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Abstract

A linear-quadratic-Gaussian (LQG) game is an incomplete information game with

quadratic payoff functions and Gaussian information structures. It has many applications

such as a Cournot game, a Bertrand game, a beauty contest game, and a network game

among others. LQG information design is a problem to find an information structure from

a given collection of feasible Gaussian information structures that maximizes a quadratic

objective function when players follow a Bayes Nash equilibrium. This paper studies

LQG information design by formulating it as semidefinite programming, which is a natural

generalization of linear programing. Using the formulation, we provide sufficient conditions

for optimality and suboptimality of no and full information disclosure. In the case of

symmetric LQG games, we characterize the optimal symmetric information structure, and

in the case of asymmetric LQG games, we characterize the optimal public information

structure, each of which is in a closed-form expression.
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1 Introduction

An equilibrium outcome in an incomplete information game depends not only upon a payoff

structure, which consists of payoff functions together with a probability distribution of a payoff

state, but also upon an information structure, which maps a payoff state to possibly stochastic

signals of players. Information design analyzes the influence of an information structure on

equilibrium outcomes, and in particular, characterizes an optimal information structure that

induces an equilibrium outcome maximizing the expected value of an objective function of

an information designer, who is assumed to be able to choose and commit to the information

structure.1 General approaches to information design are presented by Bergemann and Morris

(2013, 2016a,b, 2019), Taneva (2019), and Mathevet et al. (2020). A rapidly growing body

of literature have investigated the economic application of information design in areas such as

matching markets (Ostrovsky and Schwarz, 2010), voting games (Alonso and Camara, 2016),

congestion games (Das et al., 2017), auctions (Bergemann et al., 2017), contests (Zhang and

Zhou, 2016), and stress testing (Inostroza and Pavan, 2018), among others.2

It would be desirable if we could provide general insights on the connection between optimal

information structures and economic environments. Such insights, however, are difficult to

obtain by studying design problems that are either too specific or too general. Taneva (2019)

provides a complete characterization of the optimal information structures in symmetric 2 × 2

incomplete information games with symmetric binary states, thus revealing the connection

between optimal information structures and the binary symmetric environments. To obtain

more insights, we must also consider non-binary environments, but such environments may not

be tractable enough if they are too general.

The purpose of this paper is to introduce a tractable class of information design problems

which are not too specific. For this purpose, we focus on an incomplete information game such

that payoff functions are quadratic in actions and payoff states, and payoff states and players’

signals are jointly normally distributed, whose origin goes back to the seminal paper by Radner

(1962). Because payoff functions are arbitrary as long as it is quadratic, this class of games

encompasses a wide class of interesting economic environments such as Cournot and Bertrand

1Kamenica and Gentzkow (2011) phrased the design of optimal information structures as a “Bayesian persua-

sion” problem between a sender and single receiver. Information design is also referred to as Bayesian persuasion

to multiple (interacting) receivers.
2See recent survey papers by Bergemann and Morris (2019) and Kamenica (2019).
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oligopoly (Vives, 1984, 1999), beauty contests (Morris and Shin, 2002), and network games

(Calvó-Armengol et al., 2015), among others. In addition, there exists a unique Bayes Nash

equilibrium (BNE) under mild conditions, and it can be calculated as a linear function of signals

(Radner, 1962; Ui, 2016a), which ensures high tractability. This class of games is referred to

as linear-quadratic Gaussian (LQG) games.

We study information design for LQG games, or LQG information design for short. Fix a

payoff structure composed of quadratic payoff functions and normally distributed payoff states,

which is called a basic game in the literature. An information designer has an objective function

that is quadratic in actions and payoff states and can choose and commit to an information

structure from a given collection of feasible Gaussian information structures, which determine

a joint normal distribution of signals and a payoff state with its marginal distribution being the

same as that given by the basic game. LQG information design is a problem to find an optimal

information structure that maximizes the expected value of the quadratic objective function over

the set of feasible Gaussian information structures.

To analyze the problem, we follow the two-step approach of Bergemann and Morris (2013,

2016b, 2019) and Taneva (2019): the first step identifies the set of inducible equilibrium out-

comes under feasible information structures, and the second step identifies the optimal outcomes

from the set of inducible outcomes. Especially, we expand on the analysis of Bergemann and

Morris (2013), who consider a symmetric basic LQG game with a continuum of players. They

identify the set of all symmetric Bayes correlated equilibria (BCE) with normally distributed

actions and show that it coincides with the set of all outcomes that can arise in BNE associ-

ated with all symmetric Gaussian information structures. Then, focusing on a Cournot game

as a special case, they obtain the BCE that maximizes the total expected profit, which is the

equilibrium outcome under the information structure that maximizes the total expected profit.

In our first step, we consider a general class of (possibly asymmetric) basic LQG games with

an arbitrary number of players, and identify the set of all BCE with normally distributed actions,

which coincides with the set of all inducible equilibrium outcomes under Gaussian information

structures (Bergemann and Morris, 2013, 2016a). It is well known that the expected values

of equilibrium actions do not depend upon the choice of Gaussian information structures in

LQG games (Radner, 1962; Ui, 2016a), and thus the expected values of actions are the same

for all BCE. Therefore, to represent each BCE, it is enough to determine the covariance matrix

of actions and payoff states under the BCE. We show that the set of the covariance matrices
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representing BCE is the set of positive semidefinite matrices satisfying a linear constraint.

In our second step, we show that, for each BCE, the expected value of a quadratic objective

function is represented as a linear function of the covariance matrix representing the BCE,

which is a Frobenius inner product of the covariance matrix and the matrix associated with the

quadratic form in the objective function. Thus, a BCE maximizes the expected value of the

objective function if and only if the covariance matrix representing the BCE is a solution to the

problem to maximize the linear function of a positive semidefinite matrix subject to the linear

constraint. Such an optimization problem is called semidefinite programming (SDP),3 which

is a natural generalization of linear programing.

On the basis of the above discussion, we formulate LQG information design as semidefinite

programming not only when every Gaussian information structure is feasible but also when

feasibility of information structures is defined in terms of additional linear constraints on the

covariance matrix representing BCE. As shown by Taneva (2019), information design with

finite sets of actions is reduced to linear programming. This implies that information design

with infinite sets of actions, such as LQG information design, can be interpreted as linear

programming with infinite number of variables, which is not necessarily tractable. On the

other hand, our semidefinite programming formulation of LQG information design enables

us not only to numerically obtain the optimal information structures but also to analytically

characterize them in some special cases.

As an immediate consequence of the formulation, we obtain simple sufficient conditions

for optimality and suboptimality of no information disclosure. If the matrix associated with

the quadratic form in a quadratic objective function is negative definite, then no information

disclosure is optimal because such an objective function is strictly concave and stochastic actions

decrease its expected value. In contrast, if the matrix is positive definite, then no information

disclosure is never optimal because such an objective function is strictly convex and stochastic

actions increase its expected value.

By focusing on a couple of special cases, we characterize optimal information structures.

First, we consider symmetric LQG games assuming that every symmetric Gaussian information

structure is feasible. In this class of LQG information design, we can represent a quadratic

objective function as a quadratic function of actions, which is independent of payoff states, by

means of the first order condition of BCE. This implies that an objective function is written as a

3See Vandenberghe and Boyd (1996) and Boyd and Vandenberghe (2004), for example.
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linear combination of the variance and the covariance of actions. If the objective function equals

the covariance of actions, then full information disclosure is optimal because we can increase

the covariance by providing more precise identical signals to players. If the objective function

equals the difference between the variance and the covariance of actions, then partial information

disclosure is optimal because the difference equals zero under full or no information disclosure.

This observation suggests that it is convenient to rewrite an objective function as a linear

combination of the covariance and the difference between the variance and the covariance. We

characterize the optimal information structure using the ratio of the coefficient of the covariance

and that of the difference between the variance and the covariance in the objective function.

Ui and Yoshizawa (2015) also consider the same class of symmetric LQG games assuming

that each feasible information structure consists of public and private signals and characterize

the optimal combination of public and private signals using the same ratio. This paper shows

that the insight obtained in Ui and Yoshizawa (2015) is also useful in obtaining the optimal

information structures.

We also consider asymmetric LQG games assuming that every public information structure

is feasible, where every player receives identical signals. We characterize the optimal public

information structure as a closed-form expression. This result also gives a sufficient condition

for the optimality of partial information disclosure when all information structures are feasible.

The rest of the paper is organized as follows. Section 2 introduces LQG games and charac-

terizes BNE and BCE. Section 3 formulates LQG information design as semidefinite program-

ming. Section 4 is devoted to symmetric LQG games with symmetric information structures,

and Section 5 is devoted to asymmetric LQG games with public information structures.

2 LQG games

2.1 Payoff and information structures

We consider an incomplete information game with quadratic payoff functions and normally

distributed payoff states and signals. We call such a game a linear-quadratic Gaussian game, or

an LQG game for short.

