jugate, we may assume that f(a) € Py C P,.. We obtain the extension f €
Hom((a) x N,P,) by Proposition 7.4. By Proposition 7.5, f(a) = m-R%(a).
After replacing f with its conjugate, by Proposition 7.6, we may assume
that f(N) = m.R°(N). Using Lemma 7.7 below, we obtain a standard
homomorphism S € Hom(T', F*) such that 7, f = 7.5 € Hom(T, P,). O
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LemMA 7.7. Let f € Hom(I',P,) (r > 2) be a homomorphism with
mf : T — Py sufficiently close to 1 R° and f : (a) x N — P, the extension
of f. If

e f(a) =m-R%a), and
o f(N)=mR(N),
then there is a standard homomorphism S € Hom(T', F 1) such that f = 7,.S.

We will use the following fundamental result on lattices in nilpotent Lie
groups:

THEOREM 7.8 ([5], Chapter II. Theorem 2.11). Let N and V be two
nilpotent simply connected Lie groups, and H a uniform subgroup of N.
Then any continuous homomorphism f: H — V can be extended uniquely
to a continuous homomorphism f: N — V.

PrOOF OF LEMMA 7.7. By the definition of the standard homomor-
phism, it is sufficient to show that there is an embedding ¢ : I' — AN as a
standard subgroup such that f = m,.R% o ¢.

Since the action p of AN on S?"*! admits the same common fixed
point p¥ as that of I', R® = Dp¢?p° € Hom(I', F*) admits the natural
extension to Do¢lp® € Hom(AN, FT), which will also be denoted by R? €
Hom(AN, F*+). Note that 7,R® : AN — P, is an automorphism onto its
image.

By the assumption, we obtain the embedding ¢ = (7, R%)"lof : T — AN
satisfying ¢(a) = a and ¢«(A) C N. It remains to show that ((A) C N is a
lattice. Since i f is close to w1 R?, ¢ is close to the inclusion I' ¢ AN. In
particular, ¢|5 is close to the inclusion A C N in Hom(A, N). By Theorem
7.8, t|p extends uniquely to a continuous homomorphism L]_A : N — N.
Since ¢y is close to the inclusion, L\_A is close to the identity map idy. In
particular, we may assume that the induced homomorphism L|—A* tn —
n, which is also close to idy, is an isomorphism. As exp : n — N is a
diffeomorphism, L]_A is an automorphism of N. It follows that «(A) C N is
a lattice. O
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7.2. Extension of homomorphisms to a Lie group

In this subsection, we will give a proof of Proposition 7.4. Let f €
Hom(T', P,) be a map such that 7 f is close to m; R". First, by Proposition
3.4, after replacing f with its conjugate, we may assume that f(a) € Py C
P,. Next, we will show 7o f(b;) = id € Py:

PROPOSITION 7.9. If g.h € Py satisfying gh = h¥g are close to
moR%(a),id € Py, respectively, then h = id.

Proor. To prove this proposition, we will use Weil’s implicit function
theorem [7]: Let Fy : (Mo, xz0) — (My,z1), Fo : (My,21) — (M2, z2) be
smooth maps between smooth manifolds. If F5 o Fj is the constant map at
o and

Im(dFy),, = Ker(dFy)a,,

then there is a neighborhood U of xy € My such that F;(U) is a neighbor-
hood of 21 € Fy *(x2).

Put
(Mo, o) = (Po, 7 R°(a)),
(Mlv xl) = (ng (WTRO(CL), id))a
(My, z2) = (Po,id),
and

Fi(g9) = (g,id), Fa(g,h) = ghg~'h7F.

To apply Weil’s Implicit function theorem to this setting, it is sufficient to
show that Im(dF}),, = Ker(dFs),,. Then the claim follows immediately.

