
 

Graduation Thesis 
 

 

Study on Slope Estimation of Planetary Surface 

Using Shape from Shading 

（Shape from Shading法を用いた天体表面の

斜面推定に関する研究） 

 

2019.08.08 
 

 

 

Supervisor: Prof. Hashimto Tatsuaki 
 
 

Department of Electrical Engineering and Information Systems 
Graduate School of Engineering 

The University of Tokyo  
 
 

Master Course 
37-175076 
Di Mengzhi



 

 i 

 
Contents 

 
1 Introduction ...........................................................................................1 

1.1 Background ...................................................................................................... 1 

1.2 Obstacle avoidance and landing site selection for landing missions in recent  

years ................................................................................................................. 2 

1.3 Research status for obstacle detection ............................................................. 6 

1.3.1 Obstacles on the planetary surface ........................................................ 6 

1.3.2 Previous researches ............................................................................... 6 

1.3.3 Passive sensor-based detection methods ............................................... 7 

1.4 Purpose of this research ................................................................................. 10 

1.5 Composition of this paper .............................................................................. 10 

2 Shape from shading (SfS) ...................................................................12 

2.1 Introduction of SfS ......................................................................................... 12 

2.2 Four approaches for SfS problem .................................................................. 14 

2.2.1 Minimization approaches .................................................................... 14 

2.2.2 Propagation approaches ...................................................................... 18 

2.2.3 Local approaches ................................................................................ 19 

2.2.4 Linear approaches ............................................................................... 21 

2.3 Advantages and disadvantages for these four approaches ............................. 22 

3 Experimental results for SfS ...............................................................25 

3.1 Experimental results for selected SfS algorithms .......................................... 25 

3.1.1 Four selected SfS algorithms .............................................................. 25 

3.1.2 Experimental results ............................................................................ 26 

3.2 Hapke model .................................................................................................. 34 

3.2.1 Introduction of Hapke model .............................................................. 34 

3.2.2 Simplification of Hapke model ........................................................... 36 

3.3 Experimental results for SfS with Hapke model ............................................ 37 

4 SfS combined with low resolution DEM ............................................44 

4.1 Related works ................................................................................................. 44 

4.2 Proposed method ............................................................................................ 45 

4.2.1 Reflectance parameter estimation ....................................................... 46



Contents 

 ii 

4.2.2 Shape reconstruction ........................................................................... 47 

4.2.3 Optimization ....................................................................................... 48 

4.3 Experimental analysis .................................................................................... 50 

4.3.1 Datasets ............................................................................................... 50 

4.3.2 Experimental results for dataset 1 ....................................................... 51 

4.3.3 Experimental results for dataset 2 ....................................................... 51 

5 Conclusion and future work ...............................................................62 

5.1 Conclusion ..................................................................................................... 62 

5.2 Future work .................................................................................................... 62 

Publication ..............................................................................................64 

References ...............................................................................................65 

Acknowledgements .................................................................................68 

 

  



 

 iii 

List of Figures 
 

Figure 1. Timeline for space exploration missions ................................................ 1 

Figure 2. Chang’e 3 lander on lunar surface .......................................................... 4 

Figure 3. The scheme for Chang’e 3 powered descent and landing ...................... 4 

Figure 4. Obstacles on planetary surface ............................................................... 6 

Figure 5. Stereo vision ........................................................................................... 8 

Figure 6. Structure from motion ............................................................................ 9 

Figure 7. Shape from Shading ............................................................................. 10 

Figure 8. Schematic diagram of geometry of Lambert model ............................. 13 

Figure 9. Reflectance map ................................................................................... 14 

Figure 10. Image and corresponding DEM for lunar surface .............................. 28 

Figure 11. Height detection results for four SfS methods .................................... 29 

Figure 12. Slope detection results ........................................................................ 31 

Figure 13. Slope error results ............................................................................... 32 

Figure 14. Schematic diagram of geometry of Hapke model .............................. 34 

Figure 15. Lunar surface image, corresponding DEM and detection result for data 

1.................................................................................................................... 38 

Figure 16. Lunar surface image, corresponding DEM and detection result for data 

2.................................................................................................................... 39 

Figure 17. Lunar surface image, corresponding DEM and detection result for data 

3.................................................................................................................... 40 

Figure 18. Image, corresponding DEM, detection result of crater ...................... 41 

Figure 19. Image, corresponding DEM, detection result of valley ...................... 41 

Figure 20. Image, corresponding DEM, detection result of slope surface .......... 42 

Figure 21. Flow chart of proposed method .......................................................... 46 

Figure 22. Input image and low resolution DEM for dataset 1 ........................... 52 

Figure 23. Detection result and LROC DEM for dataset 1 .................................. 53 

Figure 24. 3D view of the input low resolution DEM, detection result and 

reference LROC DEM for dataset 1 ............................................................ 54 

Figure 25. Image, detection result and LROC DEM for details in dataset 1 ....... 55 

Figure 26. Absolute height error map for dataset 1 ............................................. 56 

Figure 27. Input image and low resolution DEM for dataset 2 ........................... 57 



 

 iv 

Figure 28. Detection result and LROC DEM for dataset 2 .................................. 58 

Figure 29. 3D view of the input low resolution DEM, detection result and 

reference LROC DEM for dataset 2 ............................................................ 59 

Figure 30. Absolute height error map for dataset 2 ............................................. 61 

  



 

 v 

List of Tables 
 

Table 1.  Average and standard deviation of slope error .................................... 32 

Table 2.  Computation time for four methods .................................................... 32 

Table 3.  Hapke parameters for several asteroids .............................................. 36 

Table 4.  Details of LROC images used in the experiments .............................. 51 

Table 5.  Statistical analysis of experimental dataset 1. ..................................... 55 

Table 6.  Statistical analysis of experimental dataset 2. ..................................... 60 

 

 

 

 

 

 

 



 

 1 

1 Introduction 

1.1 Background 

Since the Soviet Union launched Luna 1 in 1959, space exploration activities have 

been carried out for 60 years. In order to clarify the origin and evolution of the earth, 

research for extraterrestrial resources, and expand the scope of human activities, many 

countries have been actively promoted space development and carried out various 

space exploration missions during these 60 years. The timeline for space exploration 

missions is shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

According to this timeline, it can be seen that as the scientific return requirements 

for space exploration missions increase, landing missions, sample return and manned 

landing have become one of the most important parts of deep space exploration 

activities. And the safe landing of the spacecraft on the surface of target planet is a

Figure 1. Timeline for space exploration missions 
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prerequisite to ensure smooth implementation of the above-mentioned exploration 

activities.  