Let 𝑁 = {1, . . . , 𝑛} denote the set of players. Player 𝑖 ∈ 𝑁 chooses a real number 𝑎𝑖 ∈ 𝐴𝑖 ≡ R
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as his action. The payoff function is

𝑢𝑖 (𝑎, 𝜃) = −𝑞𝑖𝑖𝑎2
𝑖 − 2

∑
𝑗≠𝑖

𝑞𝑖 𝑗𝑎𝑖𝑎 𝑗 + 2𝜃𝑖𝑎𝑖 + ℎ𝑖 (𝑎−𝑖, 𝜃), (1)

where 𝑎 ≡ (𝑎𝑖)𝑖∈𝑁 ∈ 𝐴 ≡ R𝑁 is an action profile, 𝜃 ≡ (𝜃𝑖)𝑖∈𝑁 ∈ Θ ≡ R𝑁 is a payoff state, 𝑞𝑖 𝑗 is

a constant, and ℎ𝑖 (𝑎−𝑖, 𝜃) is an arbitrary function of the opponents’ actions 𝑎−𝑖 ≡ (𝑎 𝑗 ) 𝑗≠𝑖 and a

payoff state 𝜃. A payoff state 𝜃 is a random vector following a multivariate normal distribution

denoted by 𝜓. We call 𝐺 ≡ ((𝑢𝑖)𝑖∈𝑁 , 𝜓) a payoff structure or a basic game, which will be fixed

throughout the paper. If 𝜃1 = · · · = 𝜃𝑛 with probability one, 𝐺 is called a common value payoff

structure. Let 𝑄 = [𝑞𝑖 𝑗 ]𝑛×𝑛 denote the matrix consisting of the coefficients in the quadratic

terms in (1). We regard vectors such as an action profile 𝑎 and a payoff state 𝜃 as column

vectors.

Player 𝑖 ∈ 𝑁 receives a private signal 𝑡𝑖 ∈ 𝑇𝑖 ≡ R𝑚𝑖 , which is an 𝑚𝑖-dimensional vector.

Let 𝜋(𝑡 |𝜃) denote the conditional probability distribution of a signal profile 𝑡 ≡ (𝑡𝑖)𝑖∈𝑁 given 𝜃,

which is referred to as an information structure. An information structure is said to be Gaussian

if 𝑡 and 𝜃 are jointly normally distributed, and every information structure in this paper is

assumed to be Gaussian. If 𝑡1 = · · · = 𝑡𝑛 with probability one, an information structure is said

to be public.

An LQG game consists of a payoff structure (i.e. a basic game) 𝐺 and an information

structure 𝜋. For example, consider an LQG game with a symmetric coefficient matrix 𝑄, i.e.,

𝑞𝑖 𝑗 = 𝑞 𝑗𝑖 for all 𝑖, 𝑗 ∈ 𝑁 in (1), and another LQG game in which players have identical payoff

functions given by

−𝑎⊤𝑄𝑎 + 2𝑎⊤𝜃, (2)

where 𝑎⊤ is the transpose of 𝑎. Note that (2) equals (1) if ℎ𝑖 (𝑎−𝑖, 𝜃) = −∑
𝑗≠𝑖 𝑞 𝑗 𝑗𝑎

2
𝑗 −

2
∑
𝑗 ,𝑘≠𝑖, 𝑗≠𝑘 𝑞 𝑗 𝑘𝑎 𝑗𝑎𝑘 +

∑
𝑗≠𝑖 𝜃 𝑗𝑎 𝑗 . An LQG game with identical payoff functions is called an

LQG team (Radner, 1962; Ho and Chu, 1972). Clearly, the above two LQG games have the

same best response correspondences because the term ℎ𝑖 (𝑎−𝑖, 𝜃) does not have any influence

on the player’s decision. That is, the best response correspondences of an LQG game with a

symmetric coefficient matrix 𝑄 coincide with those of an LQG team. Such an LQG game is

referred to as a potential game (Monderer and Shapley, 1996) and the identical payoff function

(2) of the corresponding LQG team is referred to as a potential function.

We discuss four examples of LQG games, which are also LQG potential games.
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Example 1. Firm 𝑖 produces good 𝑖. An action 𝑞𝑖 ∈ R is the amount of the output and 𝜃𝑖 is the

marginal cost. The inverse demand function is 𝑝𝑖 = 𝛼 − 𝛽𝑞𝑖 − 𝛾
∑
𝑗≠𝑖 𝑞 𝑗 . Then, the profit of

firm 𝑖 is (
𝛼 − 𝛽𝑞𝑖 − 𝛾

∑
𝑗≠𝑖

𝑞 𝑗

)
𝑞𝑖 − 𝜃𝑖𝑞𝑖 .

This LQG game is a Cournot game (Vives, 1984, 1999).

Example 2. Firm 𝑖 produces good 𝑖. An action 𝑝𝑖 ∈ R is the price of the output and 𝜃𝑖 is the

marginal cost. The demand function is 𝑞𝑖 = 𝑎 − 𝑏𝑝𝑖 + 𝑐
∑
𝑗≠𝑖 𝑝 𝑗 . Then, the profit of firm 𝑖 is(

𝑎 − 𝑏𝑝𝑖 + 𝑐
∑
𝑗≠𝑖

𝑝 𝑗

)
𝑝𝑖 − 𝜃𝑖

(
𝑎 − 𝑏𝑝𝑖 + 𝑐

∑
𝑗≠𝑖

𝑝 𝑗

)
.

This LQG game is a Bertrand game (Vives, 1984, 1999).

Example 3. Let a coefficient matrix 𝑄 be given by

𝑞𝑖 𝑗 = 𝑞 𝑗𝑖 =


1 if 𝑖 = 𝑗 ,

0 or 𝛼 if 𝑖 ≠ 𝑗 ,

where 𝛼 ≠ 0 is a constant. The matrix 𝑄 represents interaction of players located on a graph

with the set of vertices 𝑁 and the set of edges 𝐸 = {(𝑖, 𝑗) ∈ 𝑁2 : 𝑖 ≠ 𝑗 , 𝑞𝑖 𝑗 = 𝛼}. When 𝜃 is

constant, this is a network game studied by Ballester et al. (2006) and Bramoullé et al. (2014).

Calvó-Armengol et al. (2015) use an LQG network game to analyze endogenous communication

in organizations.

Example 4. Consider an LQG game with a common value payoff structure and a coefficient

matrix 𝑄 with

𝑞𝑖 𝑗 =


1/(1 − 𝑟) if 𝑖 = 𝑗 ,

𝑟/(1 − 𝑟) × 1/(𝑛 − 1) if 𝑖 ≠ 𝑗 ,

where 𝑟 ∈ (0, 1). Then, the best response equals the conditional expected value of the weighted

average of the arithmetic mean of the opponents’ actions and the common payoff state,4 i.e.,

𝜎𝑖 (𝑡𝑖) = 𝑟
∑
𝑗≠𝑖

𝐸𝜋 [𝜎𝑗 |𝑡𝑖]/(𝑛 − 1) + (1 − 𝑟)𝐸𝜋 [𝜃0 |𝑡𝑖] .

This LQG game is a beauty contest game studied by Morris and Shin (2002).

4See (5) in the next section
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2.2 Bayes Nash equilibria and Bayes correlated equilibria

Player 𝑖’s strategy 𝜎𝑖 : 𝑇𝑖 → 𝐴𝑖 assigns an action 𝜎𝑖 (𝑡𝑖) ∈ 𝐴𝑖 to each realization of a private

signal 𝑡𝑖 ∈ 𝑇𝑖. A strategy profile 𝜎 = (𝜎𝑖)𝑖∈𝑁 is a Bayes Nash equilibrium (BNE) under an

information structure 𝜋 if, for all 𝑎′𝑖 ∈ 𝐴𝑖, 𝑡𝑖 ∈ 𝑇𝑖, and 𝑖 ∈ 𝑁 , it holds that

𝐸𝜋 [𝑢𝑖 ((𝜎𝑖 (𝑡𝑖), 𝜎−𝑖), 𝜃) |𝑡𝑖] ≥ 𝐸𝜋 [𝑢𝑖 ((𝑎′𝑖, 𝜎−𝑖), 𝜃) |𝑡𝑖], (3)

where 𝜎−𝑖 = 𝜎−𝑖 (𝑡−𝑖) = (𝜎𝑗 (𝑡 𝑗 )) 𝑗≠𝑖 and 𝐸𝜋 [·|𝑡𝑖] is the conditional expectation operator given

𝑡𝑖 ∈ 𝑇𝑖 with respect to 𝜋 and 𝜓. The first-order condition for a BNE is

𝐸𝜋

[ 𝜕
𝜕𝑎𝑖

𝑢𝑖 (𝜎(𝑡), 𝜃)
��� 𝑡𝑖] = −2𝑞𝑖𝑖𝜎𝑖 (𝑡𝑖) − 2

∑
𝑗≠𝑖

𝑞𝑖 𝑗𝐸𝜋 [𝜎𝑗 |𝑡𝑖] + 2𝐸𝜋 [𝜃𝑖 |𝑡𝑖] = 0 (4)

for all 𝑡𝑖 ∈ 𝑇𝑖 and 𝑖 ∈ 𝑁 , which is reduced to

𝜎𝑖 (𝑡𝑖) =
∑
𝑗≠𝑖

𝑞𝑖 𝑗𝐸𝜋 [𝜎𝑗 |𝑡𝑖]/𝑞𝑖𝑖 + 𝐸𝜋 [𝜃𝑖 |𝑡𝑖]/𝑞𝑖𝑖 . (5)

Thus, the best response is the conditional expected value of the weighted sum of the opponents’

actions and the payoff state.

Now assume that an information structure 𝜋 is public with 𝑡0 = 𝑡1 = · · · = 𝑡𝑛, which we call

a public signal under 𝜋. Then, (4) is reduced to∑
𝑗∈𝑁

𝑞𝑖 𝑗𝜎𝑗 (𝑡0) = 𝐸𝜋 [𝜃𝑖 |𝑡0] .

Thus, if 𝑄 is nonsingular, then the equilibrium action profile is (𝜎𝑖 (𝑡0))𝑖∈𝑁 = 𝑄−1𝐸𝜋 [𝜃 |𝑡0]

when 𝑡0 is realized. For example, when 𝜃 is common knowledge, the equilibrium action profile

is 𝑄−1𝜃; when players do not receive any information (i.e., do not update their prior), the

equilibrium action profile is 𝑎̄ ≡ 𝑄−1𝜃, where 𝜃 ≡ 𝐸 [𝜃].