Identifying the tangent space T7 go(q)Po at 7RO (a) € Py with TigPy =
po by the left translation, it is straightforward to see that

(dF1)z, (X) = (X,0), (dF)0,(X,Y) = Ad(m, R(a))(Y) — kY

for X, Y € po. By Ad(m,R%(a)) = id € Aut(po), it follows that Ker(dF3),, =
{(X,0)}. O

Recall that P, = Pyix Q,.. By the above proposition, we may assume that
f(A) C P, is contained in Q,. By definition, A is a lattice of the nilpotent
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Lie group N. By Theorem 7.8, f : A — Q, can be uniquely extended to
a continuous homomorphisms f : N — Q,. Note that f(a)f(g)f(a)~! =
f(aga™") for all ¢ € N, since both sides of the equation are continuous
extensions of the homomorphism A € A — f(a)f(\)f(a)™t = f(ada™!) €
Q,. Thus we proved Proposition 7.4.

7.3. Persistence of the cyclic subgroup

In this subsection, we will prove Proposition 7.5. Let f € Hom(T', P,),
r > 2 be a homomorphism with 7y f € Hom(T', P;) sufficiently close to 7y R°
and f(a) € Py C P,. To prove f(a) = m.R%(a) € Py, we will construct a
Lie subalgebra of X(R?"*1) on which f(a), r.R%(a) € Py C Diff(R?"*1) act
in the same way. The subalgebra of X(R?**1) is , using the terminology in
Section 4, a Heisenberg connection.

Let f € Hom((a) x N,P,) be the extension of f obtained by Proposi-
tion 7.4 and f, : n — ¢, the homomorphism of Lie algebras induced by the
homomorphism of Lie group f|y : N — Q,. As the linear subspace q, C
X(R?"*1 0) is not a Lie subalgebra, the linear map f, : n — X(R?"+1 0O)
induced by the inclusion g, C X(R?"*!, O) is not necessarily a homomor-
phism of Lie algebras. But we can construct a homomorphism from n into
X(R?*1 0) in the following way. The p(®)(R?**1 O)-component of X € p,
will be denoted by X (). Recall that X1,...,Xont1 € nis the basis of n with
the relations [X;, X;] = m;j Xont1, [Xi, Xony1] = 0 satisfying b; = exp Xj,
¢ = exp Xop41 as described in Section 2.

LEMMA 7.10. Forr > 3, let ¢ : n — X(R?"*1 O) be the linear map
defined by

P(Xi) = fu(X)W (i =1,....2n), (Xont1) = fu(Xons1)@.
Then ¢ is a homomorphism of Lie algebras.

PROOF. Asp, = @SSTP(S) (R?"*10) is a gradation, and f, : n — q,
is a homomorphism of Lie algebras, by the relations on n, we see that
0= f*(X2n+1)(1)7
(X)), Fo(X )] = mig fu(X2n11)®,
[f*(Xi)(l)a f*(X2n+1)(2)] =0,



46 Mao OKADA

fori,7 =1,...,2n. It follows that ¢ is a homomorphism of Lie algebras. [J

Observe that both f(a),m-R%(a) € Py C Diff(R*"*1) preserve
o(n) C X(R**!) and the restrictions on it coincide. In fact, by the
relations abja™! = bF, we see that f(a).f«(X;) = Ad(f(a))fe(Xi) =
kfe(Xi) € pr and thus f(a).fu( X))V = Efo (X)), Since f.(X;)M) € pt1),
RO (a)y (fu( X)) = kfu (X))

PrROOF OF PROPOSITION 7.5. We will consider the action of g =
fla)~tm.R%a) € Py C Diff(R?"*1) on ¢(n) C X(R*"*!). By Lemma 2.1,
@Y 0 p0(n) C X(R?"*1) is a frame field on R?"*+1\ {O}. Thus if 7 f is suffi-
ciently close to m R, by Lemma 7.10, ¢(n) is a Heisenberg connection on a
neighborhood of a point z € R*"*1\ {O}.

If 71 f is sufficiently close to m1 R, we may assume that there are con-
nected open neighborhoods V' C U of z € R?"*1\ {O} such that

e o(n)|y is a Heisenberg connection on U,

e there is an embedding ¢ of U into R?"! such that t,¢(n)|y is the
restriction of the standard Heisenberg conneciton of R?**! to U, and

e g(V)CU.