To date, many countries have already carried out various landing missions. In order 

to ensure a high landing success rate, most of the spacecrafts chose relatively flat areas 

with fewer obstacles as landing site. However, many target points with high scientific 

value are located close to dangerous areas, such as the edge of crater, rugged mountains. 

These places are often considered as hazardous areas and excluded from possible 

landing site selection, which largely sacrifices the scientific value of the exploration 

missions. For example, the Mars Exploration Rovers mission selected Gusev Crater 

and Meridiani Planum rather than other higher scientifically interesting areas for the 

reason that they are flat plains which are relatively free of landing hazards [1]. As human 

exploration of space continues, more and more complex terrains (areas around rocks, 

craters, and steep slopes) will be included in the scientific investigations. In order to 

achieve a safe landing on complex areas that are scientifically interesting but hazardous, 

and increase the scientific return of exploration activities, future interplanetary landers 

are required to have high-precision obstacle detection and avoidance capability. 

Also, when exploring the extraterrestrial planets, since the spacecraft is far away 

from the earth, there is large communication delay between the spacecraft and the 

ground monitoring center. The traditional navigation guidance method based on the 

deep space network tracking cannot satisfy the real-time navigation requirement. Thus 

the spacecraft is required to have some functions to detect and avoid obstacles 

autonomously. 

Therefore, conducting research on obstacle detection and avoidance technology for 

landing has become one of the most important research topics for space exploration 

field in recent years.

 

1.2 Obstacle avoidance and landing site selection for landing 

missions in recent years 

Since 1960s, various countries have launched multiple lunar and Mars landing 

spacecrafts. For the early lunar landing missions, limited to the technical level at that 
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time, the Luna program and the Surveyor program did not have autonomous obstacle 

recognition and avoidance capabilities, resulting in a low landing success rate. The 

Apollo program achieved successful landing through manual control, astronauts 

observed the planetary surface and manipulated the control system to achieve obstacle 

avoidance and safe landing. And for Mars, most of the early Mars landers used airbag 

landing to resolve obstacle avoidance problem. 

In recent years, most spacecrafts conducted landing missions through choosing 

candidate landing areas in advance by researchers, then detecting obstacles and finding 

proper landing site within this chosen landing areas autonomously. For example, the 

Chang’e 3 (Figure 2), after selecting the Sinus Iridum as candidate landing zone, it 

completed obstacle detection and avoidance autonomously, and successfully touched 

down at 19.51256°W and 44.11884°N in the east of Sinus Iridum [2]. The soft landing 

process of Chang'e-3 lander is shown in Figure 3, it can be divided into seven phases: 

(1) preparation for landing, (2) primary deceleration, (3) quick adjusting, (4) 

approaching, (5) hovering, (6) hazard avoidance, (7) constant low velocity descent [3]. 

(4) — (7) phases are obstacle avoidance process, they completed the functions of coarse 

obstacle detection, precise obstacle detection, precision obstacle avoidance and 

constant low velocity descent, respectively.  

(1) Preparation for landing phase corrected the ignition time and the corresponding 

orbit, calculated the ignition target attitude and adjust it in place before powered descent. 

(2) Primary deceleration phase was the first sub-phase for powered descent. The 

lander descended from ~15km to ~3km above the lunar surface. 

(3) Quick adjusting phase seamlessly connected the primary deceleration phase and 

approaching phase. The lander descended from ~3km to ~2.4km above the lunar 

surface. 

(4) Approaching phase: The main task of this phase was to perform coarse hazard 

detection and avoidance, in which the lander descended from ~2.4 km to ~100 m. The 

gray images of the pre-selected landing zone were acquired by the optical imaging 

sensor, and large obstacles (craters and rocks larger than 1 m in diameter) were 

identified by image processing methods to determine potential safe landing regions and 

implement the first obstacle avoidance. 
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 (5) Hovering phase: The lander hovered at ~100 m above the lunar surface. The 

main task was to perform precise obstacle detection, using laser imaging sensor to 

obtain the high-precision three-dimensional elevation data of the 50 × 50 m2 area under 

Figure 2. Chang’e 3 lander on lunar surface 

Figure 3. The scheme for Chang’e 3 powered descent and landing 
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the lander. Then the craters larger than 20 cm and slopes steeper than 8 degrees were 

detected, and the nearest safe landing site were determined. 

(6) Hazard avoidance phase: The lander performed precise hazard avoidance and 

descent simultaneously. Based on the safe landing site information given by the 

hovering phase, the lander descends from ~100m to ~30 m above the landing site. 

(7) Constant low velocity descent phase: The main task of this phase was to eliminate 

the horizontal velocity and align the attitude of the lander with the normal direction of 

the surface without changing the current horizontal position. The lander descended 

vertically at a constant speed of 2 m/s from ~30 m to ~2m above the landing point. 

Chang’e 3 adopted a coarse-precision-relay obstacle detection and avoidance scheme.  

For the coarse obstacle avoidance phase, the main purpose is to remove large-size 

obstacles that obviously endanger the safety of landing in the preselected large landing 

region and provide potential safe landing areas for the following precise avoidance. 

Since the lander moves at a relatively large velocity at high altitude, the sensor is 

required to have fast imaging capability, thus the influence of the lander motion on 

obstacle detection can be minimized. For the precise obstacle detection and avoidance 

phase, the main purpose is to perform accurate obstacle detection in the potential safe 

landing areas that are selected by the coarse obstacle avoidance phase. It is required to 

identify and eliminate the small size obstacles and determine the safe landing site. There 

is high requirement for the detection accuracy, but no special requirement for imaging 

time. 

The sensors used for these two phases are chosen according to their different 

functional requirements. In the coarse obstacle avoidance phase, the optical imaging 

sensor with short exposure time and good adaptability to lander’s moving is used to 

take images of preselected landing region. Then images are processed to detect large 

obstacles and choose potential safe landing area. In the precision obstacle avoidance 

phase, the lander is in a hovering state, and the laser imaging sensor with high detection 

precision is used to obtain the three dimensional digital elevation map of the potential 

safe landing area, then find out obstacles with small size and determine the landing site. 
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1.3 Research status for obstacle detection 

1.3.1 Obstacles on the planetary surface  

Mainly, four types of features, craters, valleys, rocks, and slopes are considered as 

obstacles on planetary surface, as shown in Figure 4. Steep slopes and valleys may 

cause the lander to tip over when landing, directly causing the landing mission to fail. 