Even if an information structure is not public, we can obtain a unique BNE as linear functions

of private signals (Radner, 1962; Ui, 2016a).5

Proposition 1. Suppose that 𝑄 + 𝑄⊤ and var(𝑡𝑖) are positive definite for each 𝑖 ∈ 𝑁 . Then, an

LQG game has a unique BNE given by

𝜎𝑖 (𝑡𝑖) = 𝑎̄𝑖 + 𝑏⊤𝑖 (𝑡𝑖 − 𝐸𝜋 [𝑡𝑖]) for 𝑖 ∈ 𝑁, (6)

5Radner (1962) was the first to introduce an LQG team and establishes Proposition 1. As pointed out by Ui

(2009), we can directly use Radner’s result to obtain a unique BNE in an LQG potential game, which corresponds

to Proposition 1 with a symmetric coefficient matrix 𝑄. Ui (2016a) shows that the symmetry assumption is not

necessary.
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where (𝑎̄𝑖)𝑖∈𝑁 = 𝑄−1𝜃 and 𝑏1, . . . , 𝑏𝑛 are determined by the following system of linear equations:∑
𝑗∈𝑁

𝑞𝑖 𝑗cov(𝑡𝑖, 𝑡 𝑗 )𝑏 𝑗 = cov(𝑡𝑖, 𝜃𝑖) for 𝑖 ∈ 𝑁. (7)

In the rest of this paper, we assume that 𝑄 + 𝑄⊤ and var(𝑡𝑖) are positive definite for each

𝑖 ∈ 𝑁 to ensure the existence and uniqueness of a BNE. Positive definiteness of var(𝑡𝑖) implies

that any component of 𝑡𝑖 is not informationally redundant. Let Π∗ denote the set of all Gaussian

information structures such that var(𝑡𝑖) are positive definite for each 𝑖 ∈ 𝑁 .

Imagine that players follow a strategy profile 𝜎 under an information structure 𝜋. The

outcome of this situation is described by the conditional probability distribution of 𝑎 given

𝜃 because the marginal probability distribution of 𝜃 is fixed. We denote this conditional

distribution by 𝜌(𝑎 |𝜃) and call it an action distribution of 𝜎 under 𝜋, which is given by

𝜌(𝑎 |𝜃) = ∑
𝑡:𝜎(𝑡)=𝑎 𝜋(𝑡 |𝜃). In particular, when 𝜎 is a BNE under 𝜋, we call 𝜌 an equilibrium

action distribution under 𝜋. Every equilibrium action distribution 𝜌 satisfies the following

condition:

𝐸𝜌 [𝑢𝑖 ((𝑎𝑖, 𝑎−𝑖), 𝜃) |𝑎𝑖] ≥ 𝐸𝜌 [𝑢𝑖 ((𝑎′𝑖, 𝑎−𝑖), 𝜃) |𝑎𝑖] for all 𝑎𝑖, 𝑎′𝑖 ∈ 𝐴𝑖 and 𝑖 ∈ 𝑁 , (8)

where 𝐸𝜌 [·|𝑎𝑖] is the conditional expectation operator given 𝑎𝑖 with respect to 𝜌 and 𝜓. This is

because, by (3), it holds that

𝐸𝜌 [𝑢𝑖 ((𝑎𝑖, 𝑎−𝑖), 𝜃) |𝑎𝑖] = 𝐸𝜋 [𝑢𝑖 ((𝑎𝑖, 𝜎−𝑖), 𝜃) |𝜎𝑖 (𝑡𝑖) = 𝑎𝑖]

≥ 𝐸𝜋 [𝑢𝑖 ((𝑎′𝑖, 𝜎−𝑖), 𝜃) |𝜎𝑖 (𝑡𝑖) = 𝑎𝑖] = 𝐸𝜌 [𝑢𝑖 ((𝑎′𝑖, 𝑎−𝑖), 𝜃) |𝑎𝑖] .

We say that an action distribution 𝜌 is a Bayes correlated equilibrium (BCE) if it satisfies (8).

Thus, an equilibrium action distribution is a BCE because it satisfies (8). Moreover, (8) implies

that a BCE is an equilibrium action distribution under 𝜋 satisfying the following conditions:

1. 𝑇𝑖 = 𝐴𝑖 for all 𝑖 ∈ 𝑁; that is, the set of player 𝑖’s signals coincides with the set of player

𝑖’s actions.

2. For a BNE 𝜎 under 𝜋, 𝜎𝑖 (𝑎𝑖) = 𝑎𝑖 for all 𝑎𝑖 ∈ 𝑇𝑖 = 𝐴𝑖 and 𝑖 ∈ 𝑁; that is, an equilibrium

action distribution is given by 𝜋(𝑎 |𝜃).

The above discussion is summarized in the following proposition due to Bergemann and Morris

(2013).
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Proposition 2. Under any information structure, an equilibrium action distribution is a BCE.

For any BCE, there exists an information structure under which the equilibrium action distri-

bution coincides with the BCE.

Using Propositions 1 and 2, we can obtain a necessary and sufficient condition for an action

distribution to be a BCE where an action profile and a payoff state are jointly normally distributed

Proposition 3. An action distribution 𝜌 is a BCE under which (𝑎, 𝜃) is normally distributed if

and only if the following condition is satisfied.

𝐸𝜌 [𝑎] = 𝑎̄, (9)∑
𝑗∈𝑁

𝑞𝑖 𝑗cov(𝑎𝑖, 𝑎 𝑗 ) = cov(𝑎𝑖, 𝜃𝑖). (10)

Proof. A necessary and sufficient condition for a BCE is (6) and (7) with 𝑏𝑖 = 1 and 𝑎̄𝑖 = 𝐸𝜋 [𝑡𝑖]

by Proposition 1, which establishes this proposition. □

Bergemann and Morris (2013) obtain Proposition 3 in the case of symmetric LQG games

with common value payoff structures.

3 LQG information design

3.1 A general formulation

Fix a payoff structure (i.e. a basic game) 𝐺 = ((𝑢𝑖)𝑖∈𝑁 , 𝜓) such that 𝑄 +𝑄⊤ is positive definite.

We consider an information designer who chooses an information structure 𝜋 from a set of

feasible information structures Π ⊆ Π∗ to maximize the expected value of a quadratic objective

function 𝑣(𝑎, 𝜃). The designer can make a commitment to provide information according to the

following timeline, which is a standard assumption in the literature.

1. The designer chooses 𝜋 ∈ Π and informs all players of 𝜋.

2. When 𝜃 is realized, 𝑡1, . . . , 𝑡𝑛 are drawn according to 𝜋(𝑡 |𝜃).

3. Players follow the unique BNE under 𝜋.

Note that we have focused on a payoff structure such that any information structure induces a

unique equilibrium.6

6See Mathevet et al. (2020) for detailed discussions on information design with multiple equilibria.
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Without loss of generality, we omit linear terms in a quadratic objective function 𝑣(𝑎, 𝜃)

because the expected value of (𝑎, 𝜃) is a constant vector (𝑎̄, 𝜃) in a BNE under any information

structure. Thus, we use a quadratic form to represent 𝑣(𝑎, 𝜃). Let S𝑘 and S𝑘
+ denote the set of

all 𝑘 × 𝑘 symmetric matrices and the set of all 𝑘 × 𝑘 positive semidefinite symmetric matrices,

respectively. Then, a quadratic objective function is given by

𝑣(𝑎, 𝜃) = [𝑎⊤, 𝜃⊤]𝑉

𝑎

𝜃

 = tr ©­«𝑉

𝑎𝑎⊤𝑎𝜃⊤

𝜃𝑎⊤𝜃𝜃⊤

ª®¬ = tr
(
𝑉11𝑎𝑎

⊤)
+ 2tr

(
𝑉12𝜃𝑎

⊤)
+ tr

(
𝑉22𝜃𝜃

⊤)
,

(11)

where

𝑉 = [𝑣𝑖 𝑗 ]2𝑛×2𝑛 =


[𝑣𝑖 𝑗 ]𝑛×𝑛 [𝑣𝑖,𝑛+ 𝑗 ]𝑛×𝑛
[𝑣𝑛+𝑖, 𝑗 ]𝑛×𝑛 [𝑣𝑛+𝑖,𝑛+ 𝑗 ]𝑛×𝑛

 =


𝑉11 𝑉12

𝑉21 𝑉22

 ∈ S2𝑛.

We can assume that 𝑉22 = 𝑂, i.e., 𝑣𝑛+𝑖,𝑛+ 𝑗 = 0 for all 𝑖, 𝑗 ∈ 𝑁 , because the expected value of

tr (𝑉22𝜃𝜃
⊤) is a constant determined by the payoff structure 𝐺.

An LQG information design problem is the problem to find an information structure that

maximizes the expected value of the objective function over the set of feasible information

structures:

max
𝜋∈Π

𝐸𝜋 [𝑣(𝜎, 𝜃)], (12)

where 𝐸𝜋 is the expectation operator with respect to 𝜋 and 𝜎 is the unique BNE under 𝜋.

Using the equilibrium action distribution 𝜌 under 𝜋, we can replace 𝐸𝜋 [𝑣(𝜎, 𝜃)] in (12) with

𝐸𝜌 [𝑣(𝑎, 𝜃)], where 𝐸𝜌 is the expectation operator with respect to 𝜌. Thus, (12) is equivalent to

max
𝜌∈C(Π)

𝐸𝜌 [𝑣(𝑎, 𝜃)], (13)

where

C(Π) = {𝜌 : 𝜌 is the equilibrium action distribution under 𝜋 ∈ Π}.