By the above observation, we see that g preserves the Heisenberg connection
em)|y. Put EY = ¢ o p2(E). Note that g.E° = E° as g € Py. Since
[E0Y] = 7Y for all Y € p(), EY is a dilation of ¢(n)|y by e. Applying
Proposition 4.7, g is the identity on V. [J

7.4. Persistence of the nilpotent Lie group

In this subsection, we will prove Proposition 7.6. As we will see it later,
Proposition 7.6 follows from Proposition 7.11 below, which claims certain
local rigidity of a homomorphism of Lie algebras. Let us set up notation
and terminology to state and prove Proposition 7.11.

Let ¢20pY : g = su(n +1,1) — X(R?*"*!) be the homomorphism of
Lie algebras defined in Subsection 2.1. For simplicity of notation, put ¥ =
¢ 0 p2. Recall that g admits the gradation g = @|A‘S27/\€Zg()‘). The graded
Lie algebra g admits graded Lie subalgebras nt = g(t1) @ g2 and n— =
gY@ g(=2). Note that nt is the Lie algebra of N, which was denoted by
n.
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By the definition of p® and ¢°, it is easy to see that the image of (¥ :
g — X(R?"*1) is contained in the subalgebra p C X(R?"*!) of polynomial
vector fields on R?**1. Moreover, p admits a gradation which is compatible
with that of g: Consider the gradation p = @, _, p("), where

p) = pM(RZHY = (X € p | 62(p%(a))e X = K" X}

In general, for any graded Lie algebras g = @, g™, h = @, b, a homo-
morphism of Lie algebras f : g — b is said to be a homomorphism of graded
Lie algebras if

f(g™) c p™

for all r. The space of homomorphisms of graded Lie algebras will be de-
noted by Homg, (g, h). By the definition of p(), .% : g — p is a homomor-
phism of graded Lie algebras.

Recall that the group P, which is a subgroup of Diff(R?"*1), acts nat-
urally on X(R?"1). Note that Py preserves p C X(R?"*!) and that Py acts
on p by homomorphisms of graded Lie algebras.

We can now rephrase Proposition 7.6 as the following proposition, which
is, so to speak, a local rigidity of a homomorphism of graded Lie algebra.

PROPOSITION 7.11. If + € Homg (n",p) is a homomorphism suffi-
ciently close to 1° = |+ € Homg (nT,p), then there exists h € Py such
that

PROOF OF PROPOSITION 7.6 FROM PROPOSITION 7.11. Let f €
Hom(T', P,), r > 2 be a homomorphism with w1 f € Hom(I", P;) sufficiently
close to m RY and f(a) = 7. R%(a) € Py C P,, and f € Hom({a) x N, P,) the
extension of f obtained by Proposition 7.4. Our goal is to find an element
h € Py satisfying hf(N)h~! = m,.RO(N).

Since f(a) = m.R%(a), we see that f, : nT — p, is a homomorphism of
graded Lie algebras and that the map f. : n© — p induced by the inclusion
P, C pis also a homomorphism of graded Lie algebras. Applying Proposition
711 to ¢ = f. : nT — p, we obtain h € Py such that f.(n") = h.’(n™).
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Replacing f by h™! fh, we may assume f,(n*) = %(n*). As R =9 :nt —
p, we see fi(nt) = (m.R%).(nT). Since Q, is a connected simply-connected
nilpotent Lie group, it follows that f(N) = 7, R°(N). O

Before beginning the proof of Proposition 7.11, we will prove the follow-
ing:

ProposITION 7.12. If + € Homg(n",p) is a homomorphism suffi-
ciently close to 1° = %]~ € Homg,(n",p), then there is an element h € Py
close to the identity such that L =h,ou.

ProoF. If ¢ is sufficiently close to :° € Homg, (n™,p), we may assume
that i~ C X(R?***1) is a frame field around O € R?"*1. Then in~ is a
Heisenberg connection around O € R?"*!1. Thus there is a unique diffeo-
morphism f : R?"*1 — R27*1 gych that f(O) = O and that f,(:X) = °X
for all X € n~. We will show that such a diffeomorphism f must be an
element of Py C Diff(R?"1).

Since ¢ preserves the gradations, (F is a dilation of tn™ by e. As (’F
is a dilation of (®n~ by e, f.(.\°F) is also a dilation of in~ by e. Thus
LE — f.(.’E) € Z(1n™). Using f(O) = O, we see that tE = f.(.\°F).