The lander may be damaged if it collides with the edge of the craters or rocks during 

touch down. And if the lander lands in a rugged terrain, the rover may get stuck and not 

able to carry out their exploration task smoothly, thus the effectiveness of the landing 

mission will be greatly reduced. Therefore, it is very important to detect the location 

and size of obstacles for landing missions. 

 

 

 

 

 

 

 

 

 

1.3.2 Previous researches 

There are two types of methods for obstacles detection, one is active sensor-based 

detection methods, the other is passive sensor-based detection methods.  

The active sensor is sensor that measures the topography by radiating a certain form 

of energy (radio waves, light waves, etc.) to the target area and then receiving the 

reflected energy, such as radar and lidar. This type of sensor measures distance between 

sensor and targeted terrain. It is able to obtain the three dimensional shape for targeted 

area, then obtain the obstacle information through data processing which is relatively 

simple and fast. And it is not constrained by the lighting conditions, it can work under 

poor illumination such as nighttime. However, the active sensors are expensive, 

massive, heavy, have high power consumption and narrow field of view.   

Figure 4. Obstacles on planetary surface 

(a) Craters  (b) Valleys  (c) Rocks   (d) Slopes  
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The passive sensor is sensor that does not radiate any energy to the outside, but 

indirectly acquires visible or infrared light information reflected by the topography, 

such as camera. The information that passive sensors obtain is two-dimensional image 

without depth information, thus it is necessary to either identify features that pose 

obstacle, or reconstruct three-dimensional topography then obtain obstacle information. 

Therefore, the calculation is more complicated. And it can only work during daytime. 

However, compared with active sensors, passive sensors have the advantages of low 

price, light weight, low power consumption, wider field of view, shorter development 

cycle, thus they have received a lot of attention. 

 

1.3.3 Passive sensor-based detection methods 

The passive sensor-based detection methods can also be subdivided into two options. 

One is to identify a specific obstacle based on the image characteristics of this type of 

obstacle. For example, (1) detecting rocks based on the shadow information. Fitting the 

shadow areas with an ellipse based on the shape characteristics of the rock, then 

modeling rock as circle according to sun elevation and shadow length to estimate the 

height and position of the rock [4]. (2) Detecting craters based on template matching. 

During the orbiting phase, the craters of planetary surface are modeled. Then the 

detected craters in the image are matched with the craters projected from this previously 

generated model and best transformation between these two sets is obtained [5]. An 

important issue with this type of methods is that only certain type of obstacles can be 

detected because they detect obstacles based on the characteristics of this particular 

obstacle (for template matching method, if rocks and craters are both modeled in the 

orbiting phase, both of them can be detected).  

The other one is to reconstruct full three-dimensional terrain of the target zone 

(usually is called digital elevation map), then obtain obstacle information from this 

reconstructed digital elevation map (DEM). The former approach can only lead to 

incomplete hazard maps, and it is impossible to judge whether the un-hazardous sites 

in the detection result are actually safe or not. Therefore, this research only considers 

the latter one that generates the DEM.  

Three methods are often used to reconstruct DEM from images, stereo vision, stereo 

from motion and shape from shading. 
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Stereo vision (SV) uses the same principle as the human eye to obtain the distance 

from the object to the camera as shown in Figure 5. The input is two images (in case of 

binocular stereo vision) taken from different positions. SV first uses matching operator 

(eg. the sum of absolute difference operator) as cost function to find the corresponding 

pixels in two images, this process is called image matching. Then SV obtains disparity 

map by calculating the difference in image location of these corresponding points. 

Finally using this disparity map to calculate the distance from the object to the camera 

by triangulation. In the field of space exploration, the baseline of two cameras is not 

long considering the limitations of the lander size. In order to achieve high detection 

accuracy, SV can only be used for obstacle detection at low altitude. According to 

reference 4, the binocular stereo baseline of ~1 m or more can guarantee high detection 

accuracy at altitudes up to ~100 m. Reference 6 execute their SV algorithm 

(supplemented with a parabolic fit for computing non-integer disparity values) at 

imaging altitudes from 50m to 1000m, and give the conclusion that SV performs well 

at altitudes below 200 m for a baseline of ~2 m. 

 

 

 

 

 

 

 

 

 

 

Structure from motion (SfM) reconstructs DEM based on the motion parallax of a 

single camera as shown in Figure 6. The input is two (or multiple) images that obtained 

from the same camera at different time. A set of point features are selected from the 

first image, then these features are tracked in the second and subsequent images. These 

corresponding features are used to estimate motion state (position and attitude) of the 

camera between image acquisitions. Then this motion estimate is used to obtain terrain 

map through triangulation [7]. Since SfM calculates three-dimensional information 

based on the motion parallax of a single camera, this method only works well if lander’s 

Figure 5. Stereo vision 
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trajectory can give adequate parallax, which limits its scope of use. For example, in the 

final stage of landing, the descent trajectory of lander is almost vertical and the 

horizontal velocity is very small, SfM cannot work well at this situation. Also, SfM 

requires very accurate knowledge about spacecraft’s state [6], inaccuracies of this prior 

information will directly lead to errors in the results. Therefore, the implementation of 

SfM is much more difficult than SV. 

 

 

 

 

 

 

 

 

 

 

 

Shape from Shading (SfS) is a method to derive the surface orientation from the 

intensity value of image, then reconstruct three dimensional terrain through relationship 

between surface orientation and depth, as shown in Figure 7. It is based on the fact that 

the intensity value of given pixel point is uniquely linked to the surface orientation at 

that point. The input of SfS is a single image. In addition to the input image, the 

elevation and azimuth of the incoming sunlight have to be known. According to 

reference 7, at low altitude (within 200m), the detection result of SfS is worse than SV 

and SfM. But it works well at high altitude, it has no altitude limitation within the 

altitude range of 2 km. 

