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1. Introduction 

Recent advances in microfabrication techniques, cryogenics, and precision measurement 

have opened up new possibilities in the physics of ultrasmall tunnel junctions having capac­

itance less than 10-15 F. Such junctions, if operated below 1 ]{ under an appropriate bias 

condition, produce tunneling events that are correlated in time and/or in space.il] Consider­

able attention, both experimentally and theoretically, has been paid to the correlated single­

electron tunneling (SET), and several important applications such as single-electron transistors 

have been proposed.!21 Furthermore, some fundamental aspects in tunneling phenomena, like 

the effect of the electromagnetic environment on tunneling131-161 and the traversal time for 

tunneling,l71 have seen a remarkable resurgence of interest in recent years because they are at 

the cutting edge of the present measurement technology. This paper develops two theories that 

were motivated by the impressive state of the art of the micro junction physics. 

The discovery of the elementary charging effect in small tunnel junctions dates back to 

early 1960's,i8]-[lll when the de conductance of low-capacitance tunnel junctions was found 

to be substantially suppressed at low tempera.tures . However, it was noticed only recentlyl121 

that tunneling events become correlated in time and/or in space if the change in the junction 

charge due to the discrete tunneling across the energy barrier is supplemented by continuous 

recharging of the junction from the external circuit. This remarkable prediction inm1ediately 

attracted attention under the name of Coulomb blockade of tunneling and it was soon con-

• firmed experimentally in various configurations such as double junctions,i13]-[15] linear arrays 

of junctions,il6J and scanning-tunneling microscope (STM) .il7][18] 

Conventional treatments of the dynamics of mesoscopic normal tunnel junctions mainly re­

duce the problem to a stochastic equation and finally resort to computer simulation.!12][20]-[22] 

The first half of this paper proposes a new method of solving this problem in a fully analytic 

manner.123J-126J Analytic expressions of the charge distribution across the junction and current­

voltage characteristics are obtained under an arbitrary bias conclition. In particular, it is found 

that even for the ideal constant-current operation at zero temperature the degree of randonmess 

of SET events, which is defined as the ratio of the standard deviation of tunneling lifetimes to 

their mean value, never reaches zero but only attains a minimum of )(4- 1r)RTCidc/e, where 
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e is the electronic charge, Rr is the tunnel resistance, C is the junction capacitance, and Ide is 

the bias current. This limit, which we shall refer to as the standard quantum limit, is shown 

to originate from the time-energy uncertainty principle that is inherent in quantum-mechanical 

tunneling. The whole analysis in the first half is based on a simple formula for the semiclassical 

tunneling rate. By so doing, however , a critical point is reached where the semiclassical theory 

of Coulomb blockade manifestly breaks down. 

The semiclassical theory of Coulomb blockade is well confirmed in multijunction configurations, il3] 

but its applicability to single junctions is still problematic127J-129J because it is very difficult 

for a single junction to be completely free from parasitic capacitance. Motivated by such ex­

perimental difficulties, several theories have been proposedl31-161 that attempt to describe the 

• effect of the electromagnetic environment on Coulomb blockade . 

The second half of this paper predicts that the many-body final-state interaction in the elec­

trodes, which sets in upon tunneling, plays the role of the "Fermi-surface" environment.I30][311 

It is shown that a sudden change in the localized Coulomb potential due to tunneling causes 

infrared-divergent excitation of electron-hole pairs near the Fermi surface. Such an infrared 

anomaly in the density of final states available for tunneling is shown to renormalize the tun­

neling rate in a singular way. The zero-bias anomaly in small tunnel junctions is shown to 

have the same physical origin, where the anomalous power exponent is determined consistently 

with the Friedel sum rule. This is the first (at least , in the field of Coulomb blockade) attempt 

to incorporate the electrical relaxation inside the electrodes into the tunneling process, and 

• hopefully it will resolve the controversial issue over the relativistic cutoff of the capacitance 

advocated by Biittiker and Landauer17l. 

This paper is organized as follows. Section 2 provides a brief overview of the conventional 

theory of Coulomb blockade and the effect of the electrodynamic environment on it. This 

section is intended to provide minimal background for later discussion. Section 3 proposes a 

new analytic approach to ultrasmall normal tunnel junctions. With this method , an analytic 

expression of the current-voltage characteristic of small tunnel junctions is obtained under an 

arbitrary bias condition. The relationship of the proposed method to the conventional master­

equation approach is also discussed. Section 4 discusses noise characteristics of small tunnel 

junctions under various bias conditions. It is shown that SET events exhibits a crossover 
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from random shot noise (represented by the Schottky formula) to Coulomb-regulated oscilla­

tions. This regularity, however, is shown to have a fundamental upper bound represented by 

the standard quantum limit. Section 5 c:liscusses that this limit does not originate from cur­

rent or thermal fluctuations but from the time-energy uncertainty principle that is inherent in 

quantum-mechanical tunneling. Section 6 develops a microscopic theory of Coulomb suppres­

sion and zero-bias anomaly of tunneling conductance under the influence of the Fermi-surface 

environment. Section 7 discusses and summarizes the main results of the present paper. Some 

complicated algebraic manipulations are relegated to appendices to avoid c:ligressing from the 

main subject. 
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2. Orthodox theory and beyond 

This section briefly overviews the present state of the art in the physics of mesoscopic 

normal tunnel junctions to provide a background for later discussions. 

2.1. Principle of Coulomb blockade 

Let us consider a tunnel junction made up of two normal metal electrodes and an energy 

barrier sandwiched by them. Owing to its wave nature (Fig. 1(a)) , an electron can pass 

through an energy barrier that a classical particle could not penetrate. This is all that textbook 

quantum mechanics tells us. In fact, electron tunneling is accompanied by a transfer of charge 

• that is quantized in units of the electronic charge e. As a result, each tunneling event occurs 

at an energy cost of Z; (~- Q) (Fig. 1(b)), where Cis the elect rostatic capacitance of the 

junction and Q is the charge that was accumulated on the junction before the tunneling event 

occurred . For macroscopic junctions this energy cost is overwhelmed by the masking thermal 

energy ksT.i321 This is why the particle nature of an electron (i.e., quantization of charge) 

has not been manifest in conventional tunneling phenomena. However , when the electrostatic 

capacitance of the junction is less than 1 f F(10-15 F), the equivalent temperature of the energy 

cost becomes more than 1 I<. If we cool the temperature of the junction to below 1 K, the 

forward tunneling event will be suppressed for Q < ~· Similarly, the backward tunneling event 

will be suppressed for Q > -~. At absolute zero temperature, in particular, tunneling events 

• (both forward and backward) are completely inhibited for IQI < ~· This is the principle of 

Coulomb blockade. With this principle, we can control tunneling current at the level of a single 

electron, provided that we can properly manipulate the accumulated cha rge Q by an external 

circuit. 

2.2. Single-electron-tunneling (SET) oscillations 

What happens if an ultrasmall tunnel junction is driven by a constant-current source with 

current I (Fig. 2(a))? A tunneling event occurs only if the accumulated charge Q exceeds ~· 

Once this occ urs, however, it will be inhibited until Q again exceeds ~ (Fig. 2(b)) . Tunneling 
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events thus occur almost regularly at an average interval of r = 7 (Fig. 2(c)). Accordingly, the 

voltage across the junction oscillates with frequency f = ~- These oscillations are termed single­

electron-tu nneling (SET) oscillations. As seen from the above discussion, SET oscillations are 

based on two distinct mechanisms of charge transfer - that is, discrete transfer of the quantized 

electronic charge across the tunnel barrier and continuous transfer of the electrostatic charge 

from outside the tunnel junction. 

2.3. Tunneling rate 

Now let us start with a discussion of the tunneling rate in an ultrasmall normal-metal 

tunnel junction. Suppose that the accumulated charge (or voltage) across the junction is given 

by Q (or V) . Then the forward tunneling rate 1·(Q) is given by 

1·(Q) = j_: _,.-'(E)DR(E)DL(E + eV- ;~)!F(E) [ 1- fF ( E + eV- ;~)] dE, (2.1) 

where _,.- 1(E) is the elastic tunneling rate , DR( E) (or DL(E)] is the density of states in the 

right (or left) electrode, and JF(E) is the equilibrium Fermi distribution 

JF(E) = ( E ) . 
1 + exp keT 

(2.2) 

We note that Eq. (2.1) reduces to the corresponding formula for macroscopic tunnel junctions!33] 

when the single-electron charging energy ~ may be neglected. This minor modification , how­

ever, leads to a major change in the physics of small tunnel junctions. We note that the 

factor f F(E) [1 - fF ( E + e V- ~)] contributes significantly to the integral only within range 

l e V-~~- This energy range is typically of the order of millielectronvolts, while the Fermi en­

ergy EF of conduction electrons is of the order of electronvolts. Therefore, the elastic tunneling 

rate and the densities of state may be well approximated by their values at the Fermi energy. 

We thus obtain 

r(Q)=-1- Q-~ 
eRrC 1 - exp [- Ck~T ( Q - ~)] ' 

(2.3) 

where 

(2.4) 
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defines the tunnel resistance because it gives the resistance of a t unnel junction when a constant 

voltage is applied ac ross the junction .133l When knT «: fl:, Eq. (2.3) reduces to 

{ 

0 if Q ~ ~. 
r(Q) = Q-' 

~ otherwise. 
(2.5) 

T hat is, the forward tunneling events are completely inhibited until the accumul ated charge 

exceeds ~· 

Similarly, the backward tunneling rate, I(Q), is given by 

(2.6) 

~ When k8 T «: fl:, Eq. (2.6) reduces to 

I(Q) = { ~_2ti_ 
eRrC 

if Q :::: -~, 

otherwise. 
(2.7) 

That is, the backward tunneling events are completely inhibited for Q 2: - ~. 

Note that Eqs. (2.5) and (2.7) reconfirm the discussion in Sec. 2.1. 

2.4. Standard approaches to mesoscopic normal tunnel junctions 

A standard approach to mesoscopic normal tunnel junctions usually resorts to computer 

simulation using Eqs. (2.5) and (2.7) (or Eqs. (2 .3) and (2.6)). Suppose that an ultrasmall 

• tunnel junction is driven by a time-dependent ex ternal current J(t) . Then the charge Q(t ) on 

the junction evolves in time according to the following stochastic equations:i20l 

l Q(t ) + J(t)dt- e 

Q(t + dt) = Q(t) + J(t)dt + e 

Q(t) + !( t)dt 

for forward tunneling, 

for backward tunneling, 

for no tunneling, 

(2.8) 

where the probabilities are respec tively given by r(Q(t))dt, I(Q(t))dt, and 1- (r(Q(t)) + 

l(Q(t)))dt, and the time step dt is taken to be so small that the probability of more than 

one tunn eling event being registered during it can be neglected. With Eq. (2.8) one can per­

form computer simulation for the time evolution of Q(t) (or voltage V(t):::::: ~) and obtain a 

voltage spectrum by Fourier transforming it. 

12 



From the same equations (2.5) and (2.7) one can construct a master equation for P( Q, t) , 

the probability density of Q, asi12I 

a 
BtP(Q, t) = 

a 
-J(t) aQP(Q, t) + r(Q + e)P(Q + e,t) + l(Q- e)P(Q- e,t) 

1 a 
- [r(Q) + I(Q)] P(Q,t) + CRs aQ [P(Q ,t)Q] 

knT a2 

+Rs aQ2P(Q, t), (2.9) 

where the last term represents thermal noise generated in the shunt (or source) resistance Rs. 

The master equation gives the same results as t he computer simulation. Furthermore, the 

master-equation approach gives us information about analytic behavior of P( Q, t) , but it is 

very difficult to obtain an exact solution except for very specific cases . 