It remains to show that a diffeomorphism f defined around O € R?"+!
fixing O with fu°F = (°F must be in Py. Set f(z) = (fi(z),...,
f2n+1 (m)) S R2n+1, By f*[,OE = LOE,

("B fi=—fi(1<i<2n), (°E) fant1 = —2font1.

Thus it is sufficient to show that a smooth function g defined around O €
R?"*! with ((°E)g = mg, m € Z is polynomial. Recall that (\°E = —x10; —
<0 — TopOop — 2X95 4102041 € p(®. Observe that lim;_ s v(t) = O € R?H!
for any integral curves v(t) of (°E. It follows that g = 0 around O € R?**!
if m > 0 and that g is constant around O € R?"*! if m = 0. If m < 0, since
[LPE,0;] = 0;, [\°F, Oopi1] = 209n+1,

(\°F)dig = (m + 1)0;g, (\°E)d2n119 = (m 4 2)doni1g

for 1 < ¢ < 2n. Thus we see that g is polynomial function by induction on
m. J
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Let us prove Proposition 7.11. To reduce the notation, put

0 0
o |, F =1 o0
—1 —

0

0

0
0
£
0

Then the following relations are immediate:

1
E=10
0

€0t = 2ImE n)F*, [€,n7] = 2Im(E n)F,
[F=, &4 = (i6)~, [F,¢7] = (ie)*, [F~,F*] = E.

Observe that ¢~ = [F~, (—i¢)*] and 2F~ = ad(F~)?F*. Then we can con-
struct a homomorphism of graded Lie subalgebras from n™ into p associated
with ¢ € Homg, (n", p):

LEMMA 7.13.  For . € Homg (n,p), the linear map O :n~ = g(_Q) &
gV — p defined by

(O0)(67) = ad(PF7)u(—i&)T, (O)(F7) = %ad(LOF_)%FJr

is a homomorphism of graded Lie algebras. Moreover, if v € Homg,(n™, p) is
sufficiently close to \°|n+ € Homg (n",p), then ©1 € Homg(n™, p) is close
to 1%y~ € Homg, (n™,p).

PROOF. By the relations £~ = [F~,(—i€)*] and 2F~ = ad(F~)?F™,
we see that O is close to :° as a linear map from n~ to p. Since (0:)(g=1)
[P, p0 0] = pCY and (00)(g7) € [p2, [p02), pHD])] = p=2), we see
that O preserves the gradations. Applying ad(:.°F )2 to the equation

(=€), o(—im) "] = 20m(E )P,
we obtain

20ad (P F ) u(—i&)F, ad(\CF " )u(—in)t] = 2Im(E n)ad(CF )2 Ft.

It follows that O is a homomorphism of Lie algebras. [
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PROPOSITION 7.14. If a homomorphism ¢ € Homg (nT,p) is suffi-
ciently close to (°|n+ € Homg (nt,p), then there exist an element h € Py
close to the identity such that °|,- = ©(h, o) € Homg (n™,p).

Proor. By Lemma 7.13 and Proposition 7.12, there is an element
h € Py such that :° = h,(O¢). Then

(67) = ad(hatF7) (ha 0 1) (—ig"),
O(F7) = ad(hot"F7)%(hy 0 1) (FT).

There is ¢t € R satisfying h,,"F~ = e,9F~. Consider an element h/ €
exp(RE) C Py such that h.(X) = eMX for all X € gV, Then we see that
O((Wh)xot) =0

Thus replacing ¢ by h. o ¢ obtained by the above proposition, we may
assume that ©1 = 9),- € Homg, (n", p).

LEMMA 7.15. If. € Homg (n", p) is sufficiently close to the homomor-
phism |+ € Homg, (nT,p), and ©r = %[~ € Homg, (n",p), then

o ["F~ . Ft]=E,
° Lg("‘l) = [Log(_1)7 Lg(+2)]'

PROOF. By [1£F,0FT] =0, applying ad(:"F~)?,
2ad(LPF )T, ad(LCF ) FT] + 16T, ad(LCFT)2ET] = 0.
Then by O = .2,
[0(i€) ™, ad(:PF )] = O(i6) " = 0.