 

 

 

 

 

 

 

Figure 6. Structure from motion 
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1.4 Purpose of this research 

As introduced in section 1.3.1, there are mainly four types of obstacles on the 

planetary surface. Large craters and rocks may damage the landing gear, steep slopes 

and valleys may cause the lander to fall. In order to ensure a safe landing, the location 

and size of the obstacles need to be accurately detected during landing. So far, many 

methods have been proposed to estimate these obstacles. Among them, since the images 

of craters and rocks have obvious features, there are many related researches. But it is 

more difficult to detect slopes and there are less studies. This research focuses on the 

detection of slope surfaces on planetary surface using image processing method. 

 

1.5 Composition of this paper 

This paper is divided into five chapters. 

The first chapter introduces the background of this research, including the 

importance of obstacle detection for the space exploration, the way spacecrafts avoid 

obstacles and find suitable landing site using Chang’e 3 as an example, research status 

of obstacle detection, the purpose of this research. 

The second chapter introduces the Shape from Shading (SfS) method, its principle, 

four categories of solutions for SfS, the principles and calculation formulas for each 

method, and the advantages and disadvantages of these four solutions. 

The third chapter first tests four SfS methods introduced in the previous chapter 

Figure 7. Shape from Shading 



1.5 Composition of this paper 

 11 

and analyzes their results. Then experiments are carries out using the chosen linear 

method with Hapke bidirectional reflection model. Detection result is divided into four 

types of terrains and analyzed separately, then comes to the conclusion that the 

information provided by single image is not enough to reconstruct the slope surfaces. 

The fourth chapter introduces a SfS method combined with low resolution DEM, 

using single image and corresponding low-resolution DEM as input to reconstruct 

surface shape. Experimental results show that this method can reconstruct overall 

terrain and detailed small obstacles. 

The fifth chapter is the summary and future work. 
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2 Shape from shading (SfS) 

Three passive sensors-based methods are introduced in Section 1.3.3. Compared with 

stereo vision and motion stereo, shape from shading has the following advantages: (1) 

Only a single image is used. (2) No high-precision image matching is required. (3) 

Imaging altitude has little effect on detection result. Within 2 km altitude, SfS is altitude 

independent and it is possible to detect obstacles with high accuracy. Therefore, SfS is 

chosen for this research.  

This chapter introduces the principle of SfS, four types of approaches for SfS 

problem and their advantages and disadvantages. 

 

2.1 Introduction of SfS 

Shape from shading (SfS) is a method that uses spatial distribution of image 

brightness of the target surface to reconstruct the three-dimensional shape of an 

object. For an actual image, the distribution of brightness is determined by the 

physical reflection characteristics of the object surface, the position and parameters 

of the camera (observer), the normal direction of the surface, the illumination 

conditions, etc. In order to simplify this recovery problem, previous studies have 

introduced several assumptions: (1) the surface reflection coefficient (albedo) is 

uniform, (2) the surface is illuminated by a distant point source, (3) imaging 

geometry is orthogonal projection. To solve SfS problem, it is important to learn 

how image is formed. A simple model which is often used is Lambert model. This 

model assumes the surface of the object is a perfect diffusing surface, that the 

reflection coefficient is constant. The schematic diagram of geometry of this model 

is shown in Figure 8. Assuming that the reflection coefficient is 1, the intensity of 

the image is determined only by the angle between the surface normal and the light 

source direction (referred as incident angle), which is expressed as equation (2.1).
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 𝐼 = cos 𝑖  (2.1) 

where 𝐼 is the intensity value, 𝑖 is incident angle. 

The direction of camera is used as the z-axis to create a coordinate system. For this 

coordinate system, the surface normal is defined as the orientation of a vector 

perpendicular to the tangent plane on the object surface. The surface gradients are 

defined as the rate of change of depth in the 𝑥 and 𝑦 directions, respectively. The 

surface slant is defined as the angle between the surface normal and viewing direction, 

tilt is defined as the angle between the projection of surface normal on the image plane 

and the horizontal axis. The relationship between surface depth 𝑧(𝑥, 𝑦), surface normal 

𝑛.⃗ = (𝑛0, 𝑛1, 𝑛2), surface gradient (𝑝, 𝑞), surface slant 𝜎  and tilt 𝜏  are shown as 

equations (2.2), (2.3) and (2.4). 

 𝑝 = 78
79
	, 𝑞 = 78

7;
	 (2.2) 

 𝑛0 = sin 𝜎 cos 𝜏 , 𝑛1 = sin 𝜎 sin 𝜏 , 𝑛2 = cos 𝜎  (2.3) 
 𝑝 = −?@

?A
, 𝑞 = −?B

?A
  

  (2.4) 

For light source direction 𝐿.⃗ = (−𝑝D, −𝑞D, 1) and surface normal 𝑛.⃗ = (−𝑝,−𝑞, 1), 

equation (2.1) can be expressed as a function of (𝑝, 𝑞) as follows.  

 𝐼 = ?.⃗ 	∙	G.⃗

|?|	∙|G|
= 0IJJKILLK

M0IJBILBN0IJKBILKB
= 𝑅(𝑝, 𝑞)	             (2.5) 

This equation is called the image-irradiance equation. Function 𝑅(𝑝, 𝑞) is referred 

as reflectance map (as shown in Figure 9), it is a set of iso-brightness contours that 

connects the surface gradients which appear the same brightness.

 

Figure 8. Schematic diagram of geometry of Lambert model  
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In order to solve the SfS problem, it is necessary to calculate the surface gradients 

𝑝 and 𝑞 using the known image brightness, then obtain the depth of the surface 

through the relationship between surface gradients and depth. However, since only 

one image brightness value is known, it is impossible to calculate two unknowns 𝑝 

and 𝑞. In order to solve this problem, it is necessary to regularize the problem by 

introducing attributes and assumptions about the surface shape of the target object. 

Regarding the methods of regularization, the solutions of SfS can be classified into 

four categories [8]: minimization approaches, propagation approaches, local 

approaches, and linear approaches. 

 

2.2 Four approaches for SfS problem 

2.2.1 Minimization approaches 

Minimization approaches solve the SfS problem by minimizing the energy function 

which is composed of various constraints over the entire image. The key of this 

approach is to introduce appropriate constraints to construct energy equation. The 

commonly used constraints include the following four constraints. 