2.5. Physical meaning of fractional charge 

In Sec. 2.2, it was stated that SET oscillations are based on two distinct mechanisms 

of continuous and discrete charge transfer . Section 2.3 showed that tunneling is Coulomb­

blocked for IQI < ~- But how is it possible to think of charge smaller than the minimum 

unit of electricity e ? This puzzle is resolved by noting that Q is not necessarily a charge 

transferred through some cross-section of the current leads, but that it is defined by equating 

the electrostat ic energy of the junction to ~ - The electrostatic energy of the junction is a 

collective Coulomb energy formed by all the conduction electrons and positive ions in the two 

electrodes. The magnitude of Q is therefore proportional to the relative displacement between 

the center of mass of all the conduction electrons, Gn, and that of all the positive ions, GP (Fig. 

3). Because of the huge number of conduction electrons, the position of their center of gra,~ty 

can take almost continuous values, and hence so can Q. 

2.6. Effects of the electromagnetic (EM) environment on Coulomb 

blockade 

The orthodox theory of Coulomb blockade has been well verified in multijunct.ion config­

urations but its applicability to single junctions is still questionable, for it is, in practice, very 
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difficult for a single junction to be free from the stray (i.e., parasitic) capacitance Cs. In fact, 

it is estimated to be as much as 

1 
Cs [IF]~ 

30
.\ [J.Lm], (2.10) 

where .\is the effective range of distances within which a tunneling electron interacts with the 

EM environment (.\ is expressed in micrometers). However, there has been controversy over 

how far a tunneling electron probes its EM environment. Biittiker and Landauer171 claim that 

a tunneling electron can probe the environment at distances r < er,, where e is the velocity of 

light and r, is the traversal time for tunneling. On the contrary, according toN azarov's theory131 

the effective interaction extends tor < he/ t>.E on the grounds that a tunneling electron should 

probe its EM environment for a period not less than h/ t>.E in order to corroborate that the 

energy gap t>.E really exists, where t>.E = max{ e V, ksT} and V is the voltage across the 

barrier. A recent experiment127H34I seems to support Nazarov's interpretation . This section 

presents a brief summary of as much of the state-of-the-art study on this issue as is relevant to 

late r discussion. 

A. Uncertainty relationship in charged-particle tunneling 

The tunneling Hamiltonian HT is given by 

(2.11) 

where Rand L refers to the right and left electrodes, respectively, and -rf; (x) is the field operator 

for electrons. Since electrons are charged particles , the amplitude of the tunneling Hamiltonian , 

T(x, x'), is modified to satisfy the gauge-invariant requirement. If we take the most probable 

trajectory for a tunneling electron, we have 

T(x, x') = T'(x, x') exp (- ~: t A(z, t)dz), (2.12) 

where A(z, t) is the vector potential. Thus the tunneling ampli tude is a e-n umber with respect 

to the electron field, but with respect to the EM field it is an operator that emerges as an EM 

phase: 

e 1x' e t 
</> =- A(z, t)dz = --j V'"d(t')dt', 

he x h -oo 
(2 .13) 
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where V;"d(t) is the voltage induced by tunneling. In fact , Eq. (2.13) is nothing but Faraday's 

law: 

<li(t) = he <f>(t). 
e 

(2.14) 

As early as 1929 Heisenberg pointed out that the uncertainty principle between the position 

and momentum of an electron inevitably leads to the existence of zero-point fluctuations of 

the EM field through the Lorentz equation.l35J If this applies to tunneling, there must exist 

a similar uncertainty relationship between the charge and flux that are induced by charged­

particle tunnelingJ36] Suppose that an electron is tunneling through the barrier. The tunneling 

current then induces the magnetic flux <li (Faraday's law) , which, in turn, exerts a back reaction 

on the momentum of the electron. 

dp; 

dt 
e d<li 1\ d<f> 

de dt -ddt' (2.15) 

where p; is the reaction part of the total momentum and dis the width of the tunnel ba.rrier. 

Equation (2.15) yields 

(2.16) 

On the other hand , the displacement of an electron, /:;. z, during the same period, dt, induces 

the mirror charge, !:;.Q, on either side of the barrier: 

(2.17) 

From Eqs. (2.16) and (2.17) we obtain 

(2.18) 

where the uncertainty relationship between the position and the momentum of an electron 

(t:,.p;/:;.z :::0: h/ 2) is used. Since the EM field can be probed only via a charged particle, Eq. 

(2 .18) may be put in the following way: the uncertainty relationship for a probe system (i.e., 

a charged particle) inevitably leads to the uncertainty relationship for a measured system 

(i.e., the EM fie ld). This conclusion applies generally to any quantum measurement and sets 

fundamental limits on the simultaneous measurement of two noncommuting observablesi37J. In 

operator form, Eq. (2.18) may be written as 

[¢,QJ = ie. (2.19) 
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This relationship imposes a fundamental limit on the electrodynamic properties of a small 

tunnel junction and also blurs the effect of Coulomb blockade as discussed below. 

B. Spontaneous fluctuations of the junction charge 

Figure 4 (a) schematically illustrates the circuit diagram of a current-biased single junction. 

To observe the effect of coulomb blockade, the capacitance of the junction, C, must be smaller 

than 1 fF. However , the stray capacitance is usually much larger than 1 fF. Thus, the small 

tunnel junction is effectively driven by a voltage source as is shown in Fig. 4 (b), where the 

effect of the EM environment is described by a simple LC circuit . For this simple circuit, the 

effect of the EM environment is described by 

(2.20) 

This Hamiltonian describes the Coulomb charging energy on the capacitor and the magnetic 

energy of the self-inductance L of the leads. Let us express the charge and the EM phase in 

terms of the normal modes 

h (c) 1/2 Q = 2 'L (b + b1) + cv, (2.21) 

if,= ie 
1 L 1/2 

- (-) (b- b1) 2h c . (2.22) 

The commutation relation (2.19) between Q and if, is equivalent to 

(2.23) 

The Hamiltonian of the EM environment thus reduces to 

(2.24) 

where a constant term !CV2 is omitted and 

(2 .25) 

Thus we find that the effect of the EM environment can be evaluated by using the familiar 

thermodynamics of a quantized harmonic oscillator. A general EM environment of an arbitrary 
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linear circuit with a frequency-dependent impedance can be treated, in the spirit of Leggett,!381 

as a collection of LC circuits. 

Due to zero-poin t fluctuations of the EM field, t he charge of the junction spontaneously 

fluctuates. A st raightforward calculation shows that at zero temperature!41 

(2.26) 

where EQ =fa. This result shows that if the zero-point energy ~liwL of t he EM environment is 

larger t han the single-electron charging energy EQ, the spontaneous flu ctuations of the junction 

charge, (D.Q2) 112 , exceed ~ and thus the effect of Coulomb blockade is substantially reduced. 

In general, t he EM environment may be regarded as an infini te number of harmonic oscillators. 

T he energy-level spacing liwL at the SET frequency WSET is related to the freque ncy-dependent 

impedance Z(w) of the environment by 

(2.27) 

In order for the Coulomb blockade to be observed, therefore, the impedance at the relevant 

frequency must be large so that the tunneling electron suffers sufficient recoil as a result of 

exciting the EM modes. 

C. Current-voltage characteristics in the presence of the EM environment 

T he tunneling current can be expressed as!41 

I(V) = e~T 1: dE 1: dE' {f(E)(1- f(E'))P( E + eV -E') 

-(1- f(E))f(E')P(E'- E- eV)} , (2.28) 

where P(E) is the probability that a tunneling electron transfers energy E to the envi ronment. 

It can be derived as follows. The tunneling Hamiltonian is given by 

(2.29) 

where e;¢ represents the discrete transfer of charge due to tunneling. This can be seen by the 

following relation 

(2.30) 
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The probability P(E) is given by Fermi's golden rule 

P(E) = L: l(ik.,;IJWo(E1 - E;- E) . (2.31) 
i,J 

Expressing the delta function in integral form we obtain 

(2.32) 

Thus we find that the probabi lity P(E) is given by the equilibrium phase correlation function 

which can be evaluated if the spectral density of the environmental modes , Z(w), is known. 

Here we will only demonstrate how the back reaction of excitation of the environmental modes 

by a tunneling electron recovers the semiclassical result of Coulomb blockade. 

For a simple harmonic-oscillator environment as shown in Fig. 4 (b), the equilibrium phase 

I correlation function can be evaluated using Wick's theorem to give 

(2.33) 

Using the thermodynamics of the quantized harmonic oscillator , the exponent of the right-hand 

side ( rhs) can be calculated asi4H391 

Eq { hwL } ([¢(t)- ¢(0))¢(0)} = hwL (coswLt -1)coth 
2
kaT- i sinwLt . (2.34) 

When the energy-level spacing of the relevant environmental mode is much larger than the 

elementary charging energy, i. e., hwL ~ Eq, a tunneling electron cannot excite environmental 

modes a.nd hence suffers no recoil. In this case, the correlation function (2.34) is equal to zero 

and therefore P(E) = o(E). Substituting this into Eq. (2.28), we obtain Ohm's la.w 

l(V) = ;T. (2.35) 

In the opposite limit where Eq ~ hwL, a tunneling electron can excite a.n infinite number 

of environmental modes and hence suffers a substantial recoil. In this case, the correlation 

function is reduced to 

((¢(t)- ¢(0))¢(0)} = -i~Q t, (2.36) 

and therefore P(E) = o ( E- ~). Substituting this into Eq. (2.28), we obtain 

I(V) = - e - 2 _ e + 2C 1[ v•' v·' ] 
eRr 1- exp [-k~T(ev-~)] exP[k~T(eV+~)]-1' 

(2 .37) 
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I 

which at zero temperature reduces to 

J(V) = - 1 [(ev- .::._) (} (ev- .::._) + (ev + .::._) (} (-eV- .::._)] 
eRT 2C 2C 2C 2C ' 

where(} is the Heaviside unit-step function defined by 

O(Q) = {: 
(Q > 0) , 

(Q < 0). 

(2.38) 

(2.39) 

Equation (2.38) is identical to that obtained by the orthodox theory of Coulomb blockade. As 

seen from the above discussion , to observe the full blockade the minimum excitation energy of 

the environmental mode should be zero. This observation is consistent, via Eq. (2 .27), with 

the experimental fact that the impedance seen by the junction must be high in order to observe 

the Coulomb blockade. 
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3. Probability-density-function description of meso-

scopic tunnel junctions 

Standard approaches described in Sec. 2.4 correctly incorporate the effects of dissipation 

(shunt resistance) and fluctuations (thermal noise, etc.) on tunneling characteristics and give 

results in excellent agreement with experiments. However, some important problems still re­

main to be solved: namely, an analytic expression of the charge distribution across the junction 

and current-voltage characteristic when there is a finite shunt resistance. In particular, which 

element determines the fundamental limi t for the regularity of SET oscillations when the june-

tion is driven by an ideal constant-current source ? This section develops a new analytic 

method of investigating the dynamics of mesoscopic normal tunnel junctions to answer these 

problerns. I23J- I26J 

3.1. Model and assumptions 

T hroughout this section and the following two sections a simple semiclassical model is 

adopted in which a normal tun nel junction with capacitance C and tunnel resistance RT is 

connected in se ries to a voltage source with resistance Rs (Fig. 5 (a)). This model is equivalent 

to a cu rrent-biased shun ted junction (Fig. 5 (b)), the model usually adopted in the standard 

approaches. We will neglect all other circuit elements such as stray capacitance and inductance. 