Using the representation (11), we can rewrite the objective function in (13) as

𝐸𝜌 [𝑣(𝑎, 𝜔)] = tr ©­«𝑉


var(𝑎) cov(𝑎, 𝜃)

cov(𝜃, 𝑎) var(𝜃)

ª®¬ + tr ©­«𝑉

𝑎̄𝑎̄⊤𝑎̄𝜃⊤

𝜃𝑎̄⊤𝜃𝜃⊤

ª®¬ = 𝑉 • 𝑋 + const., (14)

where

𝑋 = [𝑥𝑖 𝑗 ]2𝑛×2𝑛 =


var(𝑎) cov(𝑎, 𝜃)

cov(𝜃, 𝑎) var(𝜃)

 ∈ S2𝑛
+ and 𝑉 • 𝑋 =

2𝑛∑
𝑖=1

2𝑛∑
𝑗=1
𝑣𝑖 𝑗𝑥𝑖 𝑗 .
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Thus, (13) is equivalent to

max
𝑋∈X(Π)

𝑉 • 𝑋, (15)

where

X(Π) = {𝑋 ∈ S2𝑛
+ : 𝑋 is the covariance matrix of (𝑎, 𝜃) under 𝜌 ∈ C(Π)}.

Note that there is a one-to-one correspondence between the solution to (13) and that to (15)

because X(Π) is the collection of the covariance matrices of (𝑎, 𝜃) under the equilibrium action

distributions.

For example, when players receive no signals, they follow𝑄−1𝜃 in the equilibrium, and thus

𝑋 =


𝑂 𝑂

𝑂 var(𝜃)

 and 𝑉 • 𝑋 = 𝑂.

This case is referred to as no information disclosure. When 𝜃 is common knowledge, players

follow 𝑄−1𝜃 in the equilibrium, and thus

𝑋 =


𝑄−1var(𝜃) (𝑄−1)⊤ 𝑄−1var(𝜃)

var(𝜃)(𝑄−1)⊤ var(𝜃)

 and 𝑉 • 𝑋 = 𝑉𝑄 • var(𝜃),

where

𝑉𝑄 ≡ (𝑄−1)⊤(𝑉11 +𝑉12𝑄 +𝑄⊤𝑉21)𝑄−1.

This case is referred to as full information disclosure. The other cases are referred to as partial

information disclosure.

As an immediate consequence of (15), we can obtain the following simple sufficient condi-

tions for optimality and suboptimality of no information disclosure.

Proposition 4. If 𝑉 is negative semidefinite, then no information disclosure is optimal in Π∗. If

𝑉 is positive definite, then no information disclosure is not optimal in Π∗.

Proof. It is well known that if 𝑉 is negative semidefinite, then 𝑉 • 𝑋 ≤ 0 for any 𝑋 ∈ S2𝑛
+ ,

which implies that no information disclosure is optimal. If 𝑉 is positive definite, then

𝑉 • 𝑋 = 𝐸𝜌

([𝑎⊤ − 𝑎̄⊤, 𝜃⊤ − 𝜃⊤])𝑉 ©­«

𝑎 − 𝑎̄

𝜃 − 𝜃

ª®¬
 > 0

under partial or full information disclosure, so no information disclosure is not optimal. □
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3.2 Semidefinite programming formulation

We consider a special case of (15) in which all information structures are feasible:

max
𝑋∈X(Π∗)

𝑉 • 𝑋. (16)

The constraint 𝑋 ∈ X(Π∗) consists of the following three conditions by Proposition 3.

(i) var(𝜃) = [cov(𝜃𝑖, 𝜃 𝑗 )]𝑛×𝑛 = [𝑥𝑛+𝑖,𝑛+ 𝑗 ]𝑛×𝑛 is the covariance matrix of 𝜃 given by a payoff

structure 𝐺. This condition is rewritten as

𝑆𝑘𝑙 • 𝑋 = cov(𝜃𝑘 , 𝜃𝑙) for all 𝑘, 𝑙 ∈ {1, . . . , 𝑛} with 𝑘 ≤ 𝑙, (17)

where 𝑆𝑘𝑙 = [𝑠𝑘𝑙,𝑖 𝑗 ]2𝑛×2𝑛 ∈ S2𝑛 is given by, for 𝑖, 𝑗 ∈ {1, . . . , 2𝑛} with 𝑖 ≤ 𝑗 ,

𝑠𝑘𝑙,𝑖 𝑗 =


1/2 if 𝑘 < 𝑙, 𝑖 = 𝑛 + 𝑘, 𝑗 = 𝑛 + 𝑙,

1 if 𝑘 = 𝑙, 𝑖 = 𝑛 + 𝑘, 𝑗 = 𝑛 + 𝑙,

0 otherwise.

(ii)
∑
𝑗∈𝑁 𝑞𝑖 𝑗cov(𝑎𝑖, 𝑎 𝑗 ) = cov(𝑎𝑖, 𝜃𝑖); that is,

∑
𝑗∈𝑁 𝑞𝑖 𝑗𝑥𝑖 𝑗 = 𝑥𝑖,𝑛+𝑖 for all 𝑖 ∈ 𝑁 . This condition

is rewritten as

𝑅𝑘 • 𝑋 = 0 for all 𝑘 ∈ {1, . . . , 𝑛}, (18)

where 𝑅𝑘 = [𝑟𝑘,𝑖 𝑗 ]2𝑛×2𝑛 ∈ S2𝑛 is given by

𝑟𝑘,𝑖 𝑗 =



𝑞𝑘𝑘 if 𝑖 = 𝑗 = 𝑘,

𝑞𝑘 𝑗/2 if 𝑖 = 𝑘, 1 ≤ 𝑗 ≤ 𝑛, 𝑗 ≠ 𝑘,

−1/2 if 𝑖 = 𝑘, 𝑗 = 𝑛 + 𝑘,

𝑞𝑘𝑖/2 if 𝑗 = 𝑘, 1 ≤ 𝑖 ≤ 𝑛, 𝑖 ≠ 𝑘,

−1/2 if 𝑗 = 𝑘, 𝑖 = 𝑛 + 𝑘,

0 otherwise.

(iii) 𝑋 is a positive semidefinite matrix, i.e., 𝑋 ∈ S2𝑛
+ .

Thus, (16) is reduced to a problem to maximize a linear function of a positive semidefinite

matrix 𝑋 subject to linear constraints (i) and (ii):

max𝑉 • 𝑋 s.t. 𝑅𝑘 • 𝑋 = 0 for all 𝑘 ∈ {1, . . . , 𝑛},

𝑆𝑘𝑙 • 𝑋 = cov(𝜃𝑘 , 𝜃𝑙) for all 𝑘, 𝑙 ∈ {1, . . . , 𝑛} with 𝑘 ≤ 𝑙, (19)

𝑋 ∈ S2𝑛
+ .
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Such a problem is called a semidefinite programming (SDP) problem.7

We have shown that (15) is reduced to a SDP problem when Π = Π∗. Nonetheless, even

when Π ⊊ Π∗, if X(Π) ⊊ X(Π∗) is given by some linear constraints on 𝑋 ∈ X(Π∗), i.e., there

exist 𝑀1, . . . , 𝑀𝐾 ∈ S2𝑛 and 𝑚1, . . . , 𝑚𝐾 ∈ R such that

X(Π) = {𝑋 ∈ X(Π∗) : 𝑀𝑘 • 𝑋 = 𝑚𝑘 for all 𝑘 ∈ {1, . . . , 𝐾}},

then (15) is reduced to a SDP problem to maximize a linear function of a positive semidefinite

matrix 𝑋 subject to linear constraints (i), (ii), and 𝑀𝑘 • 𝑋 = 𝑚𝑘 for all 𝑘 ∈ {1, . . . , 𝐾}.

The KKT condition for a SDP problem is well known. The next proposition gives that for

(19).

Proposition 5. If 𝑋̄ ∈ S2𝑛
+ is a solution to (19), then there exist 𝜆̄ ∈ R𝑛, 𝜇̄ ∈ R𝑛(𝑛+1)/2, Ξ̄ ∈ S2𝑛

+

satisfying the following condition.

−𝑉 −
𝑛∑
𝑘=1

𝜆̄𝑘𝑅𝑘 −
𝑛∑
𝑘=1

𝑘∑
𝑙=𝑙

𝜇̄𝑘𝑙𝑆𝑘𝑙 = Ξ̄,

𝑅𝑘 • 𝑋̄ = 0 for all 𝑘 ∈ {1, . . . , 𝑛},

𝑆𝑘𝑙 • 𝑋̄ = cov(𝜃𝑘 , 𝜃𝑙) for all 𝑘, 𝑙 ∈ {1, . . . , 𝑛} with 𝑘 ≤ 𝑙,

𝑋̄ • Ξ̄ = 0.

Conversely, if there exist 𝜆̄ ∈ R𝑛, 𝜇̄ ∈ R𝑛(𝑛+1)/2, Ξ̄, 𝑋̄ ∈ S2𝑛
+ satisfying the above condition, then

𝑋̄ is a solution to (19).

On the basis of the SDP formulation of LQG information design, we can numerically obtain

optimal information structures using SDP solvers, and in some cases, we can analytically obtain

them, as will be discussed in the subsequent sections.

Before closing this subsection, we focus on the case of common value payoff structures with

𝜃0 = 𝜃1 = · · · = 𝜃𝑛, which will be discussed in Section 4. To represent an objective function, it

is enough to consider the covariance matrix of (𝑎, 𝜃0) denoted by

𝑋′ = [𝑥𝑖 𝑗 ](𝑛+1)×(𝑛+1) ≡


var(𝑎) cov(𝑎, 𝜃0)

cov(𝜃0, 𝑎) var(𝜃0)

 ∈ S𝑛+1
+ .