Brightness constraint indicates the total brightness error of the reconstructed image 

compared with the input image, and is given by  

Figure 9. Reflectance map 
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 ∬Q𝐼(𝑥, 𝑦) − 𝑅(𝑝, 𝑞)R
1𝑑𝑥𝑑𝑦                     (2.6) 

Smoothness constraint ensures a smooth surface in order to stabilize the 

convergence to a unique solution, and is given by 

 ∬Q𝑝91 + 𝑝;1 + 𝑞91 + 𝑞;1R
1𝑑𝑥𝑑𝑦                     (2.7) 

Intensity gradient constraint requires that the intensity gradient of the reconstructed 

image be close to the intensity gradient of the input image in both the 𝑥 and 𝑦 dire-

ctions, and is given by 

 ∬((𝑅9 − 𝐼9)1 + (Q𝑅; − 𝐼;R
1)𝑑𝑥𝑑𝑦                 (2.8) 

Integrability constraint ensures valid surfaces, that is, 𝑧9,; = 𝑧;,9, and is given by 

 ∬((𝑧9 − 𝑝)1 + (Q𝑧; − 𝑞R
1)𝑑𝑥𝑑𝑦                   (2.9) 

There are many minimization approaches proposed by researches, here introducing 

several approaches that are commonly used. 

One of the earliest minimization approaches is proposed by Ikeuchi and Horn [9]. 

They constructed their energy function using brightness constraint and smoothness 

constraint, then calculated shape by minimizing the energy function iteratively, using 

occluding boundary information to supply boundary conditions. In order to 

incorporate occluding boundary information, they proposed a method that employ 

stereographic plane to express the orientation of surface patches, rather than more 

commonly used gradient space. 

Lee and Kuo [10] used brightness constraint and smoothing constraint, and proposed 

a method that combine SfS with triangular element surface model. This method 

approximates surface by the union of triangular patches, directly relates the image 

brightness to nodal height. By using brightness errors as cost function, the SfS 

problem becomes a quadratic function minimization problem with node height as 

parameter. Then the smoothness constraint is added to cost function to iteratively 

obtain the height of all nodes. 

Horn [11] also proposed a method that uses brightness constraint and integrability 

constraint. This method enforces integrability of the surface gradient field, and it is 

able to reconstruct the surface height 𝑧 and the surface gradients 𝑝 and 𝑞 simult-

aneously.  

The energy function is shown as following, 

 		∬Q𝐼(𝑥, 𝑦) − 𝑅(𝑥, 𝑦)R
1 + 𝜇((𝑧9 − 𝑝)1 + (Q𝑧; − 𝑞R

1)𝑑𝑥𝑑𝑦      (2.10) 

where 𝜇 is a weighting factor. 
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Then minimizing this energy function. Since no partial derivatives of 𝑝 and 𝑞 

appear in this equation, the minimization of this equation is an ordinary calculus 

problem. Differentiating equation (2.10) with respect to 𝑝 and 𝑞 and setting the 

resulting equation to zero, it leads to 

 
		𝑝 = 𝑧9 +

0
V
(𝐼 − 𝑅)𝑅J

𝑞 = 𝑧; +
0
V
(𝐼 − 𝑅)𝑅L

                      (2.11) 

Since 𝑧 does not appear in brightness constraint part, the problem reduces to 

minimize the integrability error part. The Euler equation for this variational problem 

is 

 		Δ𝑧 = 𝑝9 + 𝑞;                          (2.12) 

Using the discrete approximation of the Laplacian operator {Δ𝑓}[\ = 𝜀1 𝜅⁄ (𝑓[̅\ −

𝑓[\) leads to 

 		𝑧[\
(?I0) = 𝑧̅(?) − aB

b
(𝑝9 + 𝑞;)                   (2.13) 

where 𝑧[,\
(?I0) is the 𝑧 value of pixel (𝑖, 𝑗) at iteration 𝑛 + 1, 𝑧	̅ is the local 

average of 𝑧	at iteration 𝑛. 𝜅 is the number of nonzero entries in the discrete 

Laplacian filter minus one, 𝜅 = 4 when the local average 𝑧 is computed using the 

four adjacent neighbors. 𝜀 is the spacing between image cells. 

The coupled system of equations for 𝑝, 𝑞, 𝑧 suggests an iterative scheme, 

 

𝑝[\
(?I0) = {𝑧9}[\

(?) + 0
V
(𝐼 − 𝑅)𝑅J

𝑞[\
(?I0) = {𝑧;}[\

(?) + 0
V
(𝐼 − 𝑅)𝑅L

𝑧[\
(?I0) = 𝑧[̅\

(?) − aB

b
({𝑝9}[\

(?I0) + {𝑞;}[\
(?I0))

		             (2.14) 

Zheng and Chellappa [12] introduced intensity gradient constraint and constructed 

their energy function using brightness constraint, intensity gradient constraint and 

integrability constraint. Their energy function is expressed as,  

d𝐹(𝑝, 𝑞, 𝑧)𝑑𝑥𝑑𝑦

𝐹 = Q𝐼(𝑥, 𝑦) − 𝑅(𝑝, 𝑞)R1 + ((𝑅9 − 𝐼9)1 + (Q𝑅; − 𝐼;R
1) + 𝜇 f(𝑝 − 𝑧9)1 + Q𝑞 − 𝑧;R

1g
 

  (2.15) 

The minimization of equation (2.15) is equivalent to solving the following Euler 

equations, 
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𝐹J −
7
79
𝐹Jh −

7
7;
𝐹Ji = 0

𝐹L −
7
79
𝐹Lh −

7
7;
𝐹Li = 0

𝐹8 −
7
79
𝐹8h −

7
7;
𝐹8i = 0

		                      (2.16) 

By approximating the reflectance map by Taylor series expansion of up to first-

order terms, it is able to obtain expressions for 𝐹J, 𝐹Jh, 𝐹Ji,	𝐹L, 𝐹Lh, 𝐹Li, 𝐹8, 𝐹8h, 𝐹8h in 

equation (2.16).  

Giving the expression of 𝑝, 𝑞, 𝑧 before and after updating, 

 𝑝k = 𝑝 + 𝛿𝑝, 				𝑞k = 𝑞 + 𝛿𝑞, 				𝑧k = 𝑧 + 𝛿𝑧               (2.17) 

where variable with prime (′) represent values after updating and variable without 

prime represent values before updating. 