Although these elements are crucially important for experimentalists, we leave t hem out, nev­

ertheless, to present the theory in its simplest possible form. Both tunnel resistance RT and 

source resistance Rs are assumed to be much larger than the resistance quantum RQ = ~ 

in order that the quantum-mechanical energy uncertaintiesl401, which arise complementarily 

from the tunneling lifetime and the charge relaxation time, can be neglected compared to the 

single-electron charging energy. In particular, the condition RT ~ RQ implies that an elec­

t ron is almost always localized on one or the other side of the barrier. The traversal time 

for t unneling, r, is assumed to be negligible compared to both the tunneling lifetime and the 

charge relaxation time. If the latter condition fails to be met , no Coulomb blockade would 

be present because the change in the junction charge due to tunneling would be completely 
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compensated for during the traversal time. The t hermal equilibration time inside the electrodes 

is also assumed to be negligible. T his assumpt ion ensures the equi li brium Fermi distribution. 

3.2. Definitions of various probability distributions 

In Sec. 2.3, we showed that the tunneling rate depends only on the charge immediately 

before a tunneling event occurs and that it does not depend on any information concerning 

the earlier tunneling events. In general , such a process is characte ri zed with a second-order 

correlation function. As such functions we introduce two kinds of probability distributions: 

t ime-interval and charge-interval distributions. 

1 A. Time-interval distribution 

Suppose that single-electron tunneling eve nts occur at times t,(j = 1, 2, · · ·) (Fig. 6 (a)). 

T hen the tunneling characteristics can be best described with the probability distribution of 

time intervals between consecutive tunneling events: r1 = t1+1 - t,(j = 1, 2, · · ·) . We denote 

th is probability distribution as P,11 (r).1411 T hat is, thls quantity gives the probability density 

that the first subsequent tunneling event occurs r seconds after the earli er one (Fig. 6 (b)]. 

In general , the more regularly tunneling events occurs, the more sharply the time-interval 

distribution tends to peak around the average time interval, as is schematical ly illustrated in 

Fig 6 (c). The normalizat ion condition for P,11 (r) is given by 

fo'"' P, 11 (r)dr= 1. (3.1} 

B . Charge-interval distribution 

Another important distribution is the charge-in terval distribution1241 ?, 11 ( Q; , Q 1) which is 

defined as the probability density per (unit charge) 2 that the second tunneling eve nt occurs at 

charge Qf , provided that the first one occurred at charge Q;+e (see Fig. 7). T he charge-interval 

djstribution is given by the product of (i} the initial-charge distribution P;";,;o~(Q;), whlch gives 

the probability distribution of charges immediately after tunneling events occurred, and (ii} the 

probability density P(Q;, QJ) that the first tunneling event occurs at charge Q1, given that the 
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initial charge was Q ;: 

(3.2) 

Since P(Q;, Q1) is equal to the probability density of a tunneling event occurring at charge Q, 

multiplied by the probability of no tunneling events occurring until then, it is given by 

(3.3) 

where the lower bound of integration, A = max ( Q; , ~), appears since for kaT < ff the 

Coulomb blockade completely inhibits tunneling events until the junction charge exceeds~; i( Q) 

is the external current, which without current noise and tunneling events is given by 

i(Q) = CV-Q_ 
CRs 

Substituting Eqs. (2.5) and (3.4) into the rhs of Eq. (3.3) yields 

~(CV ') _ 1 Rs Q1 - ~ [cv- Q1] r --;--, [1 R s ] 
P(Q;,Q,)-~RTCV-Qf CV-A exp ~ RT(Q,-A). 

(3.4) 

(3.5) 

It is easy to see that this equation (or, in general, Eq. (3.3)) satisfies the normalization condition 

(3.6) 

Equation (3.5) includes both junction parameters (C, RT) and circuit parameters (V, Rs) 

in a manner that cannot be disentangled. This is one of the unique features of small tunnel 

junctions: since they exhibit very sensitive, nonlinear response to an external macroscopic 

system, one cannot, in general , eliminate the external macroscopic variables as "reservoir" 

variables but must treat them on an equal footing. 

C. Initial-charge and final-charge distributions 

Now we have only to obtain the initial-charge distribution for obtaining the charge-interval 

distribution. Since we neglect the traversal time for tunneling, the initial-charge distribution 

coincides with the displaced final-charge distribution: 

(3.7) 

22 



where the final-charge distribution pfin•1(Q) gives the probability density that the tunneling 

event occurs at charge Q. On the other hand, t he final-charge distribution is related to the 

initial-charge distribution via P(Q;, Q1): 

pfi••'(Q,) = L:' p;.;,;o.~(Q;)P(Q,,Q,)dQ;. 
' 

(3.8) 

Dividing the range of integration at D =min (~, CV- e), we have 

pfino.I(Q,) = P ( ~, Qf) L: p;n;t;ai(Q,)dQ; + LQJ P;";,;.1(Q;)P(Q; , Q,)dQ., (3.9) 

' 
where P (~, Q1) in the first term of the rhs is factored out because from Eq. (3.5) we have 

P(Q;,Q1) = P (~,Q1 ) for Q; < ~- Equations (3.7) and (3.9) determine t he ini t ial-charge 

1 distribution. In the foll owing discussion, however, we will restrict ourselves to t he important 

case of CV < ~e for which t hese equations can then be solved exactly. For CV < ~e, the first 

integral on the rhs of Eq. (3.9) gives unity because of the normalization condition, wltile t he 

second integral vanishes because P;.;,;o.~(Q;) = 0 for Q; > CV- e. Thus we have 

and from Eq. (3.7) we obtain 

3 
for CV < 2e, 

for 
3 

CV < 2e. 

(3.10) 

(3.11) 

It is easy to see that the initial charge distribution satisfies the following normalization condi-

tion: 

J
CV-c 

-• p;.;,;.'(Q.) dQ; = 1. 

' 
(3 .12) 

Figure 8 illust rates the initial-charge and final-charge distributions for several values of 

the ratio ~ with CV = e. All the final-charge distributions ri se above ~ because tunneling 

is inhibited until the accumulated charge exceeds ~- Curve (e) with ~; = 300 is sharply 

distributed just above ~- This is because the tunneling lifetime (~ CRT) is much shorter 

than the time needed to recharge the junction (~ CR5 ). Thus tunneling events are expected 

to occur very regularly. As the ratio ~ decreases, the tunneling life time becomes relatively 

larger, and hence the distribution becomes broader. Thus tunneling events are expected to 

occur increasingly at random. From this figure only, however, we cannot see how regularly 
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tunneling events occur for each curve. For this purpose, it is necessary to obtain the time­

interval distribution P,11 (r). The time interval r between two consecutive tunneling events is 

related to the corresponding initial charge Q; and final charge Qf via a simple circuit equation: 

cv -Qf 
r = -CRs In CV _ Q; . (3.13) 

Each combination of Q; and Q1 that gives the same time interval 'T through this equation 

contributes to P, 11 (r) with weight function P,u(Q;,QJ). Thus 

P, 11 (r) = ;_:V-e dQ; tv dQJP,u(Q;,QJ) 6 (r+ CRsln ~~ = ~J. (3.14) 

The integration with respect to Q1 can be carried out by noting that 

(3.15) 

giving 

(V-e [ T ( T )] P, 11 (r)=0(CV- e- B)j
8 

dQ;P,11 Q; , Q;e-cRs+CV 1- e-'Cii'S 

x CV- Q; e-cfrs 
CRs ' 

(3.16) 

where 

B =max [-~,cv- e-ds (cv- ~)]. (3.17) 

The lower bound of integration B comes from the following consideration. If we specify rand 

Q; , then Q1 is uniquely determined from Eq. (3 .13). On the other hand , Q1 cannot take values 

below ~ because of Coulomb blockade. To meet this requirement, the integration range for Q; 

must have a lower bound which yields B . To put it another way, the tunnel junction cannot 

be charged up to ~ during a time r if the initial charge is below B. 

Equation (3.16) gives a general expression of the time-interval distribution in terms of 

the charge-interval distribution . For CV < ~e, we can obtain the analytic expression of 

P,11(Q, Q1) . In fact, from Eqs. (3.2) and (3.11), we obtain 

3 
for CV < 2e, (3.18) 

where P(Q;,Q1) = P(~,Q1 ) since Q; <~for CV <~e. Substituting Eq. (3 .18) into Eq. 

(3.16) we can calculate the time-interval distribution as a function of junction and circuit 

parameters. 
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Figure 9 shows time-interval distributions for various values of the ratio ~ with fixed bias 

voltage V = f;, where the time a:>cis is normalized by CRs. Curve (a) with~= 300 is sharply 

distributed around 1.2 C Rs. This curve clearly demonstrates regular SET oscillations in the 

time domain . We observe that this curve has a finite width. It will be shown in Sec. 4 that 

this width never goes to zero but only reaches the quantum-originated nonzero value even in 

the ideal limit of the constant-current operation . As the ratio ~ decreases, the distribution 

becomes less and less localized, and the regularity of SET events becomes worse. Thus we have 

demonstrated the crossover from random to Coulomb-regulated SET oscillations in the time 

domain as the external source changes from a voltage source to a current source. 

3.3. Tunneling lifetime 

In general, the dynamics of mesoscopic normal tunnel junctions are characterized by the 

power spectrum of voltage across the junction . However , since in our case at most one electron 

tunnels at one time, tunneling characteristics can be more directly described by the probability 

distribution of time intervals between consecutive tunneling events, i.e., the probability distri­

bution of tunneling lifetimes. Suppose that a tunneling event occurred at timet, and the first 

subsequent tunneling event occurred at time t1. Then the lifetime is defined as 

(3.19) 

where Q; and Q1 represent the charge just after the first tunneling event occurred and the 

charge just before the second tunneling event will occur, respectively (see Fig. 7). From Eq. 

(3.13) we have 
CV-Q; 

r(Q;,QJ) = CRsln CV . 
-Qf 

(3 .20) 

The average lifetime 'f is, in general, given by 

(3.21) 

For CV < ~e, substituting Eqs. (3 .18) and (3.20) into the rhs of Eq. (3 .21) yields 

'f=CR {cv dQlnCV+e-QP(~ Q) 
s lt cv- Q 2' . 

(3.22) 
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This is an exact expression of t he average lifetime as a fun ction of junction and circuit param­

eters, where an explicit expression of P (~ , Q) is given by Eq. (3.5). To proceed furth er with 

calculation , let us expand logarithmic terms in terms of parameters p = 2~v and q = Pv-
In CV + e - Q =In CV + ~ +In (1 - _q_) -In (1 - _q_ ) 

cv - Q cv - ~ 1 + p 1 - p 

cv + ~ 2p 2p 2 2p + ~p3 3 2p + 2p3 
4 5 

= ln CV-~ + 1-p2q+ (1-p2)2q + (1-p2)3q + (1-p2)<q +O(q ). (3.23) 

This expansion can be justified because moments of q(q, Q2, etc.) rapidly converge to zero as the 

ratio * becomes larger (see Appendix B). Substituting Eq. (3 .23) into Eq. (3 .22) yields 

- - [ cv + ~ ~- __ 2_p_2 2p + ~p3 3 2p + 2p3 4 5] 
7-CR 5 ln CV-~+ 1 _P2 q+(l-p2 ) 2 q +(1 -p2)3q +(1-p2)4 q +O(q), (3 .24) 

where moments of q are given in Appendix A. 

Fluctuation properties of SET oscill ations can be characterized using the variance of life­

times defined by 

(3.25) 

where the mean square of dwell times, T2, is given by 

(3.26) 

For CV < ~e, subst ituting Eq. (3.18) into Eq . (3 .26) yields 

Expanding the logarithmic term in terms of p, q, and q' 

expansion for T2 which, combined with Eq . (3.24), yields 

Q' - .! - W• we obtain a perturbation 

( t:,. )2 - 2(CR )2 [ 1 + P2 (2 - 2) 1 + 3p2 (3 -2) ')] 
7 - ' (1- p2)2 q - q + (1- p2)3 q - qq + O(q . (3.28) 

T hese formulas will be used for later discussion. 