7See Vandenberghe and Boyd (1996) and Boyd and Vandenberghe (2004), for example.
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Thus, by appropriately choosing 𝑉 ′ ∈ S𝑛+1, we can rewrite (19) as

max𝑉 ′ • 𝑋′ s.t. 𝑅𝑘 • 𝑋′ = 0 for all 𝑘 ∈ {1, . . . , 𝑛},

𝑆 • 𝑋′ = var(𝜃0), (20)

𝑋 ∈ S𝑛+1
+ ,

where 𝑅𝑘 = [𝑟𝑘,𝑖 𝑗 ](𝑛+1)×(𝑛+1) ∈ S𝑛+1 and 𝑆 = [𝑠𝑖 𝑗 ](𝑛+1)×(𝑛+1) ∈ S𝑛+1 are given by

𝑟𝑘,𝑖 𝑗 =



𝑞𝑘𝑘 if 𝑖 = 𝑗 = 𝑘,

𝑞𝑘 𝑗/2 if 𝑖 = 𝑘, 1 ≤ 𝑗 ≤ 𝑛, 𝑗 ≠ 𝑘,

−1/2 if 𝑖 = 𝑘, 𝑗 = 𝑛 + 1,

𝑞𝑘𝑖/2 if 𝑗 = 𝑘, 1 ≤ 𝑖 ≤ 𝑛, 𝑖 ≠ 𝑘,

−1/2 if 𝑗 = 𝑘, 𝑖 = 𝑛 + 1,

0 otherwise,

𝑠𝑖 𝑗 =


1 if 𝑖 = 𝑛 + 1, 𝑗 = 𝑛 + 1,

0 otherwise.

3.3 Public information structures

LetΠ𝑝 ⊆ Π∗ denote the collection of all public information structures. We discuss a special case

of (15) when Π = Π𝑝. As an immediate consequence of the formulation, we provide sufficient

conditions for optimality of no or full information disclosure in the set of public information

structures and sufficient conditions for suboptimality of no or full information disclosure in the

set of all information structures.

Recall that, under a public information structure 𝜋 ∈ Π𝑝, the equilibrium action profile is

𝑄−1𝐸𝜋 [𝜃 |𝑡0], where 𝑡0 is a public signal. When players follow 𝑄−1𝐸𝜋 [𝜃 |𝑡0], the covariance

matrix of (𝑎, 𝜃) is given by

𝑋 =


𝑄−1var(𝐸𝜋 [𝜃 |𝑡0]) (𝑄−1)⊤ 𝑄−1var(𝐸𝜋 [𝜃 |𝑡0])

var(𝐸𝜋 [𝜃 |𝑡0]) (𝑄−1)⊤ var(𝜃)

 ,
and thus we have

𝑉 • 𝑋 = 𝑉𝑄 • var(𝐸𝜋 [𝜃 |𝑡0]).

This implies that we can obtain the optimal public information structure by solving

max
𝑍∈Z

𝑉𝑄 • 𝑍, (21)
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whereZ = {𝑍 : 𝑍 = var(𝐸𝜋 [𝜃 |𝑡0]), 𝜋 ∈ Π𝑝}}. Note thatZ is the set of all covariance matrices

of the conditional expected value of 𝜃 under 𝜋 ∈ Π𝑝, which is characterized as follows.

Lemma 1. Let 𝐷 be an 𝑛 × 𝑘 matrix of rank 𝑘 such that var(𝜃) = 𝐷𝐷⊤ and 𝑘 is the rank of

var(𝜃), which is known to exist. Then, it holds that Z = {𝑍 : 𝑍 = 𝐷𝑆𝐷⊤, 𝑆 ∈ S𝑘
+ , 𝐼 − 𝑆 ∈ S𝑘

+ }.

Proof. There exist 𝑘 random variables 𝜉1, . . . , 𝜉𝑘 ∈ R that are independently and identically

distributed according to the standard normal distribution such that 𝜃 = 𝐷𝜉 + 𝜃. Thus,

var(𝐸𝜋 [𝜃 |𝑡0]) = var(𝐷𝐸𝜋 [𝜉 |𝑡0]) = 𝐷var(𝐸𝜋 [𝜉 |𝑡0])𝐷⊤.

Because 𝑆 = 𝐸𝜋 [𝜉 |𝑡0] ∈ S𝑘
+ can be arbitrary as long as 𝑆 ∈ S𝑘

+ and 𝐼 − 𝑆 ∈ S𝑘
+ , this lemma

holds. □

By this lemma, for each 𝑍 ∈ Z, there exists 𝑆 ∈ S𝑘
+ with 𝑍 = 𝐷𝑆𝐷⊤, and it holds that

𝑉𝑄 • 𝑍 = 𝑉𝑄 • 𝐷𝑆𝐷⊤ = tr (𝑉𝑄𝐷𝑆𝐷⊤) = tr (𝐷⊤𝑉𝑄𝐷𝑆) = 𝐷⊤𝑉𝑄𝐷 • 𝑆.

Thus, (21) is reduced to

max
𝑆

𝐷⊤𝑉𝑄𝐷 • 𝑆 s.t. 𝑆 ∈ S𝑘
+ and 𝐼 − 𝑆 ∈ S𝑘

+ . (22)

If 𝐷⊤𝑉𝑄𝐷 = 𝑂, then every information structure is optimal, so we assume that 𝐷⊤𝑉𝑄𝐷 ≠ 𝑂.

We will solve (22) in Section 5, but we discuss a couple of immediate consequences of (22)

here. The following proposition provides a sufficient condition for optimality of no information

disclosure in Π𝑝.

Proposition 6. Suppose that 𝐷⊤𝑉𝑄𝐷 ≠ 𝑂 is negative semidefinite. Then, no information

disclosure is optimal in Π𝑝, and full information disclosure is not optimal in Π𝑝.

Proof. The matrix 𝐷⊤𝑉𝑄𝐷 is factored as 𝐷⊤𝑉𝑄𝐷 = 𝑈Λ𝑈⊤, where 𝑈 is orthogonal and Λ is

diagonal. Thus,

𝐷⊤𝑉𝑄𝐷 • 𝑆 = tr[𝐷⊤𝑉𝑄𝐷𝑆] = tr[𝑈Λ𝑈⊤𝑆] = tr[Λ𝑈⊤𝑆𝑈] =
𝑘∑
𝑙=1

𝜆𝑙𝛾𝑙 , (23)

where 𝜆𝑙 and 𝛾𝑙 are the 𝑙-th diagonal elements of Λ and 𝑈⊤𝑆𝑈, respectively. Note that

0 ≤ 𝛾𝑙 ≤ 1 for all 𝑙 because 𝑈⊤𝑆𝑈 and 𝑈⊤(𝐼 − 𝑆)𝑈 = 𝐼 − 𝑈⊤𝑆𝑈 are positive semidefinite.

Because 𝐷𝑇𝑉𝑄𝐷 ≠ 𝑂 is negative semidefinite, 𝜆𝑙 ≤ 0 for all 𝑙 and 𝜆𝑙 < 0 for at least one 𝑙.

Thus, 𝛾𝑙 = 0 for all 𝑙 is optimal, and 𝛾𝑙 = 1 for all 𝑙 is not optimal. The former case corresponds

to no information disclosure 𝑆 = 0 and the latter case corresponds to full information disclosure

𝑆 = 𝐼. □

16



Similarly, the following proposition provides a sufficient condition for optimality of full

information disclosure in Π𝑝.

Proposition 7. Suppose that 𝐷⊤𝑉𝑄𝐷 ≠ 𝑂 is positive semidefinite. Then, full information

disclosure is optimal in Π𝑝, and no information disclosure is not optimal in Π𝑝.

Proof. Because 𝐷𝑇𝑉𝑄𝐷 ≠ 𝑂 is positive semidefinite, 𝜆𝑙 ≥ 0 for all 𝑙 and 𝜆𝑙 > 0 for at least

one 𝑙 in (23). Thus, 𝛾𝑙 = 1 for all 𝑙 is optimal, and 𝛾𝑙 = 0 for all 𝑙 is not optimal. □

For example, consider a common value payoff structure. Because 𝜃0 = 𝜃1 = · · · = 𝜃𝑛, we

have 𝐷 = var(𝜃0)1/21, where 1 = (1, . . . , 1)⊤ ∈ R𝑛 is the 𝑛-dimensional column vector with

all entries one. Thus, by Propositions 6 and 7, full information disclosure is optimal in Π𝑝 if

1⊤𝑉𝑄1 > 0, and no information disclosure is optimal in Π𝑝 if 1⊤𝑉𝑄1 < 0.

Propositions 6 and 7 have the following implication for suboptimality of no or full informa-

tion disclosure in Π∗.

Corollary 8. If 𝐷⊤𝑉𝑄𝐷 ≠ 𝑂 is negative semidefinite, then full information disclosure is not

optimal in Π∗. If 𝐷⊤𝑉𝑄𝐷 ≠ 𝑂 is positive semidefinite, then no information disclosure is not

optimal in Π∗.

In Section 5, we characterize optimal public information structures when 𝐷⊤𝑉𝑄𝐷 is neither

positive semidefinite nor negative semidefinite and show that partial information disclosure is

optimal in Π𝑝, which also implies that partial information disclosure is optimal in Π∗ as well.

3.4 Some characterization when 𝑣𝑖,𝑛+ 𝑗 = 0 for 𝑖 ≠ 𝑗

We consider a special case in which the correlation between player 𝑖’s action 𝑎𝑖 and player 𝑗’s

payoff state 𝜃 𝑗 has no influence on the objective function; that is, 𝑣𝑖,𝑛+ 𝑗 = 0 for all 𝑖, 𝑗 ∈ 𝑁 with

𝑖 ≠ 𝑗 . The following two cases are typical.