The corresponding increments in the derivatives of 𝑝, 𝑞, 𝑧 after updating are 

 

𝑝9k = 𝑝9 − 𝛿𝑝 𝑞9k = 𝑞9 − 𝛿𝑞 𝑧9k = 𝑧9 − 𝛿𝑧
𝑝;k = 𝑝; − 𝛿𝑝 𝑞;k = 𝑞; − 𝛿𝑞 𝑧;k = 𝑧; − 𝛿𝑧

𝑝99k = 𝑝99 − 2𝛿𝑝
𝑝;;k = 𝑝;; − 2𝛿𝑝

𝑞99k = 𝑞99 − 2𝛿𝑞
𝑞;;k = 𝑞;; − 2𝛿𝑞

𝑧99k = 𝑧99 − 2𝛿𝑧
𝑧;;k = 𝑧;; − 2𝛿𝑧

   (2.18) 

  Then it is able to obtain expressions of 𝐹J, 𝐹Jh, 𝐹Ji	represented by 𝛿𝑝, 𝛿𝑞, 𝛿𝑧. 

 

1 2⁄ 𝐹J = Q𝑅 + 𝑅J𝛿𝑝 + 𝑅L𝛿𝑞 − 𝐼R𝑅J + 𝜇(𝑝 − 𝑧9 + 𝛿𝑝 + 𝛿𝑧)

1 2⁄ 7
79
𝐹Jh = Q𝑅J𝑝99 + 𝑅L𝑞99 − 𝐼99R𝑅L − 2𝑅J1𝛿𝑝 − 2𝑅J𝑅L𝛿𝑞

1 2⁄ 7
7;
𝐹Ji = Q𝑅J𝑝;; + 𝑅L𝑞;; − 𝐼;;R𝑅L − 2𝑅J1𝛿𝑝 − 2𝑅J𝑅L𝛿𝑞

	  (2.19) 

The other terms in equation (2.16) can be derived similarly, and lead to the iterative 

scheme.  

 

𝛿𝑝 = o
∆
qf𝐶0 −

0
o
𝜇𝐶2g f5𝑅J1 +

t
o
𝜇g − f𝐶1 −

0
o
𝜇𝐶2g f5𝑅J𝑅L +

0
o
𝜇gu

𝛿𝑞 = o
∆
qf𝐶1 −

0
o
𝜇𝐶2g f5𝑅J1 +

t
o
𝜇g − f𝐶0 −

0
o
𝜇𝐶2g f5𝑅J𝑅L +

0
o
𝜇gu

𝛿𝑧 = 0
o
(𝐶2 + 𝛿𝑝 + 𝛿𝑞)

	  (2.20) 

where 

𝐶0 = Q−𝑅 + 𝐸 + 𝑅J𝑝99 + 𝑅L𝑞99 − 𝐸99 + 𝑅J𝑝;; + 𝑅L𝑞;; − 𝐸;;R𝑅J − 𝜇(𝑝 − 𝑧9)
𝐶1 = Q−𝑅 + 𝐸 + 𝑅J𝑝99 + 𝑅L𝑞99 − 𝐸99 + 𝑅J𝑝;; + 𝑅L𝑞;; − 𝐸;;R𝑅L − 𝜇Q𝑞 − 𝑧;R

𝐶2 = −𝑝9 + 𝑧99 − 𝑞;+𝐸;;

∆= 4xq5𝑅J1 +
5
4𝜇u q5𝑅L

1 +
5
4𝜇u − q5𝑅J𝑅L +

1
4𝜇u

1

y

 

(2.21) 
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This method uses a pyramid algorithm to do the calculation. It starts with the 

lowest resolution layer. The iterative scheme is used to update depth and gradients 

simultaneously at each layer. Then the result is up-sampled and used as the initial 

value for next layer until the final result is obtained. 

 

2.2.2 Propagation approaches 

Propagation approaches propagate shape information from certain surface points 

where the shape either is known or can be uniquely determined (such as singular 

points) to the entire image. The commonly used methods include characteristic strips 

method and minimum downhill method. 

Horn proposed the concept of characteristic strip [13], that is, the curve traced out by 

solving the differential equations that composed of a first-order non-linear partial 

differential equation in two unknowns relating the intensity value to the shape of the 

object. The direction of characteristic strips is toward the intensity gradient. If the 

value at the starting point of this line is known, it is able to calculate the depth and 

orientation of the surface along this characteristic strip. The shape information is 

propagated outward along characteristic strips. 

Bichsel and Pentland [14] proposed a minimum downhill method based on Oliensis’s 

observation that the surface shape can be reconstructed from singular points instead of 

the occluding boundary. The minimum downhill principle used in their method is of the 

form: (1) Passing surface information only to pixels which are more distant to the light 

source (downhill principle). (2) Among different possible paths, choosing the path that 

leads the least away from the light source (minimum downhill principle). 

For a surface point (𝑥, 𝑦, 𝑧), taking a small step	(𝑑𝑥, 𝑑𝑦) and expressing it in polar 

coordinate (𝑑𝑥 = cos𝜑 𝑑𝑠, 𝑑𝑦 = sin𝜑 𝑑𝑠). Setting surface normal for this point as 

𝑛(𝑛0, 𝑛1, 𝑛2), then they should satisfy the following equation: 

 𝑑𝑥 ∙ 𝑛0 + 𝑑𝑦 ∙ 𝑛1 + 𝑑𝑧 ∙ 𝑛2 = 0                 (2.22) 

Letting the slope for surface be 𝑘(𝜑, 𝑛) = }8
}D
(𝜑, 𝑛). Then it is able to obtain, 

 𝑘(𝜑, 𝑛) = − ~���?@I ����?B
?A

                   (2.23) 

For each direction 	(cos𝜑 , sin𝜑) , finding the slope 𝑘(𝜑)  corresponding to the 

steepest ascent in this direction through the curve of constant brightness line of image-
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irradiance equation. 

 }
}�
cos𝜑 𝑝(𝛼) + sin𝜑 𝑞(𝛼) = 0                   (2.24) 

where 𝛼 is an arbitrary parameter along the curve of constant brightness. 

For each direction, there are two sets of solution. Then choosing the surface gradients 

that lead away from the light source according to the downhill principle. 