3.4. Current-voltage characteristics 

The probability distribution of charge across the junction, P(Q) , is given by 

P(Q) = r~Q), 
7 

(3.29) 
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where 'f is the average lifetime given by Eq. (3.22) and 'f(Q) is defined such that 'f(Q)dQ gives 

the average time during which the charge on the junction lies between Q and Q + dQ: 

(3.30) 

Substituting Eqs . (3.22) and (3.30) into Eq. (3.29) yields 

CRs f~{-•dQ,Jfv dQJ P,ll(Q.,QJ)O(Q- Q,)O(Q1 - Q) 

P(Q)=cv-Q 'f~{·dQ,J[vdQ1 r(Q.,Q1)P,11 (Q.,Q1 ) (
3

.
31

) 

' ' 
It can be verified that P(Q) given by Eq. (3 .31) satisfies the following normalization condition 

J
cv 

_, P(Q)dQ = 1. 

' 
(3.32) 

For CV < ~e, substituting Eq. (3.18) into the numerator of Eq. (3.31) yields 

I 
Jo...£ll.s..._ [1- exp (- j9+• !.hldq)] for - ~ < Q < CV- e 
r CV-Q 2 t(q) 2 ' 

P(Q) = ~ccv~.'Q for CV- e < Q < ~, 

~ccv~sQ exp [- Jf ~dq] for~< Q < CV. 

(3 .33) 

Equation (3.33) gives an exact expression of the charge distribution across the junction under 

an arbitrary bias condition. The voltage distribution P(V) across the junction is uniquely 

related to the charge distribution P(Q) by P(V) = P(Q)~ = CP(Q). Figure 10 illustrates 

the charge distributions for several values of the ratio~ with fixed bias voltage V = -§. Curve 

(a) with ~ = 300 rapidly rises above -~ and rapidly falls above ~- This reflects the fact that 

SET oscillations occur very regularly. As the ratio ~ decreases, both rises and falls become 

less and less sharp, and finally the distribution diverges at Q = CV. At this point the bias 

condition effectively changes from a constant-current to a constant-voltage operation. 

The expected value of the junction charge is given by 

J
cv 

Q = -< QP(Q)dQ. 

' 
Substituting Eq. (3.33) into the rhs of Eq. (3 .34) yields 

- e 
Q = CV- CRs=, 

r 
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and hence 

V = V- Rs~-
r 

This equation has a simple physical interpretation. The quantity 

- e 
I=­r 

(3.36) 

(3.37) 

is the average current through the barrier. On average, the same amou nt of current should flow 

in the external circuit and this causes a voltage drop of R57 in the source resistance. Equation 

(3.36) therefore means that the average voltage ac ross the junction is equal to t he source voltage 

V minus the voltage drop in the source resistance (Kirchhoff's second law). It is interesting to 

note that Kirchhoff's second law, exemplified by Eq. (3.36), does not hold for a single tunneling 

event . This is because tunneling events occur quantum-mechanically and hence any classical 

equation is recovered , if ever, in the sense of the ensemble average (Ehrenfest's law). 

3.5. Relationship to the conventional master-equation approach 

Let us discuss the relationshi p of the probability-density-function app roach to the con-

ventional master-equation approach. The master-equation approach deals wi t h the probability 

distribution P(Q, t) of the junction charge Qat timet which is assumed to obey the stochastic 

master equation (2.9). The probability-density-function approach considers the case at zero 

temperature. In this case, backward tunneling plays no role because, once the accumulated 

charge becomes larger than -~, it will never enter the region Q < -~ in which backward 

tunneling is possible. Thus the probabil ity-density-function approach gives results that are 

equivalent to those obtained by the conventional master-equation approach . In particular, Eq. 

(3.33) gives a stationary solution of Eq. (2.9) at zero temperature. 

28 



4. Standard quantum limit and shot noise of meso-

scopic tunneling current 

SET osci llations may be utilized for various applications in quantum metrology, supersen­

sitive electrometry and digital microelectronics.I1J The singnal-to-noise ratio of single-electron 

devices is ultimately determined by the degree of randomness of SET events. It is therefore of 

great significance to determine the maximum signal-to-noise ratio of SET events. The ultimate 

signal-to-noise ratio is not determined by thermal or current fluctuations but is determined 

by quantum fluctuations inherent in SET osci llations. This section demonstrates the existence 

of the fund amental quantum limit of SET oscillations which we shall refer to as t he standard 

quantum limit, and shows a crossover from the random shot noise to the Coulomb-regulated 

stand ard quantum limi t as the bias condition is conti nuously changed from a constant-voltage 

to a constant-cu rrent operation. 

4.1. Degree of randomness of SET events 

To quantitatively evalu ate quantum noise of SET oscillations, let us introd uce a quantity 

t hat we shall refer to as t he degree of randomness of SET events. It is natural to define this as 

the standard deviation of dwell times divided by their average value: 

- J(t:.r)2 
CJ=--_--, 

T 
(4.1) 

where (6.r)2 = Ti- 7'2 . A Poisson random-point process gives a = 1, while a complete ly 

regular-point process gives a = 0. In general, the smaller the value of a, the more regularly 

SET events occur. The main concern here is to find the functi onal form of a under an arbitrary 

bias condi t ion. 

4 .2 . Constant-vo ltage operation - shot noise 

Under constant-voltage operation where -iG ~ 1, one cannot apply the perturbation tech­

nique but must use exact expressions (3.22) and (3.27). A straightforward calcul ation yields 
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the mean lifetime as 

'f=CRT [c/-~ +~:Inc/-~]· (4.2) 

Here the first term on the rhs of this equation is proportional to CRT a~ is the case for a 

macroscopic tunnel junction under the constant-voltage operation, but the first term differs 

from the macroscopic formula by prefactor c~~f. This reflects the fact that Coulomb blockade 

still works under almost constant-voltage operation as a de offset and that it prolongs the 

lifetime by the same prefactor. On the other hand, the second term gives the first-order 

correction due to a nonvanishing source (or shunt) resistance R5 . 

The variance of tunneling lifetimes can be calculated, from Eq. (3.27) , to give 

(4.3) 

Hence we obtain the expression of the degree of randomness under almost constant-voltage 

operation as 

(4.4) 

Thus we find that SET events are indeed regulated (i.e ., a < 1) by the nonvanishing source 

resistance and Coulomb blockade. As the ratio 11';: approaches zero, however , SET events tend 

to occur completely at random (i.e., a= 1) , although Coulomb blockade still serves to prolong 

the average lifetime by prefactor c~~. (see Eq. (4.2)). This can be understood as follows. 
' 

When the source resistance is negligibly small, the tunneling rate is almost always pinned at 

~ r(CV) = ~~;: whose offset ~ explains the prefactor. At the same time, since the tunneling 

rate is constant, SET events obey a Poisson random-point process; hence we obtain a = 1. This 

is a microscopic version of the Schottky formula which we encounter in macroscopic junctions: 

(4.5) 

where S1(w) is the power spectrum of tunneling current and 7 is the average tunneling current 

7 = er(CV) . 
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4.3. Constant-current operation - standard quantum limit 

Under the constant-current operation where ~ :::P 1 and ){
5 

=Ide , Eq. (3.24) reduces to 

r = -j- [1 + 
de 

.,.. RT e ( e )] 
2 Rs CV 1 

- 2CV . 
(4.6) 

The first term on the rhs of this equation gives the celebrated relation 

(4.7) 

where J = f.;- is the characteristic frequency of SET oscillations. The second term represents 

the first-order correction to Eq. (4.7) due to a finite tunnel resistance RT· 

The degree of randomness of SET events is obtained by substituting Eqs. (3.24) and (3.28) 

~ into Eq. (4.1): 

o-=2 

l+p' ( 2 -2) + J+3p' ( 3 -2) ~ q -q ~ q -qq 2 

I .!.±E 2p - ___2L_ 2 + O(q ). 
n 1-p + l=P'q + (1-p')'q 

(4.8) 

The minimum degree of randomness of SET events can be achieved under the constant-current 

operation. Taking the limit Rs ...... oo and V ...... oo with ){
5 

=Ide of Eq. (4 .8) yields 

(4.9) 

where SQL stands for the standard quantum limit . It is remarkable that even under the 

ideal constant-current operation, the degree of randomness never goes to zero but only reaches 

the nonzero value given by Eq. (4 .9) . This apparently contradicts the result obtained by 

the conventional stochastic method using computer simulation, where SET oscillations appear 

to have a zero linewidth and the stochastic nature of tunneling events emerges as a broad 

background noise (or "pedestral"). To check the consistency of our probability-density-function 

approach with the conventional approach, we carried out a computer simulation according to 

the conventional approach for the constant current of Ide = 0.1 R;c· It turns out that the 

computer simulation also gives a finite degree of randomness 

O"comput.er simu lAtion= 0.2925, (4.10) 

while our theoretical result ( 4.9) gives 

O"SQL = 0.2929, (4.11) 
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in perfect agreement with (4.10) within the accuracy of the computer simu lat ion. We have per­

formed similar simulations for several values of the current (:::; 0.1 R;c) and confirmed perfect 

consistency between the two approaches. 

It is true that the residual degree of randomness in the time domain does not necessarily 

lead to a finite linewidth in the voltage spect rum of SET oscillations, but, nonetheless, it 

is problematic that SET oscillations do have zero linewidth because the residual degree of 

randomness means fluctuations in the tunneling lifetime which usually implies a finite linewidth. 

The a.pparent zero linewidth may be due to the coarseness of time steps taken in computer 

simulation. A more detailed examinat ion, however, will be needed to reach a definite conclusion 

about t he linewidth problem. 

4.4. Crossover from shot no1se to standard quantum limit 

We have shown that statistics of SET events feature shot noise under t he constant-voltage 

operation. We have also found that the degree of randomness never goes to ze ro but only 

reaches the standard quantum limit. Now let us examine t he crossover from shot noise to 

standard quantum limit by numerically calcu lating exact formulas (3.22) and (3.27). 

Figure 11 shows the normalized degree of randomness as a functi on of ratio ~; for several 

values of the product CV. Here asqL is calculated from Eq. ( 4.9) in which Ide is set equal to 

the average current ~ corresponding to each ratio ~· We find t hat in all curves the degree 

of randomness approaches the standard quantum limit as the source is continuously cha.nged 

from a voltage to a current source . The physical origin of this limit will be discussed in the 

following section. 
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5. Origin of the standard quantum limit 

In the previous section we saw that the degree of randomness of SET events never goes to 

zero but only reaches t he standard quantum limit under the ideal constant-current operation . 

We note that this residual degree of randomness does not originate from current or from thermal 

fluctuations. So where does the limit come from? In fact , the standard quantum limit emerges 

complementari ly from energy uncertain ty through the t ime-energy uncertainty principle that is 

inherent in quantum-mechanical tunneling. Now let us discuss this issue within the framework 

of semiclassical theory. 

5.1. Time uncertainty - fluctuations in tunneling lifetimes 

The standard quantum limit originates from the uncertainty with respect to the time 

when an elect ron starts to tunnel. According to quantum mechanics, what we can pred ict is 

the probability of an electron tu nneling at a particular time. To exactly predict whether or not 

it actually t unnels at that time is impossible, in principle. Hence comes the time uncertainty. 