• Player 𝑖’s payoff function 𝑢𝑖 (𝑎, 𝜃) is independent of 𝜃 𝑗 and an objective function 𝑣(𝑎, 𝜃)

is the sum of all players’ payoff functions, i.e., 𝑣(𝑎, 𝜃) = ∑
𝑖∈𝑁 𝑢𝑖 (𝑎, 𝜃).

• A payoff structure is of common value (i.e., 𝜃1 = · · · = 𝜃𝑛), where we can replace 𝑎𝑖𝜃 𝑗

with 𝑎𝑖𝜃𝑖, thus making the coefficient of 𝑎𝑖𝜃 𝑗 zero.

In this case, we can obtain a simple representation of 𝑉 • 𝑋 in (15). Although 𝑉 • 𝑋 is a linear

function of the covariance matrix of an action profile 𝑎 and a payoff state 𝜃, we can replace it

with a linear function of the covariance matrix of an action profile alone.
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Lemma 2. Let 𝑉 = [𝑣𝑖 𝑗 ]2𝑛×2𝑛 ∈ S2𝑛 and 𝑊 = [𝑤𝑖 𝑗 ]𝑛×𝑛 ∈ S𝑛 be such that 𝑣𝑖,𝑛+ 𝑗 = 0 for all

𝑖, 𝑗 ∈ 𝑁 with 𝑖 ≠ 𝑗 and 𝑤𝑖 𝑗 = 𝑣𝑖 𝑗 + 𝑣𝑖,𝑛+𝑖𝑞𝑖 𝑗 + 𝑣 𝑗 ,𝑛+ 𝑗𝑞 𝑗𝑖 for all 𝑖, 𝑗 ∈ 𝑁 . If

𝑋 =


𝑋11 𝑋12

𝑋21 𝑋22

 =


var(𝑎) cov(𝑎, 𝜃)

cov(𝜃, 𝑎) var(𝜃)

 ∈ X(Π),

then

𝑉 • 𝑋 = 𝑊 • 𝑋11.

Proof. Because 𝑣𝑖,𝑛+ 𝑗 = 0 for all 𝑖, 𝑗 ∈ 𝑁 with 𝑖 ≠ 𝑗 and 𝑣𝑛+𝑖,𝑛+ 𝑗 = 0 for all 𝑖, 𝑗 ∈ 𝑁 , we have

𝑉 • 𝑋 =
𝑛∑
𝑖=1

𝑛∑
𝑗=1
𝑣𝑖 𝑗cov(𝑎𝑖, 𝑎 𝑗 ) + 2

𝑛∑
𝑖=1

𝑣𝑖,𝑛+𝑖cov(𝑎𝑖, 𝜃𝑖).

By plugging (10) into the above,

𝑉 • 𝑋 =
𝑛∑
𝑖=1

𝑛∑
𝑗=1

(𝑣𝑖 𝑗 + 2𝑣𝑖,𝑛+𝑖𝑞𝑖 𝑗 )cov(𝑎𝑖, 𝑎 𝑗 ) = 𝑊 • 𝑋11,

which establishes the lemma. □

By Lemma 2, we can reformulate (15) as

max
𝑋11: 𝑋∈X(Π)

𝑊 • 𝑋11. (24)

Using (24), we provide simple sufficient conditions for optimality and suboptimality of no

information disclosure, which is analogous to Proposition 4.

Proposition 9. Suppose that no information disclosure is feasible. If𝑊 is negative semidefinite,

then it is optimal. If𝑊 is positive definite, then it is not optimal.

Proof. The proof is essentially the same as that of Proposition 4, so it is omitted. □

On the other hand, if𝑄 is symmetric and𝑊 equals a constant times𝑄, then full information

disclosure is optimal.

Proposition 10. Suppose that full information disclosure is feasible. If 𝑄 is symmetric and

there exists 𝑐 > 0 such that𝑊 = 𝑐𝑄, then it is optimal.

Proof. Consider an LQG team with a payoff function (2) and let 𝑣(𝑎, 𝜃) =
∑
𝑖∈𝑁 𝑢𝑖 (𝑎, 𝜃)/𝑛.

Because every player’s payoff function coincides with the objective function, full information
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disclosure is optimal. In this case, 𝑉 = [𝑣𝑖 𝑗 ]2𝑛×2𝑛 is given by

𝑣𝑖 𝑗 =


𝑞𝑖 𝑗 if 1 ≤ 𝑖, 𝑗 ≤ 𝑛,

1 if 1 ≤ 𝑗 ≤ 𝑛, 𝑖 = 𝑛 + 𝑗 or 1 ≤ 𝑖 ≤ 𝑛, 𝑗 = 𝑛 + 𝑖,

0 otherwise,

which satisfies the condition in Lemma 2. Thus, by Lemma 2, it holds that 𝑉 • 𝑋 = 𝑊 • 𝑋11,

where 𝑊 = 3𝑄. This implies that full information disclosure is optimal if 𝑊 = 𝑐𝑄 for any

𝑐 > 0. □

As applications of Propositions 9 and 10, we compare two types of public goods games with

different payoff structures.

Example 5. Player 𝑖’s contribution is 𝑎𝑖, the marginal cost is 𝜃𝑖, and the production of a public

good is −𝑎⊤𝑀𝑎 + 2𝛾⊤𝑎, where 𝑀 ∈ S𝑛+ is a positive definite matrix and 𝛾 ∈ R𝑛 is a constant

vector. Then, the payoff function is (−𝑎⊤𝑀𝑎 + 2𝛾⊤𝑎) − 𝜃𝑖𝑎𝑖. Let 𝑣(𝑎, 𝜃) =
∑
𝑖∈𝑁 𝑢𝑖 (𝑎, 𝜃);

that is, the objective function is the total payoff. Then, the condition in Lemma 2 is satisfied,

and 𝑊 is shown to be negative definite. Therefore, no information disclosure is optimal by

Proposition 9. This is because the production is independent of 𝜃 and concave in 𝑎, so we can

increase the expected total payoff by making 𝑎 constant. Teoh (1997) shows similar optimality

of no information disclosure in a public goods game, which is not an LQG game.

Example 6. Player 𝑖’s contribution is 𝑎𝑖, the marginal cost is a constant 𝛾𝑖, and the production

of a public good is −𝑎⊤𝑀𝑎 + 2𝜃⊤𝑎, where 𝑀 ∈ S𝑛+ is a positive definite matrix. Then, the

payoff function is (−𝑎⊤𝑀𝑎 + 2𝜃⊤𝑎) − 𝛾𝑖𝑎𝑖. Let 𝑣(𝑎, 𝜃) = ∑
𝑖∈𝑁 𝑢𝑖 (𝑎, 𝜃); that is, the objective

function is the total payoff. Then, the condition in Lemma 2 is satisfied, and 𝑊 is shown to be

a constant times 𝑄. Therefore, full information disclosure is optimal by Proposition 10. This is

because the production level depends upon 𝜃, so we can increase the expected total payoff by

allowing 𝑎 to adjust to 𝜃.

4 Symmetric common value payoff structures

In this section, we solve an LQG information design problem by focusing on symmetric common

value payoff structures and symmetric information structures. A payoff structure is said to be
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symmetric if 𝑞𝑖𝑖 and 𝑞𝑖 𝑗 are constant across 𝑖, 𝑗 ∈ 𝑁 with 𝑖 ≠ 𝑗 . By normalizing 𝑞𝑖𝑖 = 1 for all

𝑖 ∈ 𝑁 , we obtain the following payoff function:

𝑢𝑖 (𝑎, 𝜃) = −𝑎2
𝑖 + 2𝛼𝑎𝑖

∑
𝑗≠𝑖 𝑎 𝑗

𝑛 − 1
+ 2𝜃0𝑎0 + ℎ𝑖 (𝑎−𝑖, 𝜃0).

This game exhibits strategic complementarities if 𝛼 > 0 and strategic substitutabilities if 𝛼 < 0.

Note that a coefficient matrix 𝑄 is given by

𝑄 =



1 𝑞 · · · 𝑞

𝑞 1 · · · 𝑞
...

...
. . .

𝑞 𝑞 · · · 1


∈ S𝑛 (25)

with 𝑞 = −𝛼/(𝑛 − 1). Because the 𝑘-th leading principal minor is (1 + (𝑘 − 1)𝑞) (1 − 𝑞)𝑘−1, 𝑄

is positive definite if and only if −(𝑛 − 1) < 𝛼 < 1, which is assumed throughout this section.

Because the payoff structure is of common value, we solve the problem (20) restricting

attention to symmetric information structures. An information structure 𝜋 ∈ Π∗ is said to be

symmetric if𝑇𝑖, var(𝑡𝑖), and cov(𝑡𝑖, 𝑡 𝑗 ) are constant across 𝑖, 𝑗 ∈ 𝑁 with 𝑖 ≠ 𝑗 . In the equilibrium,

we can write 𝜎2
𝑎 = var(𝑎𝑖), 𝜌𝑎𝜎2

𝑎 = cov(𝑎𝑖, 𝑎 𝑗 ), 𝜌𝑎𝜃𝜎𝑎𝜎𝜃 = cov(𝑎𝑖, 𝜃0), and 𝜎2
𝜃 = var(𝜃0) for

all 𝑖, 𝑗 ∈ 𝑁 with 𝑖 ≠ 𝑗 by the symmetry of both payoff and information structures. Thus, without

loss of generality, the objective function is written as

𝑉 ′ • 𝑋′ = 𝑛𝑣1𝜎
2
𝑎 + 𝑛(𝑛 − 1)𝑣2𝜌𝑎𝜎

2
𝑎 + 2𝑛𝑣3𝜌𝑎𝜃𝜎𝑎𝜎𝜃 ,

where

𝑉 ′ =



𝑣1 𝑣2 · · · 𝑣2 𝑣3

𝑣2 𝑣1 · · · 𝑣2 𝑣3
...