 (cos𝜑 , sin𝜑, 𝑘(𝜑)) ∙ 𝑙 ≥ 0                     (2.25) 

The height of current point (𝑥, 𝑦)  is propagated from the height value of the 

neighboring point (𝑥 + cos𝜑 𝑑𝑠, 𝑦 + sin𝜑 𝑑𝑠). Usually it leads to different estimate 

height for each direction (cos𝜑 , sin𝜑), 

 𝑧̂�I0(𝑥, 𝑦, 𝜑) = 𝑧�(𝑥 + cos𝜑 𝑑𝑠, 𝑦 + sin𝜑 𝑑𝑠) − 𝑘(𝜑)𝑑𝑠  (2.26) 

where 𝑡 is the number of iterations. 

Among all possible directions, choosing the estimate 𝑧̂  which brings 𝑧(𝑥, 𝑦) 

closest to the light direction. 

 𝑧̂�I0(𝑥, 𝑦) = max	(𝑠𝑢𝑝�Q𝑧̂�I0(𝑥, 𝑦, 𝜑)R, 𝑧�(𝑥, 𝑦)	)  (2.27) 

According to the above calculation process, this method starts from the singular 

points, follows the principle of minimum downhill to propagate height information 

from current pixel to their neighboring pixels. 

 

2.2.3 Local approaches 

The local approaches derive the shape by assuming a local surface type. This type 

of approaches always assumes a local spherical shape feature and uses the intensity 

and its first and second derivatives to estimate shape information. 

Pentland [15] suggests assumption that local surface is approximately spherical. It 

recovers shape information using the intensity value and its second derivatives. This 

method has no requirement for prior knowledge. The equations for tilt 𝜏 and slant 𝜎 

are given as following, 

 
tan 𝜏 =

�(�hh��ii)±N(�hh��ii)BIo�hiB

1�hi
	

cos 𝜎 = N
(�hhI�ii) ��� ����~B ��hi
(�hhI�ii) ��� �I��~B ��hi

   (2.28) 

There are two solutions for tilt in equation (2.28), one of them can be discarded 

because it results in an illuminant direction that behind the observed object. After 
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obtaining tilt and slant for each pixel, the surface gradients can be calculated 

according to equations (2.3) and (2.4). 

Lee and Rosenfeld [16] follows the same local spherical assumption used in 

Pentland’s method. To avoid high-order derivatives, they proposed a new method that 

only uses first derivatives of intensity to derive shape information through the 

addition of illumination coordinate system. 

Normally the surface shape is defined in the viewer coordinate system (𝑧-axis is the 

viewing direction). However, lee and Rosenfeld found out that it easier to calculate 

slant and tilt in the illumination coordinate system (𝑧-axis is the illumination 

direction). They proposed a method that calculates tilt and slant in the illumination 

coordinate first, then transform back to the viewer coordinate.  

They first give the transformation formula between illumination coordinate and 

viewer coordinate system. 

 (𝑥k, 𝑦k, 𝑧k)� = �
cos 𝜏D cos 𝜎D sin 𝜏D cos 𝜎D − sin 𝜎D
− sin 𝜏D cos 𝜏D 0

cos 𝜏D sin 𝜎D sin 𝜏D sin 𝜎D cos 𝜎D
� (𝑥, 𝑦, 𝑧)�  (2.29)      

where 𝜎D and 𝜏D are the slant and tilt of light source. (𝑥, 𝑦, 𝑧) represents 

coordinates in viewer coordinate system, (𝑥k, 𝑦k, 𝑧k) represents coordinates in 

illumination coordinate system.  

The tilt in illumination coordinate system can be obtained by 

 𝜏 = arctan �i ~�� �K��h ��� �K
�h ~�� �K ~���KI�i ��� �K ~���K

   (2.30) 

In illumination coordinate, the slant is the angle between the surface normal and 

illumination direction (𝑧-axis), there is 𝜎 = arccos(𝑁..⃗ ∙ 𝐿.⃗ ). If the reflectance map is 

given by 𝐼 = 𝜆𝜌𝑁..⃗ ∙ 𝐿.⃗  (Lambert model), where 𝜆 and 𝜌 are scalars representing the 

illumination intensity and reflectivity coefficient, then there is 𝜎 = arccos(𝐼/𝜆𝜌). 

Slant can be calculated by the ratio of intensity and 𝜆𝜌. 𝜆𝜌 at a certain point (𝑃) can 

be estimated by the intensity values of two neighboring points (𝑄, 𝑅) of point 𝑃 in 

the gradient direction at 𝑃 and on opposite side of 𝑃.  

After obtaining the slant and tilt in illumination coordinate system, using 

coordinate transform (equation (2.29)) to get surface slant and tilt in the viewer 

coordinate system. 
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2.2.4 Linear approaches 

Linear approaches calculate the solution based on the linearization of the reflection 

function. The basic idea of this method is that in the reflection function, the low-order 

terms occupy the main part and the high-order terms can be ignored. There are two 

commonly used methods, one is proposed by Pentland, the other is proposed by Tsai 

and Shah.  

Pentland [17] uses linear approximation of reflectance function, and applies Fourier 

transform to the linear function to obtain closed-form solutions for surface shape. 

They linearized the reflection function (equation (2.5)) by taking Taylor expansion of 

𝑅 around (𝑝, 𝑞) = (𝑝£, 𝑞£) up through the first order terms. 

 𝐼(𝑥, 𝑦) = 𝑅(𝑝£, 𝑞£) + (𝑝 − 𝑝£)
7¤(J,L)
7J

¥
J¦J§,L¦L§

+ (𝑞 − 𝑞£)
7¤(J,L)
7L

¥
J¦J§,L¦L§

 (2.31) 

For lambert reflectance function and (𝑝£, 𝑞£) = (0,0), equation (2.31) becomes, 

 𝐼(𝑥, 𝑦) = cos 𝜎 + 𝑝 cos 𝜏 sin 𝜎 + 𝑞 cos 𝜎 sin 𝜏            (2.32) 

Then Pentland performed the Fourier transform on both sides of the above 

equation. Using the identities: 

 
7
79
𝑧(𝑥, 𝑦) = 𝐹8(𝑤0, 𝑤1)(−𝑖𝑤0)

7
7;
𝑧(𝑥, 𝑦) = 𝐹8(𝑤0, 𝑤1)(−𝑖𝑤1)

                    (2.33) 

where 𝐹8 is the Fourier transform of 𝑧(𝑥, 𝑦), then it is able to get, 

 𝐹� = 𝐹8(𝑤0, 𝑤1)(−𝑖𝑤0) cos 𝜏 sin 𝜎 + 𝐹8(𝑤0, 𝑤1)(−𝑖𝑤1) sin 𝜏 sin 𝜎  (2.34) 

where 𝐹� is the Fourier transform of image 𝐼(𝑥, 𝑦).  