In the semiclassical approximation where the traversal time for tunneling is disregarded, time 

uncertainty is attributed solely to fluctuations in tunneling lifetimes. Under the ideal constant­

current operation where Rs-+ oo and V-+ oo with ){
5 

=Ide, we obtain from Eq. (4.9) 

t:>.t = V(M)2 = (5 .1 ) 

This can be understood as follows. If the bias current Ide is small , then the average value of 

tunneling lifetimes becomes long, and so does their standard deviation. On t he other hand , if 

the t ime constant C RT is large, then the average tunneling lifetime becomes long, and so does 

its standard deviation . 

5.2. Energy uncertainty- fluctuations in Coulomb energy 

In normal metal tunnel junctions, there is no energy due to ph ase coherence. Furthermore, 

we do not incorporate the process of thermalization in our model. Fluctuations in Coulomb 

energy are, therefore, the only source of energy uncertainty. The average Coulomb energy is 
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given from Eq. (C.9) by 

- Q2 
CV

2 [ Rs e -] 
Ecoulomb = 20 = -

2
- 1- l/:Y(l + q) . (5.2) 

Under almost constant-current operation, Eq. (3 .24) reduces to 

Rs [ - - - ] 'f = ev 1 + q + q2 + q3 + q• + .... (5.3) 

Substituting Eq. (5.3) into Eq. (5.2) yields 

CV2 92 + ?" + t + · · · 
Ecoulomb = 

2 1 + q + q2 + q3 + q• + ... (5.4) 

The mean square of Coulomb energy is given from Eq. (C.11) by 

- -(Q2)2 
E

2
coulomb = 

20 

( 
C V

2

) 

2 
{ Rs e [ 1 ( e ) 2 ( 1 ( e ) 2) _ -] } = -2- 1 - v:Y 1 + 12 cv + 1 + 4 cv q + q2 + q3 

· (5.5) 

Under almost constant-current operation, Eq. (5.5) reduces to 

- (CV2)2 q•+q'+ ·· · 
E2 Coulomb = -- · 

2 1 + q + q2 + q3 + q• + ... (5.6) 

From Eqs. (5.4) and (5.6) we obtain 

(5.7) 

• 5.3. Time-energy uncertainty relationship in tunneling 

From Eqs. ( 5.1) and ( 5. 7) we obtain 

(5.8) 

where asQL is given by Eq. (4.9). Since we adopt a semiclassical model which assumes that 

(5.9) 

we obtai n 

(5 .10) 
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Thus we find that there is a trade-off relationship between fluctuations in tunneling lifetimes 

and fluctuations in Coulomb energy. Such a trade-off relationship can be intuitively understood 

as follows. First, we recall that in the semiclassical approximation time and energy uncertainties 

are attributed solely to fluctuations in tunneling lifetimes and in Coulomb energy, respectively. 

When the tunnel resistance RT is very large compared to the resistance quantum Rq, an 

electron is almost always localized on one or the other side of the barrier. Thus the energy 

uncertainty is very small. However, the tunneling lifetime then becomes very large and so does 

the time uncertai nty. On the other hand, when the tunnel resistance is very small (but still 

larger than Rq) , the tunneling rate is very la.rge and therefore the time uncertainty is very 

small. However, is this case, an electron cannot be localized on either side of the barrier and 

therefore flu ctuations in Coulomb energy become very large. 

Relationship (5 .10) is different from the familiar time-energy uncertainty relationship[40I 

in that the lower bound includes asQL· This refl ects the fact that the state of the junction 

is determined not only by the junction characteristic itself but also by the bias condition. 

Although relationsh ip (5 .9) is derived under the constant-current operation, it is straightforward 

to show that the rhs gives the lowest bound for an arbitrary bias condition because the degree 

of randomness takes the minimum value for the constant-current operation. Thus we have 

obtained a special form of the time-energy uncertainty relationship that is unique to single­

electron tunneling by Coulomb blockade. 

5.4. Breakdown of semiclassical theory of Coulomb blockade 

The derivation of the time-energy uncertainty relationship shows a critical point where the 

semiclassical theory of Coulomb blockade manifestly breaks down. The essential assumption 

in deriving this relationship is RT 2: Rq. However , it is possible to fabricate a tunnel junction 

such that the opposite inequality, RT < Rq, holds. In this case, the time-energy uncertainty 

relationship apparently breaks down. Such a conclusion clearly contradicts the principle of 

quantum mechanics and must be attributed to a semiclassical assumption that becomes invalid 

for RT < Rq. As the tunnel resistance becomes smaller and smaller, the time uncertainty 

al so becomes smalle r. However, fluctuations in the Coulomb energy of a single electron due 
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to delocalization of the electron wavefunction cannot be larger than e2 /2C. To relax this 

restriction , we must take into account quantum fluctuations associated with the traversal time 

for tunneling, and thermal and electrical relaxation processes, both of which are neglected in 

the semiclassical theory. 
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6. Infrared divergence in single-electron tunneling 

This section develops a finile-lemperalure theory of smalllunnel junctions lhal accounts for 

bolh Coulomb suppression and zero-bias anomaly in tunneling conductance under lhe influence 

of many-body final-stale interaction in normal electrodes . It will be shown lhal a sudden 

change in the localized Coulomb potential due lo single-electron tunneling excites an infinite 

number of electrons and holes near lhe Fermi surface. Such an infrared catastrophe leads to a 

power-law anomaly in the density of final states thal are available for tunneling. In particular, a 

gene ral formula for lhe frequency-dependent tunneling rate is obtained whose anomalous power 

exponent is determined consistently wilh t he Friedel sum rule. 

A mathematical technique to cope with infrared catastrophe caused by a sudden change in 

the locali zed potential was developed by Nozieres and Dominicisi421 in the x-ray problem, and 

il was extended to finite temperatures by Yuval and Andersoni43J in the Kondo problem. We 

apply the same technique to the problem of many-body final-state interaction in tunneling. We 

reproduce t heir method wherever necessary to avoid the need for constant reference to their 

papers. 

6.1. Effects of the "Fermi-surface" environment on tunneling 

Suppose lhat a normal tunnel junction with capacitance C is initially in a thermal equ i­

librium stale. According to the orthodox theory of Coulomb blockade, the forward tunneling 

rale is given by Eq. (2.1). The key assumption in deriving this equation is that the state 

immediately after tunneling is again in a thermal equilibrium state. To put it another way, the 

orthodox theory assumes that the transient behavior between the two equilibrium states before 

and after tunneling can be neglected. This assumption may be justified for large junctions 

because lhe perturbation brought about by a single tunneling event is usually negligible. For 

small tunnel junct ions with capacitance smaller than 1 J F, however, a sudden voltage change 

f; due to a single lunneljng event is of the order of meV, and therefore the ensuing electrical 

relaxation significanlly renormalizes the density of final states that are available for tunneling. 

The electri cal relaxation consists of two stages with different time scales. In the first s tage , 

the surface-charge formation is completed during the lime scale of the inverse plasma frequency 
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(screening process). Following this stage, the electronic configuration undergoes fine rearrange­

ment by low-energy electron-hole pairs excited near the Fermi surface by the screened Coulomb 

potential. The crucial observation here is that the number of excited electron-hole pairs be­

comes infinite no matter how weak the screened Coulomb potential is (infrared catastrophe), 

and that the tunneling process will not have been completed until the excess charge brought by 

electron tunneling and the phase shifts of conduction electrons induced by it become balanced 

by the Friedel sum rule. When the vacuum field fluctuations associated with such final-state 

interaction become appreciable compared to the single-electron charging energy, the effect of 

Coulomb blockade will be greatly modified. 

This is the physical picture of what we shall refer to as the "Fermi-surface" environment. 

We nonperturbatively incorporate the second stage into the theory based on the microscopic 

Hamiltonian because infrared-divergent creation of electron-hole pairs makes an ordinary per­

turbation technique invalid.l441 The "Fermi-surface" environment is responsible for the electrical 

relaxation in the second state. On the other hand, the excited electronic states are coupled 

with the thermal reservoir , which is in the long run responsible for the thermal relaxation. We 

also incorporate this process into the theory using real-time Green's functions. 

6.2. Formulation of the problem 

A. Model Hamiltonian 

As described above, the orthodox theory of Coulomb blockade neglects a transient response 

to a sudden potential change due to tunneling. In contrast, we take into account the second 

stage of the electrical relaxation and the associated thermal relaxation . Since this is basically 

the rearrangement of the electronic configuration by the screened Coulomb potential , it can be 

incorporated into the theory by introducing time-dependent scattering terms 

I: vk~.(t)clck' and 
k# 

I: v.~.(t) c~c.· 
q~q' 

into the model Hamiltonian. Throughout this paper it is understood that k, k' refer to the left 

electrode and that q, q', prefer to the right electrode. Vk~' and v,::, are set equal to zero before 

a tunneling event occurs, and are switched on suddenly when a tunneling event occurs. We 
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assume that they a.re constant afterwards. Suppose that a tunneling event occurs from the right 

to the left (see Fig. 12). Vk~' (or v.~.) then describes the scattering by the screened Coulomb 

potentia.! on the left (or right) electrode. Since they are suddenly switched on upon tunneling, 

we assume that they are zero before the tunneling event occurs and constant afterwards. 

These scattering terms rearrange conduction electrons, performing fine adjustment to a new 

electrical equilibrium state. Our model Hamiltonian is therefore given by 

H = lh+HR+Hr+Hc, (6.1) 

L Ckclck + L vk~.(t)clck•, (6.2) 
k k::Fk' 

L:e:. c~Cq + L v.~.(t)c~c •. , (6.3) 
q'#-q' 

Hr L ( Tkqclc. + Tqkc~ck) , (6.4) 
k,q 

where NL (or NR) is the number operator of electrons in the left (or right) electrode, and 

N = NL + NR. We note that Eqs. (6.1)-(6.5) are the standard Hamiltonian of a normal 

tunnel junction except that Eqs. (6.2) and (6.3) include the scattering terms. These many­

body interactions will play an essentia.l role in the electrical relaxation process and lead to 

renormalization of the density of fin a.! states available for tunneling which is responsible for the 

zero-bias anoma.ly in the tunneling conductance. 

B. Response function of the tunneling Hamiltonian 

According to the linear response theory, the tunneling characteristic is determined by the 

response function of the tunneling Hamiltoniani45] 

iR(t- t') = (DIT {Hr(t)Hr(t')} ID), (6.6) 

where t' and t denote the times of two consecutive tunneling events. Here I D) denotes the state 

of the junction just before the first tunneling event occurs, and the T product orders operators 
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from right to left in ascending time order and adds a factor ( -1)P, where P is the number of 

interchanges of fermion operators from the original given order. Substituting Eq. (6.4) into 

this equation yields 

iR(t- t') = 2 ITI2 I;(OIT { ck(t)cl,(t')} IO)ukuk' 
k,k' 

x I;(OIT { Cq•(t')c~(t)} IO)uquq' + c.c., (6.7) 
qq' 

where c.c. means complex conjugation and we have used the fact that the Coulomb part of 

the Hamiltonian, H c, can be expressed solely in terms of the operators of the right electrode, 

which allows the decoupling of the total amplitude into two parts. In deriving Eq. (6.7) we 

have also assumed that the matrix elements of the tunneling Hamiltonian are separable (i.e. 

Tkk' = Tukuk•). We use the same notation T for the magnitude of the tunneling matrix elements 

as for the time-ordering operator because there is no fear of confusion . 

We define transient Green's functions 9fk' and 9:!, which describe the transient response 

of conduction electrons in the left and right electrodes to the sudden potential change due to 

tunneling. 