It follows that ad(:L"F~)uF+t — E € Z(:°n™). Since ad(L"F~)uFt — E € p(0),
we see that ad(\"F~)tF* — E = 0. Thus we have proved the first item.
Applying ad(:°F~) to [i£T, . F ] =0,

[ad(LCF )T L F Y] + [T, ad(LCF)uFT) = 0.
By Ot =% and [(\V"F~,.FT]| = E,

[0(i&) ", L F ) 4+ €T, E] = 0.
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Thus £ = [1°(i€) ™, F*] for all £ € C" and the second item follows. [J
By the above lemma, we are left to prove the following;:
PROPOSITION 7.16. If X € p(t2) is sufficiently close to °F* satisfying
P, X] = E, [["g"Y, X, X] =0,
then X = OF+.

PRrROOF. To show the proposition, we will use implicit function theorem.
Identifying the tangent space Toop+pt2) with p(+2) itself, it is sufficient to
show that X € p(*+?) satisfying

(3) [°F~,X] =0,
(4) [, X], . FH) + %' F ), X] =0

for all ¢~ € g1 is X = 0.
Define the R-multilinear map ® : (C")* — p=2 by

B(&1, 2,83, &1) = ad(0& )ad (€, )ad (1065 )ad (0¢; ) X

By equation (3), we see that ® is symmetric with respect to &;. We will show
that ® = 0. Put a = ad(:%¢7) and 8 = ad(:%97) for &,n € C*. Applying
3% to (4),

10[f%aX, B3O FT) + 1032’ FT, 33X + 5[’ F+, 31X] = 0,

where we used (3) and ad(F~)ad(n™)2Ft = 0. When n = —if, since
ad(n™)3F* = ||¢)|?¢~ and ad(n™)ad(¢7)Ft = ||€]|2E, it follows that

—10aB%aX + 106X + 5[E, p*X] = 0.
Thus
(5) ®(, & 1€,i) =0
for all £ € C™. Applying ad(:n7)ad(:°¢7)* to (4),

4[a*X, Bal’ FF] + 6] X, Ba? P FT] + 4[fa? X, a3 F ]
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+6[PFT, Ba’X] 4+ 4[3a% FT,a®X] = 0,

where we denoted o = ad(:°¢7), 8 = ad(:"9~) and used the equations
(3) and ad(F~)ad(¢7)2F* = 0. When n = —i, using the equations
ad(n”)ad(§7)F* = [IK]°E, ad(n™)ad(¢™)*F* = [|¢]*¢™, and ad(§7)°F* =
—|1€I1Pn~, it follows that

4[a?X, E] — 601X 4+ 46%0*X — 66%0*X + 4’ X = 0.
By (5),
(I)(£7 57 ga 5) =0

for £ € C™. Since ® is an R-multilinear symmetric map, it follows that
d =0.
Define the R-multilinear map ¥ : (C")? — p(-=1) by
\11(517 527 §3) = ad(Logf)ad(bofg)a‘d(bog?j)X‘

By equation (3), ¥ is symmetric. We will show that ¥ = 0. Applying
ad(:°67)* to (4), since ® = 0,

[W(E,&,8),.°0] + W(ig, £,€) =0,

where

—1

J = eg.

o O O
= O O

0

0

As ¥ is an R-multilinear symmetric map,

6)  3[W(En, ), 0T+ (i€, n,¢) + V(& in, ) + ¥(E,n,i() =0

for £,m,¢ € C". Applying ad(:°n7)* to (4), when n = —i,
—4W(&,n,€) + 6% (n,1,€),:°T] + 29 (1, n,7) = 0.

By (6),

W (n,m,n) =0.
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Thus ¥ = 0.

As we have seen in Section 4, the centralizer Z(:"n~) of (“n~ in X(R?"*!)
is contained in p(=2 @ p(=1. Since ¥ is identically 0, we see that for
all £1,& € €, ad(%¢)ad(:%6)X € Z(1°n~) c p-2 @ p(=Y. On the
other hand, since Loff,Lofg e pY and X € p™?, we obtain
ad(:%¢7)ad(L%6;) X € p@. So ad(:0¢; )ad(:°¢, )X = 0. Similarly, we see
that ad(:"¢7)X = 0 for all £ € C", and that X = 0. J
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