...
. . .

...
...

𝑣2 𝑣2 · · · 𝑣1 𝑣3

𝑣3 𝑣3 · · · 𝑣3 0


, 𝑋′ =



𝜎2
𝑎 𝜌𝑎𝜎

2
𝑎 · · · 𝜌𝑎𝜎

2
𝑎 𝜌𝑎𝜃𝜎𝑎𝜎𝜃

𝜌𝑎𝜎
2
𝑎 𝜎2

𝑎 · · · 𝜌𝑎𝜎
2
𝑎 𝜌𝑎𝜃𝜎𝑎𝜎𝜃

...
...

. . .
...

...

𝜌𝑎𝜎
2
𝑎 𝜌𝑎𝜎

2
𝑎 · · · 𝜎2

𝑎 𝜌𝑎𝜃𝜎𝑎𝜎𝜃

𝜌𝑎𝜃𝜎𝑎𝜎𝜃 𝜌𝑎𝜃𝜎𝑎𝜎𝜃 · · · 𝜌𝑎𝜃𝜎𝑎𝜎𝜃 𝜎2
𝜃


.

Because a payoff structure is of common value, we can use Lemma 2 to rewrite 𝑉 ′ • 𝑋′ as a

linear combination of the variance and the covariance of actions:

𝑉 ′ • 𝑋′ = 𝑊 • 𝑋11 = 𝑛𝑐𝜎2
𝑎 + 𝑛(𝑛 − 1)𝑑𝜌𝑎𝜎2

𝑎 ,
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where

𝑊 =



𝑐 𝑑 · · · 𝑑

𝑑 𝑐 · · · 𝑑
...

...
. . .

...

𝑑 𝑑 · · · 𝑐


with 𝑐 = 𝑣1 + 2𝑣3 and 𝑑 = 𝑣2 + 2𝑣3𝑞. The constraints 𝑋′ ∈ S𝑛+1

+ , 𝑆 • 𝑋′ = var(𝜃0), and

𝑅′
𝑘 • 𝑋′ = 0 are reduced to

𝜌2
𝑎𝜃 ≤

𝑛 − 1
𝑛

𝜌𝑎 +
1
𝑛
, (26)

𝜎𝑎 =
𝜌𝑎𝜃𝜎𝜃

1 − 𝛼𝜌𝑎
, (27)

where (26) is derived from the Schur complement of 𝑋′.

By Proposition 9, if 𝑐 ≤ 𝑑 ≤ −𝑐/(𝑛 − 1), then no information disclosure is optimal because

𝑊 is negative semidefinite.8 By Proposition 10, if 𝑐 > 0 and 𝑑 = −𝛼𝑐/(𝑛 − 1), then full

information disclosure is optimal because𝑊 = 𝑐𝑄 and 𝑐 > 0.

We can also characterize the optimal information structure in the other cases by direct

calculation. Let 𝜁 = 𝑛𝑐 and 𝜂 = 𝑛(𝑐 + (𝑛 − 1)𝑑), whereby the objective function is

𝐹 (𝜎𝑎, 𝜌𝑎) ≡ (𝜁 + (𝜂 − 𝜁)𝜌𝑎)𝜎2
𝑎 = 𝜁 (1 − 𝜌𝑎)𝜎2

𝑎 + 𝜂𝜌𝑎𝜎2
𝑎 . (28)

If 𝜁 = 0 and 𝜂 = 1, then 𝐹 (𝜎𝑎, 𝜌𝑎) = 𝜌𝑎𝜎
2
𝑎 , so full information disclosure is optimal because

the covariance of actions 𝜌𝑎𝜎2
𝑎 is maximized when all players know 𝜃0. In contrast, if 𝜁 = 1 and

𝜂 = 0, then 𝐹 (𝜎𝑎, 𝜌𝑎) = (1 − 𝜌𝑎)𝜎2
𝑎 , so full information disclosure cannot be optimal because

the subtraction of the covariance from the variance of actions (1 − 𝜌𝑎)𝜎2
𝑎 is minimized when

all players know 𝜃0. This observation suggests that the optimal information structure can be

understood in terms of the ratio of 𝜂 and 𝜁 as well as their signs, which is confirmed by the

following proposition.

Proposition 11. The optimal information structure is given below.

(i) Full information disclosure is optimal if 𝜂 > 0 and 𝜂 ≥ 𝑛(1 − 𝛼)𝜁/(2𝑛 − 1 + 𝛼).

8Principle minors of 𝑊 are (𝑐 + (𝑘 − 1)𝑑) (𝑐 − 𝑑)𝑘−1 for 𝑘 ∈ {1, . . . , 𝑛}, so we can verify that 𝑊 is negative

semidefinite if and only if 𝑐 ≤ 𝑑 ≤ −𝑐/(𝑛 − 1).
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(ii) Partial information disclosure is optimal if 𝜁 > 𝜂/𝑛 and 𝜁 > (2𝑛 − 1 + 𝛼)𝜂/(𝑛(1 − 𝛼)),

where the optimal covariance matrix of (𝑎, 𝜃0) is given by

𝜌𝑎 = −((2𝛼 + 𝑛 − 2)𝜁 + 𝜂)/(((𝑛 − 2)𝛼 − 2(𝑛 − 1))𝜁 + (𝛼 + 2(𝑛 − 1))𝜂), (29)

𝜌𝑎𝜃 =
√
(𝑛 − 1)𝜌𝑎/𝑛 + 1/𝑛, (30)

𝜎2
𝑎 = 𝜌2

𝑎𝜃𝜎
2
𝜃 /(1 − 𝛼𝜌𝑎)2. (31)

(iii) No information disclosure is optimal if 𝜂 ≤ 0 and 𝜁 ≤ 𝜂/𝑛.

Proof. We maximize (28) subject to (26) and (27). Plugging (27) into (28), we have

𝐹 (𝜎𝑎, 𝜌𝑎) = (𝜁 + (𝜂 − 𝜁)𝜌𝑎)
(
𝜌𝑎𝜃𝜎𝜃

1 − 𝛼𝜌𝑎

)2
.

By (26), −1/(𝑛 − 1) ≤ 𝜌𝑎 ≤ 1 and(
𝜌𝑎𝜃𝜎𝜃

1 − 𝛼𝜌𝑎

)2
≤

𝜎2
𝜃

(1 − 𝛼𝜌𝑎)2

(
𝑛 − 1
𝑛

𝜌𝑎 +
1
𝑛

)
.

Thus, by setting

𝑓 (𝑥) ≡ 𝜎2
𝜃

𝜁 + (𝜂 − 𝜁)𝑥
(1 − 𝛼𝑥)2

(
𝑛 − 1
𝑛

𝑥 + 1
𝑛

)
,

we obtain

𝐹 (𝜎𝑎, 𝜌𝑎) ≤ max{0, 𝑓 (𝜌𝑎)} ≤ max
𝑥∈[−1/(𝑛−1),1]

𝑓 (𝑥).

Moreover, by (26) and (27), if 𝜌𝑎 ∈ arg max𝑥∈[−1/(𝑛−1),1] 𝑓 (𝑥), then 𝐹 (𝜎𝑎, 𝜌𝑎) = 𝑓 (𝜌𝑎) with

(30) and (31), where 𝜌𝑎 = 1 implies full information disclosure because 𝜌𝑎𝜃 = 1 by (30), and

𝜌𝑎 = −1/(𝑛 − 1) implies no information disclosure because 𝜎2
𝑎 = 0 and 𝜌𝑎𝜎2

𝑎 = 0 by (31).

Therefore, to maximize 𝐹 (𝜎𝑎, 𝜌𝑎) subject to (26) and (27), it is enough to solve

max
−1/(𝑛−1)≤𝑥≤1

𝑓 (𝑥). (32)

The first derivative of 𝑓 (𝑠) is

𝑓 ′(𝑥) = 𝜙(𝑥)
𝑛(1 − 𝛼𝑥)3 ,

where the numerator

𝜙(𝑥) = (((𝑛 − 2) 𝛼 − 2 (𝑛 − 1)) 𝜁 + (𝛼 + 2 (𝑛 − 1)) 𝜂) 𝑥 + (2𝛼 + 𝑛 − 2) 𝜁 + 𝜂

is a linear function of 𝑥, and the denominator is positive since−(𝑛−1) < 𝛼 < 1 and−1/(𝑛−1) ≤

𝑥 ≤ 1.
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Suppose that 𝑓 ′(−1/(𝑛 − 1)) > 0 and 𝑓 ′(1) < 0, which is true if and only if 𝜁 > 𝜂/𝑛 and

𝜁 > (2𝑛 − 1 + 𝛼)𝜂/(𝑛(1 − 𝛼)) because

𝜙(−1/(𝑛 − 1)) = (𝑛 − 1 + 𝛼) (𝑛𝜁 − 𝜂)
𝑛 − 1

and 𝜙(1) = −𝑛(1 − 𝛼)𝜁 + (2𝑛 − 1 + 𝛼)𝜂.

In this case, (32) has an interior solution 𝜌𝑎 with 𝑓 ′(𝜌𝑎) = 0 (i.e. 𝜙(𝜌𝑎) = 0), and 𝜌𝑎 in (29) is

the unique solution.

Suppose otherwise. Then, (32) has a corner solution and

max
−1/(𝑛−1)≤𝑥≤1

𝑓 (𝑥) = max{ 𝑓 (−1/(𝑛 − 1)), 𝑓 (1)} = max

{
0,

𝜎2
𝜃 𝜂

(1 − 𝛼)2

}
.