(OIT { ck(t)c!,(t')} IO), (6.8) 

ig~,(t- t') = (OIT { c.(t)c~,(t')} IO), (6.9) 

Since in Eq. (6.7) transient Green's functions appear in forms summed over momentum vari­

~ abies, it is convenient to define 

gL(t -t1
) (6.10) 

k,k' 

gR(t- t') = L g:,q,(t- t')uquq'· (6.11) 
q,q' 

Substituting Eqs . (6.10) and (6.11) into Eq. (6.7), we obtain 

(6.12) 

where the asterisk denotes complex conjugation. The problem thus reduces to obtaining tran­

sient Green's functions gn and gL under the influence of the sudden potential change due to 

tunneling. 
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c. Temperature Green's functions 

In treating systems at finite temperatures, it will be most convenient to consider the grand 

canonical ensemble because the number of electrons in each electrode fluctuates in time. The 

single-particle temperature Green's function is defined as 

(6.13) 

where the angle brackets (· · ·) denote the statistical average over a certain restricted ensemble 

and T, denotes the time-ordering operator for the imaginary time. The operators cq(r) and 

ct(r) are defined by 

(6.14) 

where 

(6.15) 

Here f.'L and f.'R are the electrochemical potentials of the left and right electrodes. The Heisen­

berg equation of motion for cq(r) is given from Eq. (6.14) by 

(6 .16) 

Substituting Eq. (6.15) into Eq. (6.16) yields 

(6.17) 

Hence, the equation of motion for G:V(r) becomes 

ddr c:,(r) = -o(r)Oqp- h-
1 
(•.- f.'R + ~(Q- ~)) c:.(r)- r.- 1 L v ••. c:.(r). (6.18) 

q' 

In deriving Eq. (6.18) the following decoupling approximation is made 

(6.19) 

The temperature Green's function and the delta function can be expanded in Fourier series 

c:,(r) = ((3h)-1 L c:,(wn)e-iWnT, (6.20) 
n 
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(6.21) 

where Wn = (2";hl)• gives the Matsubara frequencies for fermions and (3 = k~T· Substituting 

Eqs. (6.20) and (6.21) into Eq. (6.18), we obtain 

R G~(w.) 
G (w.) = 1 - h 1 VG~(wn)' (6.22) 

where 

(6.23) 

and 

R h 
G0 (q,w.) = .h ( ) <(Q <)' 

Z Wn - Cq - Jl.R - ~ - 2 
(6.24) 

where we have assumed that the scattering terms are separable (i.e. Vk~' = VLukuk' • etc .). T his 

assumption means that we consider only the S-wave scattering. T he real-time Green's function 

(;~can be obtained by performing analytic continuation of Eq. (6.24) to real times. Thus we 

obtain 

G~(q, w) = 

(6.25) 

where '7 is positive and infinitesimal, and /:;. = {; ( Q - ~) is the difference in the electrostatic 

potential before and after tunneling. Equation (6.25) shows that the effect of the potential 

change due to tunneling is incorporated into the real-time Green's function as a shift in energy 

• by an amount of/:;.. This energy shift and the electrochemical potential are erased , however, if 

we inversely Fourier-transform Eq. (6.25): 

~ 
- R p 

Go (t) = ---,--h •• ' 
Sill 'jlh 

(6.26) 

where p~ is the density of energy states which is assu med to be constant for all energies. 

6.3. Transient Green's functions at finite temperatures 

A. Asymptotic expressions of conduction-electron Green's functions 

The real-time Green's function (6.26) is correct for times that are long compared to t he 

inverse bandwidth of conduction elec trons, but it becomes invalid for shorter times. We assume 
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that the Green's function at shorter times can be approximated as the delta function. If the 

strength of the delta function is set equal to 1rp0n tan e, then we have 

(;R(t) = - 1rp~ [p (-.-1
-) + 7r tan eo (sinh~)] e-i("R+Ll)tfh (6.27) 0 f3 smh jk /3n 

Fourier transformation of this equation yields 

G~(w) L: dtG~(t)e'"'' 
-7rp~n [j tanh ~(nw- JJR- ~)+tan e]. (6.28) 

Substituting Eq. (6.28) into Eq. (6.22) yields 

R i tanh ~(nw- JJR- ~)+tan e - 1rg~ (tanh2 ~(nw- JJR- ~) + tan2 e) 
-7rpon ( ) ' 

1- 27rgf} tan e + ( 1rgf})2 tanh2 ~(nw- JJR- ~) + tan2 e 

(6.29) 

where g~ :::::: p~VR We can choose real parameters aR and e' such that t he rhs of Eq. (6.29) 

may be rewritten as 

(;R(w) = -Q!R7rp~n [j tanh ~(nw- JJR - ~)+tan e']. (6 .30) 

By comparing Eqs. (6.29) and (6 .30), we obtain 

O!R = [ 1- 27rg~ tan e + ( 1rg~) 2 (tanh2 ~(nw - JJR- ~) + tan2 e) r l, (6.31) 

• and 

(6.32) 

It is convenient to define the renormalized coupling constant gR and the phase shift oR of 

conduction electrons at the Fermi surface by 

R tanh 2 ~(nw- JJR- ~) + tan2 e 
gR = gO 1 + tan 2 e ' (6.33) 

and 

(6.34) 

43 



respectively. It can be shown t hat the phase shift and t he coupling constant are related by 

1r9R 
(6.35) 

1 - 1r9R tan 8. 

The aR in Eq. (6.31) can be expressed in terms of the renormalized coupling constant gR as 

aR = [ 1 - 21rgR tan e + ~'lr!:~2 ] -
1 

(6.36) 

This quantity may also be written in terms of the phase shift as 

cos2(8- OR) 1 doR 
cos2 8 = ;Tg· (6.37) 

Substi tuting Eqs . (6.34) and (6. 37) into Eq. (6 .30) yields 

- R R cos
2
(8 - 8R) [ · (3 ] G (w) = -1rPo h cos2 e t tanh 2(hw- J.lR- L'> ) + tan(8 - oR) . (6.38) 

Inverse Fourier transformation of t his equation fin ally gives 

(;R(t) = - 1rp~cos2(8 - oR) [P (-.-1- ) + 'lrtan(e - oR)o ( sinh !!.!:._ )] e -; c~R+A)tfh_ 
(3 cos2 e smh * (Jh 

(6 .39) 

This is the desired asymptotic expression of t he conduction-elect ron Green's function on t he 

right elec trode after the electrical relaxation is completed. It descri bes a new equili briu m state 

of the right electrode after t unneling. T he corresponding Green's function for the left electrode 

can be obtained by repl ac ing t he qu antities of the right electrode by those of the left one. 

t Now we will deri ve the transient Green's fun ction of conduction electrons after tunneling whjch 

eventually reaches the st ate described by Eq. (6.39) . 

B. Transient Green 's function for the total system 

The t ransient Green's function of the left electrode describes the propagation of a t unneling 

elect ron, the collective propagation of the locali zed potential , and t he associated many-body 

interac tion such as vertex corrections and self-energy renormalizations . A typical diagram 

is shown in Fig. 13 (a) . We assume that the locali zed potential is time-independent. T he 

propagation of the locali zed potential then contributes to the transient Green's function only 

as an exponential fac tor. T he dotted line in Fig. 13 (a), wruch represents the propagation of 
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the localized potential, can therefore be eliminated to give Fig. 13 (b) in which the distinction 

between self-energy renormalizations and vertex corrections disappears. Thus the transient 

Green's function is given by the product of a dressed propagator of a tunneling electron for the 

left electrode (or that of a hole created by it for the right electrode) and the contributions of 

loops: 

(6.40) 

(6.41) 

We note that the many-body graph in Fig. 13 (a) is reduced to a time-dependent one-body 

• graph and that the time-dependence enters only as boundary conditions. Since the self-energy 

renormalizations and vertex corrections become single loops, their contributions can be summed 

up using the linked-cluster theorem.1421 This observation greatly facilitates the exact treatment 

of the transient Green's function which would otherwise be impossible to calculate without 

recourse to approximation schemes. 

C. Transient Green's function for conduction electrons 

Suppose that one electron tunnels through the barrier from right to left at time t. We 

are then interested in the transient Green's fun ction <p:
0
.(r, r'; t0 , t) which describes the fine 

adjustment of conduction electrons to the new equilibrium state described by Eq. (6.39). We 

• assume that no tunneling events will occur until the new equilibrium state is reached. Since 

the "free" propagator after the first tunneling event occurs is given by GR(t) in Eq. (6 .39), the 

transient Green's function must obey the following Dyson equation 

(6.42) 

This equation can be solved to givei431 

!B. 
_ R , [sinh j;;(t- r') sinh j;;(r- t0 )] • 

G(r-r) .h"( ).h"(' ) 
Sin 7fh t - T Sin 7fh T - t0 

(6 .43) 
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This Green's function gives a transient response to a sudden potential change due to tunneling. 

The effect of the transient response is simply expressed by an algebraic factor. We note that, 

as time progresses , the t ransient Green's function tends to become the new equilibrium state 

described by Eq. (6.39). 

D. Dressed propagators of a tunneling e lectron and a hole created by it 

The propagator of a tunneling electron and that of a hole created by it are renormalized 

by the static vertex correction (see Fig. 13 (b)). T he dressed propagator of the hole is given 

by setting r -+ t and r' -+to in Eq. (6.43). 

2!Jl 
R , _a-:-R-c_o-';h7p_~_h---;- [ sinh f,; ( t - t0 ) ] • 

-<p (rr·t t) -. 
' ' 

0
' -sinh ffh(t- to) sinh f,;rc~t (6.44) 

where rc~t> whose order of magnitude is the inverse plasma frequency, is int roduced to avoid the 

spurious divergence of the algebraic factor. This divergence is caused by taking t he asymptotic 

expression (6.39) for the free propagator, and it should disappear in a more exact treatment. 

The dressed propagator of the tunneling electron can be obtained by replacing the quantities 

of the right electrode by those of the left one. 

E. Contribution of closed loops 

The contribution of closed loops is to carry information about vacuum fi eld fluctuations in-

• duced by a sudden potential change due to tunneling. It follows from the flu ctuation-dissipation 

theorem that the closed loops bear a close relationship to the decay of the transient Green's 

function of conduction elec trons . The decay is controlled by the algebraic factor , which is 

decomposed into unity and a smaller factor: 

sinh j;;(t- r') sinh j;;(r- t0 ) sinh j;;(t- t0 ) sinh j;;(r- r') 
'h~( )'h~(' t)=l+.h~(t )'h~(' )' Sill 7ih t - r Sill 7ih r - 0 Sill 7ih - r sm 7ih r - t0 

(6.45) 

Using this we may expand cpR near r = r' as 

(6.46) 
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The contribution of closed loops en satisfiesl42] 

8 R 1' R g-
8 

C (t- to) = -V rp (r,r;t 0 ,t)dr. 
g ~ 

(6.47) 

Substituting Eq. (6.46) into Eq. (6.47) yields 

8 R nOR ( sinhjr;(t -t0 ) ) 
-C (t- t0 ) = -2a - In . , R . 
8g 7r Sin h p;;Tcul 

(6.48) 

This equation combined with Eq. (6.37) finally yields 

R (6n )2 
( sinh jr;(t-t0 ) ) C (t - t0 ) = - - In . , R . 

7r smh ""jjhrcut 
(6.49) 

Thus we obtain the transient Green's fun ctions of the right and left electrodes as 

(6 .50) 

~-(~)' L L · ~ r r 

L - - ·..!!.._ a Po n [ smh p;;t ] -i~L tjh 
(i (t) - t R• . h < t . h < R e . 

1-'" Sin flh Sin p;;T 
(6.51) 

6.4. Renormalized response function of the tunneling Hamiltonian 

A. General formula 

The response function of the tunneling Hamiltonian is given by Eq. (6.12) . For the time 

being we consider only the forward tunneling to make our logic clear. T hen we have 

(6.52) 

Substituting Eqs . (6.50) and (6.51) into Eq. (6.52) yields 

i R(t) 

(6.53) 
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We note that VL and vn are equal in magnitude but opposite in sign because conduction 

electrons in each electrode are scattered by mirror charges on opposite sides of the barrier. The 

phase shifts fh and On are therefore equal in magnitude but opposite in sign. 

(6.54) 

To simplify matters we assume that the electrochemical potential and the cut-off of conduction 

elect rons are common to both electrodes 

(6.55) 

(6.56) 

Equation (6.53) then reduces to 

R(t) (6.57) 

where 

(6.58) 

and RT is the tunnel resistance 

(6.59) 

Fourier transformation of Eq. (6.57) yields (see Appendix D) 

. A sin (iy + ~) l "" cos(2yt) 
R(w) = 21 dt ) , f,; sin 1r9 o (cosh t •+2 

(6.60) 

where y = .,f;(liw + t.). The tunneling rate is given by the imaginary part of the response 

function. It is given by 

R 
A cosh 1ry l "" d cos(2yt) Im ( w) - --- t~--'--''--'-- f,; cos~~ o (cosh t)•+2 · 

(6.61) 

This result can be written in terms of the Beta function by using the relation 

l oo cosh 2yt 2,_2 dt( h )2 = 2 B( x + y,x -y) , 
0 cos t " 

(6.62) 
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where B(x, y) is the Beta function defined by 

(6.63) 

Equation (6.61) then becomes 

2g cosh 1ry ( . g g ) ImR(w) = A7--~-B 1y +- + 1, - iy +- + 1 . 
7ih cos 2 g 2 2 

(6.64) 

T he general frequency-dependent forward tunneling rate is thus given by 

1 oh:tR 4g ( g g ) 
r(Q ,w) = 7rn2 1mR(w) = e2 Rr 7f B iy + 2 + 1, -iy + 2 + 1 . (6.65) 

T his is the main result of this section. We will examine two specific cases to check this result. 

B. Reduced formula for T = 0 

We first consider the zero-temperature limit. In this case, it is convenient to start from a 

gamma fun ction representation of Eq. (6.65). 

2g+l 7r r ( - iy + s. + 1) 
R(w) = - iA • . 

2 

7ih s1n1rg r(9 + 2) r ( - iy - ~) 
(6.66) 

As the temperat ure reduces to zero, the parameter y becomes infinite. Using the asymptotic 

expansion of the ratio 

we obt ain 

f(z + a) 
f( z + ,B) 

The imaginary parts of this expression yield 

aRaLn3 
1r 1 (llw + !J..) l+g 

ImR(w) = ------- --
e2 Rrrcu l COS ~g f(g + 2) 11/rcul 

(6 .67) 

(6.68) 

(6 .69) 

From thi s result we obtain the frequency-dependent tunneling rate at zero tempera ture as 

1 aRaL (nw + !J..)l+9 

r(Q ,w) = - 2 ImR(w) = -( .. / ) • f( 2) 2 R (6.70) 
1r/l r< Tcul g COS 29 g + e T 

This result is identical to that obtained in an earli er letter.l31J 
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C. Reduced formula for g = 0 

Next, we examine the orthodox limit g = 0 of the general formula (6.65). Since the beta 

function in Eq. (6.65) assumes the form 

B(iy + 1, -iy + 1) = f(1 + iy, 1- iy) = ~hy , 
sm try 

(6 .71) 

the imagin ary part of the response function reduces to 

(6 .72) 

From this expression we obtain the frequency-dependent forward tunneling rate as 

(6.73) 

Simila rly the backward tunneling rate is given by 

nw-~(Q+~) 1 
l(Q,w)= 2 ( ( ( ))) . 

e RT exp k~T nw + ~ Q + ~ - 1 
(6.74) 

These results are identical to those obtained earlier by a different method.!46][471 

6.5. Determination of anomalous power exponent 

Finally, let us determine the anomalous power exponent g. It is given by the Friedel sum 

rule that gives a self-consistent condi t ion between a localized excess charge and phase shifts of 

conduction electrons induced by it . In general, if the excess charge in units of e is Z , then it is 

related to the phase shifts of conduct ion electrons at the Fermi surface as 

2 
Z =- E1 (21 + 1) 61(kr), 

7r 
(6.75) 

where 61 is the phase shift of the scattered wave with angular momentum l. Since we consider 

on ly the S-wave scattering (I = 0) and the accumulated charge afte r tunneling is given by 

Q,- e, we have 

Q,- e = ~6 __... g = 2 (!_)2 = ~ (Q'- e)2, 
e 1r 1r 2 e 

(6.76) 

where Q1 denotes the accumulated charge just before a tunneling event occurs. 
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To test our prediction the bias current must be chosen very small so that the next tunneling 

event will never occur in the second state. In addition to the usual requirements for the 

observation of single-charging effects, the bias current should therefore be much smaller than 1 

nanoa.mpere; that is, we must operate SET oscillations at frequencies much lower than 1 GHz . 

This explains why our prediction has not been observed to date . 
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7. Discussion and conclusions 

T his paper developed two theories on micro- tunnel junctions: Sections 3 to 5 are devoted 

to t he probability-density-function description of mesoscopic normal tunnel junctions and Sec­

tion 6 considers infrared divergence in single-elec tron tunneling. This section summarizes and 

discusses the main results of the present paper. 

1\mneling current in macroscopic junctions usually features shot noise known as the 

Schottky formula, and external dynamical vari ables can be eliminated as rese rvoir variables 

vi a the fluctuation-dissipation theorem. T he underlying physics by which such a conventional 

picture may be justifi ed is that tunneling events occur exclusively as a result of the wave nature 

of an elec tron and that background thermal noise is overwhelming enough to ensure thermal 

equilibration of t he external circuit and to allow elimination of its dynamical vari ables vi a the 

flu ct uation-dissipation theorem because then back ac tion of tunneling events on the external 

circuit may well be neglected . 

However, in ultrasmall tunnel junctions where the electros tat ic energy of a single elect ron 

becomes comparable to or even larger than the masking thermal energy, such a convent ional 

picture breaks down because firstl y, Coulomb regularizat ion of tunneling events becomes im­

portant and seconcll y, t he back action of tunneling events can no longer be di sregarded. We 

cannot resort to the linear response theory to elimin ate external dynamical vari ables , bu t must 

to treat both the junction and external circuit on an equal footing. The probabili ty-density­

fun ction approach to mesoscopic tunnel junctions described in this paper is developed to attack 

such probl ems analytically. We note that the key distribution (3. 5) includes both junction and 

circuit parameters in a manner that cannot be di sentangled. 

T he st andard quantum limit is shown to originate from neither thermal nor current noise 

bu t from the time-energy uncertainty relationship th at is inherent in qu antum-mechanical tun­

neling. This limit imposes a fundamental limit on the signal-to-noise ratio of "single-electron 

devices" such as single-electron transistors and logic elements .111 

Uncertainty with respect to the time when an elec tron starts to tunnel is based on a particle 

picture of an electron, but the uncertainty is shown to arise complementarily from the energy 

uncertainty due to delocalization of an electron wavefunction over both electrodes. Thus the 
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time-energy uncertainty relationship in tunneling is closely related to the wave-particle duality 

of an electron. We have derived a particular form of the time-energy uncertainty relationship 

whose lower bound includes the degree of randomness for the standard quantum limit. This 

again reflects the fact that we must treat both junction and external circuit on an equal footing. 

The essential assumption in deriving Eq. (5.10) is RT :?: RQ. However, it is possible to fabricate 

a tunnel junction such that the opposite inequality, RT < RQ , holds. In this case the time­

energy uncertainty relationship apparently breaks down. Such a conclusion clearly contradicts 

the principle of quantum mechanics and must be attributed to a semiclassical assumption that 

becomes invalid for RT < RQ. As the tunnel resistance becomes smaller and smaller, the time 

unce rtainty also becomes smaller. However, fluctuations in the Coulomb energy of a single 

fill electron due to delocalization of the electron wavefunction cannot be larger than e2 /2C. To 

relax this restriction, we must take into account some quantum fluctuations or the traversal 

time for tunneling, both of which are neglected in the semiclassical theory. 

Section 6 considers the effect of the "Fermi-surface environment on tunneling. A sudden 

change in the localized Coulomb potential due to single-electron tunneling excites an infinite 

number of electrons and holes near the Fermi surface. Such an infrared-divergent shake-up is 

shown to renormalize the density of final states available for tunneling until a localized excess 

charge and phase shifts of conduction electrons induced by it become balanced by the Friedel 

sum rule . This situation is schematically illustrated in Fig. 14. 

It is , in general, very important to take account of the effect of recoil due to the finite mass 

of a potential source when we consider the localized dynamic perturbation in metals.!48J In 

our problem, however, this effect of recoil can be neglected mainly because it is a collective 

potential formed from all the conduction electrons and background ions in electrodes so the 

excitation energy of the collective potential becomes too high(~ several eV, plasma energy) to 

get it recoiled. Needless to say, the plasma oscillations are very important during a very short 

time {10- 14 - 10-15 seconds-the first stage) immediately after a tunneling event occurs. For 

normal metal junctions , however, infrared divergent excitation of electron-hole pairs near the 

Fermi surface occurs on a much longer time scale (10-11 seconds or even longer- the second 

stage). 

The effect of the electromagnetic environment along the transmission line and that of the 
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electron-hole pair creation should be regarded as complementary. Both effects result from the 

same tunneling Hamiltonian 

(7.1) 

In the previous literature13J-[6] the former effect was discussed by calculating the correlation 

function of the electromagnetic phase without regard to the many-body final-state interaction 

of conduction electrons, while the present paper discusses the latter effect by calculating the 

correlation function of conduction electrons without regard to the electromagnetic phase. The 

former effect crosses over to the latter as the frequency of SET oscillations decreases. At the 

frequencies at which recent experiments on Coulomb blockade were performed , the effect of 

~ electron-hole pairs should appear as the radiative correction to the electromagnetic environ­

ment. Indeed, loop contributions calculated in the present paper are nothing but the radiative 

corrections. To unify both pictures we must treat both sources of dissipation on an equal 

footing. A unified theory of single-electron tunneling, in which both environments are taken 

into account, can be constructed by incorporating the electromagnetic field into our theory via 

the gauge-invariant replacement of momentum operators P by the canonical correspondents 

P- ~A. Such an extension, however, remains as future work. 
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8. Appendices 

A. Moments of normalized final charge qn 

Let us evaluate the quantity 

rev [ { Q r(q)l 
In= it Qn exp -it i(q) dQ (A .1 ) 

when kaT ~ ~ and no noise current is generated in the source resistance. Then substituting 

the expressions 

q-!. ( e) r(q) = --2 0 q--
eRTC 2 

(A.2) 

and 
. cv -q 
t(q) = CRs (A.3) 

into Eq. (A.1) yields 

(
CV- Q)~~(cv-t ) [1 R 5 ( e)] 
--- exp -- Q - - dQ 
CV- ~ e RT 2 

(A.4) 

If we change the integration variable tot = l=RR ( CV- Q) and set a = lfu:R , b = CV, c = exdp}d) , 
e T e s 

and d = l& (cv - !.) = ~ we obtain 
eRr 2 a ' 

In= ac l (b- att td exp( -t)dt. (A.S) 

From this we see that the rhs of this equation can be expressed in terms of the incomplete 

gamma function defined by 

l'(a,x)= fox t•-l exp(-t)dt, Rea>O. 