If 𝜂 > 0, then 𝜌𝑎 = 𝜌𝑎𝜃 = 1 at the corner solution, which implies the optimality of full

information disclosure. Because 𝜂 > 0 implies (2𝑛 − 1 + 𝛼)𝜂/(𝑛(1 − 𝛼)) > 𝜂/𝑛, we must have

𝜁 ≤ (2𝑛−1+𝛼)𝜂/(𝑛(1−𝛼)). If 𝜂 ≤ 0, then 𝜌𝑎𝜃 = −1/(𝑛−1) at the corner solution, which implies

the optimality of no information disclosure. Because 𝜂 ≤ 0 implies (2𝑛− 1+𝛼)𝜂/(𝑛(1−𝛼)) ≤

𝜂/𝑛, we must have 𝜁 ≤ 𝜂/𝑛. □

Figure 1 illustrates the optimal information structures, where the horizontal axis is the 𝜁-axis

and the vertical axis is the 𝜂-axis. If 𝜂 is sufficiently large compared to 𝜁 , then full information

disclosure is optimal by (i). If 𝜁 is sufficiently large compared to 𝜂, then partial information

disclosure is optimal by (ii). Otherwise, no information disclosure is optimal by (iii). It is

straightforward to show that the condition in (iii) holds if and only if 𝑐 ≤ 𝑑 ≤ −𝑐/(𝑛 − 1). That

is, no information structure is optimal if and only if𝑊 is negative semidefinite.

Angeletos and Pavan (2007), Bergemann and Morris (2012, 2013), and Ui and Yoshizawa

(2015) study this class of LQG games. Angeletos and Pavan (2007) and Ui and Yoshizawa

(2015) focus on information structures in which player’s signal consists of an idiosyncratic

private signal and a public signal. In particular, Ui and Yoshizawa (2015) obtain the optimal

combination of them.9 On the other hand, Bergemann and Morris (2012, 2013) characterize

the set of all symmetric BCE. Moreover, they obtain the optimal information structure in the

special case of 𝜁 = 𝜂 = 1, which corresponds the total expected profit in the Cournot game.

In contrast, we have characterized the optimal information structures for arbitrary quadratic

objective functions in terms of the property of the matrix 𝑊 and, in particular, the coefficients

of the objective functions, 𝜁 and 𝜂.

9Ui (2016b) considers a symmetric LQG game with endogenous private information acquisition and character-

izes the optimal public information disclosure.
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Figure 1: The optimal information structures on the 𝜁𝜂 plane

5 Public information structures

In this section, we study an LQG information design problem when the set of feasible information

structures is that of public information structures, i.e., Π = Π𝑝. As discussed in Section 3.3, it

is enough to solve (22).

Recall that 𝐷 in (22) is an 𝑛× 𝑘 matrix of rank 𝑘 such that var(𝜃) = 𝐷𝐷⊤ and 𝑘 is the rank of

var(𝜃). The matrix 𝐷⊤𝑉𝑄𝐷 is factored as𝑈Λ𝑈⊤, where𝑈 = [𝑢1, . . . , 𝑢𝑘 ] is a 𝑘 × 𝑘 orthogonal

matrix and Λ = diag (𝜆1, . . . , 𝜆𝑘 ) is a 𝑘 × 𝑘 diagonal matrix with 𝜆1 ≥ · · · ≥ 𝜆𝑚 > 0 ≥ 𝜆𝑚+1 ≥

· · · ≥ 𝜆𝑘 . Note that 𝑢1, . . . , 𝑢𝑘 are eigenvectors of 𝐷⊤𝑉𝑄𝐷 and 𝜆1, . . . , 𝜆𝑘 are eigenvalues

associated with them. We write 𝑈𝑚 = [𝑢1, . . . , 𝑢𝑚], which is a 𝑘 × 𝑚 matrix consisting of

the eigenvectors with strictly positive eigenvalues. The following proposition characterizes the

optimal public information structures in terms of𝑈𝑚.

Proposition 12. A public signal under the optimal public information structure is given by

𝑡0 = 𝑈⊤
𝑚 (𝐷⊤𝐷)−1𝐷⊤𝜃, and the maximum of the objective function equals the sum of the positive

eigenvalues 𝜆1 + · · · + 𝜆𝑚. In particular, if 𝑘 = 𝑛, then we can choose 𝐷 = var(𝜃)1/2, i.e., the

principle square root of var(𝜃), so the optimal public signal is 𝑡0 = 𝑈⊤
𝑚var(𝜃)−1/2𝜃.

Recall Propositions 6 and 7: if 𝐷⊤𝑉𝑄𝐷 is negative semidefinite, i.e., all the eigenvalues are

nonpositive, then no information disclosure is optimal, and if 𝐷⊤𝑉𝑄𝐷 is positive semidefinite,

i.e., all the eigenvalues are nonnegative, then full information disclosure is optimal. Proposi-

tion 12 generalizes Propositions 6 and 7 by identifying the optimal public signal when 𝐷⊤𝑉𝑄𝐷
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is neither positive nor negative semidefinite. In particular, it is shown that the maximum of the

objective function equals the sum of the positive eigenvalues of 𝐷⊤𝑉𝑄𝐷 and the optimal public

signal is constructed from the corresponding eigenvectors 𝑢1, . . . , 𝑢𝑚.

To prove Proposition 12, we can directly use the result of Tamura (2017). Tamura (2017)

studies a Bayesian persuasion problem (Kamenica and Gentzkow, 2011), or an information

design problem with a single player, with a quadratic objective function. In his model, an

individual receives a signal 𝑡 about a state vector 𝜃 ∈ R𝑛, and the individual’s best response

is assumed to be 𝐸 [𝜃 |𝑡] ∈ R𝑛. The objective function is given by 𝑊 • 𝑆, where 𝑊 ∈ S𝑛 is a

constant matrix and 𝑆 = var(𝐸 [𝜃 |𝑡]) ∈ S𝑛+ is the covariance matrix of the individual’s action.

Tamura (2017) shows that the maximization of the objective function is reduced to

max
𝑆
𝑊 • 𝑆 s.t. 𝑆 ∈ S𝑛+ and var(𝜃) − 𝑆 ∈ S𝑛+ . (33)

He obtains a closed form solution by assuming that var(𝜃) has rank 𝑛 but without assuming a

normal distribution of 𝜃 and 𝑡. Tamura (2017) also demonstrates that (33) is useful in studying

an LQG network game with 𝑛 players and obtains an optimal public information structure in a

special case of an LQG network game when var(𝜃) has full rank 𝑛. Thus, Proposition 12 is a

generalization of the results of Tamura (2017) where var(𝜃) does not necessarily have rank 𝑛

(such as a common value payoff structure).

When var(𝜃) has rank 𝑛 in our LQG information design problem with 𝑛 players, we can solve

(22) and obtain 𝑡0 = 𝑈⊤
𝑚var(𝜃)−1/2𝜃 in Proposition 12 by using the solution of (33) obtained

by Tamura (2017). When the rank of var(𝜃) is strictly less than 𝑘 , however, we must modify

the solution of Tamura (2017). Thus, we provide a proof for completeness. The proof is more

direct and simpler because we use the properties of normal distributions, which Tamura (2017)

does not assume in solving (33).

Proof of Proposition 12. Recall (23) in the proof of Proposition 6. Note that

𝐷⊤𝑉𝑄𝐷 • 𝑆 =
𝑘∑
𝑙=1

𝜆𝑙𝛾𝑙 ≤
𝑚∑
𝑙=1

𝜆𝑙 (34)

because 𝜆𝑙 > 0 if and only if 𝑙 ≤ 𝑚 and 0 ≤ 𝛾𝑙 ≤ 1 for all 𝑙. We show that 𝑡0 = 𝑈⊤
𝑚 (𝐷⊤𝐷)−1𝐷⊤𝜃

achieves the upper bound
∑𝑚
𝑙=1 𝜆𝑙 in (34).

We use the following properties of multivariate normal distributions. When two random

vectors 𝑋1 ∈ R𝑛1 and 𝑋2 ∈ R𝑛2 are jointly normally distributed with cov(𝑋𝑖, 𝑋 𝑗 ) = Σ𝑖 𝑗 for 𝑖, 𝑗 ∈
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{1, 2}, the covariance matrix of the conditional expectation of 𝑋2 given 𝑋1 is var(𝐸 [𝑋2 |𝑋1]) =

Σ21(Σ11)−1Σ12. Using this, we can verify that var(𝐸 [𝜃 |𝑡0]) = 𝐷𝑈𝑚 (𝑈⊤
𝑚𝑈𝑚)−1𝑈𝑚𝐷

⊤ and

𝑉𝑄 • var(𝐸 [𝜃 |𝑡0]) = tr (𝑉𝑄𝐷𝑈𝑚 (𝑈⊤
𝑚𝑈𝑚)−1𝑈𝑚

⊤𝐷⊤)

= tr (𝐷⊤𝑉𝑄𝐷𝑈𝑚𝑈𝑚
⊤)

= tr (𝑈Λ𝑈⊤𝑈𝑚𝑈𝑚
⊤)

= tr (Λ𝑈⊤𝑈𝑚𝑈𝑚
⊤𝑈) =

𝑚∑
𝑙=1

𝜆𝑙 .

The last equality holds because𝑈⊤𝑈𝑚 = [𝛿𝑖 𝑗 ]𝑘×𝑚, where 𝛿𝑖 𝑗 is the Kronecker delta. □

Proposition 12 has the following implication for optimality of partial information disclo-

sure in Π∗ when 𝐷⊤𝑉𝑄𝐷 is neither negative semidefinite nor positive semidefinite, which

complements Corollary 8.

Corollary 13. If 𝐷⊤𝑉𝑄𝐷 is neither negative semidefinite nor positive semidefinite, then partial

information disclosure is optimal in Π∗.
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