Expanding (b- at)n yields 

lo = aq(d + 1,d), 
11 =a [ad+ (~-a) q(d + 1, d)] , 

h =a [2ad (~-a)+ ((~-a) 
2 + a2 (d + 1)) q(d + 1, d)] , 

and 

(A.6) 

(A .7) 

(A.8) 

(A.9) 

h =a (3ad (~ -ar +a3d(2d+3) + [(~- ar +a
2
(d+ I) Ge- sa)] q(d+ 1,d)), 

(A .lO) 
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where the following identity is used:i49] 

-y(a + 1, x) = a-y(a, x)- x•e-x. (A.ll ) 

Let us next evaluate the following quantities: 

_ jcv (e ) 
Q'j =: ' Qn p 2' Q dQ' 

' 
(A.12) 

With t he observation that 

(
e ) d ( JQ r(q) ) 

p 2, Q = - dQ exp - f i( q) dq , (A.13) 

we integrate the rhs of Eq. (A.12) by parts, obtaining 

_ (e)n 
Q'j = 2 + nfn-1 · (A.14) 

Moments of q are related to those of Q1 by 

(A.15) 

Substituting Eq. (A .14) into Eq. (A.14) and using Eqs. (A.7)-(A.10) yields 

a 
q = bc-y(d + 1, d), (A.16) 

q'i = 2 (~r(d _ c-y(d+ 1,d)) . (A .17) 

~ = 3 (~)
3 

[-2d + (d+ 2)q (d+ 1,d)] , (A.18) 

and 

(j4 = 4 (~)' (2d(d + 3)- (5d + 6)c-y(d + 1, d)). (A.19) 

B. Asymptotic expressions of qn 

(i) ~ ~ 1 ----> d = ~(.v - !l ~ 1: 

In this case we can make use of the following asymptotic expansion149
J 

-y(d + 1, d)= ~da+t exp(-d) ( 1- ~{!; + 1 ~d + · · ·) ( d ~ 1, I argdl < ~). (B.1) 
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Keeping only the first-order terms we obtain 

_ ( 1r RT e ( e ) ) t 
q = 2 Rs CV 1 - 2CV ' 

- (1r)t (RT e ( e ))* 
q

3 

= 
3 2 Rs CV 1 - 2CV ' 

and 

4 _ (RT e ( e ))
2 

q - 8 Rs CV 1 - 2CV 

Thus we find that moments of q rapidly converge to zero as the ratio ~ becomes larger. 

I' " (ii) CV = W + <), < «: 1 ----+ d = ~(c.v- !l «: 1: 

In this case we can make use of the following asymptotic expansionl491 

"" (a-1) 1 
'Y(a,x) = x"exp(-x) L -( --);xn (a«: 1). 

n=O a + n . 

Expanding the rhs of this equation and re-ordering in powers of d, we have 

~ 5 5 
q(a x) =d--+-cf- -d" .... 

, 2 12 36 

Substituting this expansion into the rhs of Eqs. (A.16)-(A.19), we obtain 

--n = (-e_RTd)n O(.m+l) ( ) q CV Rs + " , n= 1,2,3,4, .. .. 

C. Moments of cha rge qn 

(B.2) 

(B.3) 

(B.4) 

(B.5) 

(B.6) 

(B.7) 

(B.8) 

It has been showni241 that the charge distribution P(Q) across the junction is given by 

.!...2.liL 
"T CV-Q 

!..2.JiL ( JQ ~d ) ¥ c v-Q exp - f i(q) q 

for CV - e < Q < ~, 

for~< Q < CV. 

Here 'f is given by Eq. (2.8) . Let us calculate moments of charge Q for this distribution. 

F irst let us verify that this distribution satisfies the normalization condition 

j
cv 

_, P(Q)dQ = 1. 

' 
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Substituting Eq. (C.1) into the lhs of Eq. (C.2) yields 

CRs {lev-e 1 rf dQ rev 1 } 
lhs ----;r -f CV- Q (1 - J(Q + e)) dQ + lev-e CV- Q + lt CV- QJ(Q)dQ 

C Rs { CV + } rev ( 1 1 ) } ----;r In CV- ~ + lt CV- Q- CV + eQ J(Q)dQ ' (C. 3) 

where 

- ( rQ r(q) ) 
f(Q) = exp - Jt i(q) dq , (C.4) 

and i(q) = ~"n7 is the injection rate of current into the junction when the accumulated charge 

is q. Integrating the last two terms in Eq. (C.3) by parts and using the relationship 

(C.S) 

we obtain 

l
ev P(Q)dQ = ~ rev dQCRs In CV + e- Q P (~ . Q). 
-t r lj CV- Q 2 

(C.6) 

From Eq. (2.8) we find that the rhs of this equation gives unity. 

The first moment of charge is defined by 

j
ev 

Q = _, QP(Q)dQ. 

' 
(C.7) 

Substituting Eq. (C.1) and Q = CV- (CV- Q) into (C.7) and using (C.2) 

- [ Rse] Q = cv 1- v;r . (C.8) 

Calculation of higher-order moments can be done in a similar way. The next three moments 

are given by 

(C.9) 

3 [ Rs e ( 1 ( e ) 
2 

-) l (CV) 1 -v;;; 1+12 CV +q+q2 
' (C.10) 

and 

{ 
Rs e [ 1 ( e )

2 ( 1 ( e )2) _ -]} (CV)< 1 -v;;; 1 + 12 CV + 1 +4 CV q+q2 +q3 
. (C.ll) 

58 



D. Self-consistent treatment of divergent integrals 

In calculating the response function, we used the following equation. 

The lhs integral converges only if v > -1. Nevertheless, we applied Eq. (D.1) beyond this 

limit , i.e., for v = -g- 2. In this Appendix we show that such extension may be justified on 

physical grounds. We first consider the case at zero temperature to make our logic clear. In 

this case Eq . (D .1) reduces to a much simpler form , 

( . )"+1 
[ " dt eipl i" = ~ f(v + 1). (D.2) 

Let us integrate a complex function e-' z" along the contour shown in Fig. 15. Since the 

function has no singularities inside the contour, we have 

f dz e-'z" = 0. (D.3) 

Since Rez > 0 along the large arc C4 , Jordan's lemma shows that the contributions of contour 

C4 vanish , and we are left with the integrals along Cl> C2 and C3 . They are given by 

r (p)~~ r· · Jc, dz e-z z" = - i }.~ dt e•Jd t"' , (D.4) 

(D.5) 

r dz e-'z" = r· e-• t" dt = r,(v + 1), Jc3 le (D.6) 

where the function r,(v + 1) is defined by the last equality. Thus we have 

r· dt eiwl t" = (!_)"+! [r,(v + 1) + c"+l (1- e•t•(v+l l)]. 
}~ p v+1 

(D.7) 

From th is equation we find that Eq. (D .2) holds for v > -1. The first term on the rhs still 

diverges for v < -1 as c approaches zero from positive values. To subtract the divergent part 

from r" we consider the integral of e-' z" along the contour C shown in Fig. 16. A similar 

calculat ion shows that 

1 j c"+J 
f.(v + 1) = --

2
-. e-' z" dz- --. 

1- e "" c v + 1 
(D.8) 
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The first term on the rhs is an integral representation of the gamma function which applies not 

merely for v > -1 but also for v < -1 (v =/=negative integer) 

r0 (v + 1) = --1
-2-. f e-'z" dz (v =!=negative integer). 

1- e '!flY l c (D.9) 

Here the superscript C is attached to emphasize the specified contour . Substituting Eqs. (D.8) 

and (D .9) into Eq. (D.7) yields 

(D.1 0) 

This expression successfully separates a divergent term (rom a convergent one. Equation (D.10) 

clearl y shows the divergent part comes from an integration over a range of small tor equivalently 

from high frequencies. Such an ultraviolet catast rophe must be healed by a finite bandwidth 

of conduction electrons. The remaining first part f 0 (v + 1) gives a finite contribution whjch 

carries t he relevant information on infrared catastrophe. 

T he analysis at finite temperatures proceeds in a manner similar to the zero-temperature 

case. We therefore write only the result of our analysis. 

/,

00 1 r (-~- £) r(v + 1) ,_pgv+l 
dt ;"'( · h "")" _ 2, 2 I 2<ov e sm 1• - - ---e 

L 2v+L)' f (-~ + £ + 1) V + 1 
p 2~ 2 

The rhs can be expressed in terms of the Beta function as 

j, oo ;, . v 1 ( ip V ) '{cv+l 2«v dt e " (smh -yt.) = --B -- - -, v + 1 - --e . 
! 2"+1 ')' 2')' 2 v+1 

Thus we find that the extension of Eq. (D.1) to v < -1 implies the subtraction of an ultraviolet­

divergent part from the integral which has no relevance to the problem we are concerned with. 
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Figure captions 

Fig. 1 Principle of Coulomb blockade: (a) An electron can pass through the energy barrier 

owing to the wave nature of an electron, (b) but each tunneling event is accompanied by an 

energy cost of;(~- Q) due to the particle nature (quantization of charge) of an electron . 

Fig. 2 Principle of single-electron- tunneling oscillations: (a) A cu rrent-driven small tunnel 

junction; (b) inhibition of tunneling due to Coulomb blockade (c) charge (voltage) oscill ations 

(solid line) and associated quantization of tunneling current (shaded pulses) . 

Fig. 3 Physical meaning of t he fractional charge Q: it is proportional to the relative displace­

ment between the center of mass of the whole conduction electrons and t hat of the whole 

positive ions. 

Fig. 4 Schematic illustrations of (a) a current-biased tunnel junction with stray capacitance 

Cs and inductance L, and (b) a voltage-biased tunnel junction. 

Fig. 5 (a) Voltage-biased tunnel junction with a source resistance connected in series in it. (b) 

Current-biased tunnel junction with a shunt resistance connected in parallel to it . 

Fig. 6 (a) Time intervals between consecutive tunneling events. (b) Definition of time-interval 

distr ibu tion . (c) Time-interval distribution for regular and random tunneling events. 

Fig. 7 T ime development of the accumulated charge on the junction , where Q; and Q1 denote 

the initial charge and final charge. 

Fig. 8 Initial-charge distributions (a)-( d) and final-charge distributions (e)-(h) for (a) ,( e) jfr = 

300, (b),(f) jfr = 100, (c),(g) jfr = 10, and (d) ,(h) jfr = 1 with CV =e. 

Fig. 9 T ime- interval distributions for (a) jfr = 300, (b) jfr = 100, (c) jfr = 10, and (d) jfr = 1 

with CV = e, where the time axis is normalized by CR5 . 

Fig. 10 Charge distribution for (a) jfr = 300, (b) ;; = 100, (c) jfr = 10, and (d) jfr = 1 with 

CV =e. 

Fig. 11 Normalized degree of randomness as a function of the ratio jfr for several values of the 

product CV. The ordin ate is normalized by the standard quantum limit , where the constant 

current Ide needed to calculate the standard quantum lirn.it is set equal to the average cur rent 

which is act ually obtained by computer simulation for the corresponding value of the ratio jfr. 
Fig. 12 Schematic of a normal tunnel junction. A tunneling event produces a sudden change 

in the localized Coulomb potential on either side of the barrier. 
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Fig. 13 Disentanglement of many-body time-independent graphs to one-body time-dependent 

graphs. (a) A typical many-body graph represented by the Hamiltonian (6.1)-(6.5). (b) Re­

duced one-body graph, where time-dependence appears only as a boundary condition. 

Fig. 14 Schematic illustration describing the effect of the Fermi-surface environment on tun­

neling. 

Fig. 15 Contour for integral (0.3) 

Fig. 16 Contour for integral (0.8) 
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