The height result can be obtained by re-arranging the terms in the above equation 

and performing an inverse Fourier transform. 

Tsai and Shah [18] proposed a method that applies the discrete approximation for 

gradients, then employs the linear approximation of the reflectance function in terms 

of the depth directly. Their algorithm recovers the depth at each point using iterative 

scheme. They first use the following discrete approximations for 𝑝	and 𝑞. 

 𝑝 = 78
79
= 𝑧[,\ − 𝑧[,\�0, 𝑞 =

78
7;
= 𝑧[,\ − 𝑧[�0,\  (2.35) 

Then the reflectance function can be rewritten as: 

 𝑓Q𝑧[,\R = 𝐼[,\ − 𝑅Q𝑧[,\ − 𝑧[,\�0, 𝑧[,\ − 𝑧[�0,\R = 0   (2.36)
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Taking the Taylor expansion of above equation about 𝑧[,\ = 𝑧[,\?�0 up through the 

first order terms to obtain: 

 0 = 𝑓Q𝑧[,\R ≈ 𝑓Q𝑧[,\?�0R + (𝑧[,\ − 𝑧[,\?�0)
7ª
78«,¬

(𝑧[,\?�0)  (2.37) 

For 𝑧[,\ = 𝑧[,\?  (the depth at 𝑛-th iteration), there is, 

 𝑧[,\? = 𝑧[,\?�0 +
�ª(8«,¬

­®@)
¯°
¯±«,¬

(8«,¬
­®@)

   (2.38) 

where 

 7ª
78«,¬

Q𝑧[,\?�0R = −1 ∗ ( (JKILK)

MJBILBI0∗NJKBILKBI0
− (JIL)∗(J∗JKIL∗LKI0)

M(JBILBI0)A∗NJKBILKBI0
) (2.39) 

Assuming the initial value for 𝑧 is 0 for all pixels, the depth result can be obtained 

using above equation iteratively. In most cases, one or two iterations is enough.  

 

2.3 Advantages and disadvantages for these four approaches 

Section 2.2 introduced four different categories of SfS approaches, including their 

principles, commonly used methods, and calculation formulas. This section analyzes 

the advantages and disadvantages of these approaches. 

Minimization approaches solve the SfS problem by minimizing the energy function 

which is composed of various constraints. Commonly used constraints include the 

brightness constraint, the smoothness constraint, the integrability constraint, and the 

gradient constraint. This type of approaches considers various possible constraints in 

the imaging process, and when appropriate constraints are combined together, a more 

stable and accurate solution can be generated. However, when the algorithm searches 

for the minimum value, if the initial condition is unknown, it is easy to fall into the 

local minimum. And if the occlusion boundary condition is used as the initial value, 

the solution may have the concave/convex ambiguity. If the singularity (the maximum 

value of the image brightness value) is used as the initial condition, although the 

concave/convex ambiguity can be avoided, the singularity may be easily confused 

with the noise point, and may result in a large difference between the restored result 

and the expectation. Moreover, the general function variation and relaxation iteration 

commonly used in the minimum approaches will lead to a slow convergence problem.  
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Propagation approaches propagate shape information from certain surface points 

whose shape is known or can be uniquely determined to the entire image. Most 

commonly used one is the minimum downhill approach. The solution process of this 

method takes advantage of the relevant differentiable properties, which implicitly 

using the smooth surface assumption. Since this method incorporates the smoothness 

assumption into the algorithm rather than directly using it as a separate constraint 

function, the problem of over-smoothing due to the introduction of second-order 

differentiation can be avoided. Usually it is able to find the global optimal solution. 

However, this method is too complicated, and the amount of calculation will increase 

as the image size increases. And since this method is to transfer the shape information 

from several known points to the whole image, it requires strict prior knowledge (e.g. 

depth value of singularities). For actual images, this prior knowledge is very difficult 

to obtain. One way to do this is to assign the initial depth value for singular points as a 

fixed positive value and initialize the depth values for other points to large negative 

values as they did in reference 14. This usually works for synthetic images. But for 

actual images which include noises, it may occur large errors and resulting in unstable 

evolution. 

Local approaches derive the shape by assuming a local surface type. This method 

mainly assumes a local spherical shape feature and uses the first and second 

derivatives of the intensities to calculate slant and tilt. This type of approaches is to 

solve the height value of the object surface by combining the reflection model with 

the assumed local shape of the surface to form equations about the local shape. 

Therefore, when the surface of the object satisfies the local shape assumption, this 

method works well, but it fails when the object surface does not satisfy shape 

assumptions. However, the local approach is simple and intuitive, it can directly 

obtain the local shape of the object surface without multiple iterations, the calculation 

is very fast. 

Linear approaches calculate the solution based on the linearization of the reflection 

function. The basic idea of this method is that in the reflection function, the low-order 

terms occupy the main part and the high-order terms can be ignored. The linearized 

result after performing the Taylor expansion and discarding the nonlinear term is very 

close to the original function. Therefore, this method works well for surface whose 

higher order terms are not significant, but it fails when higher order terms are more 
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important. And similar to the local method, since it uses the linearization assumption 

of the reflection function, the recovery result is only an approximation to the real 

solution. Again, its calculation is very fast.
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3 Experimental results for SfS 

3.1 Experimental results for selected SfS algorithms 

3.1.1 Four selected SfS algorithms 

According to the analysis in section 2.3, these four types of approaches use different 

assumptions about the surface shape, and each has their own advantages and 

disadvantages. It may be not objective and accurate enough to determine which type 

of approach is more suitable for processing the image on planetary surface only by 

theoretical analysis, therefore all four approaches are tested here. 

In this section, we implemented one minimization, one propagation, one local, and 

one linear method. An important criterion for method selection is whether the method 

is easy to find and easy to make an implementation.  

For minimization approaches, four algorithms are mainly introduced in section 

2.2.1. Lee and Kuo’s method approximates surface by a union of triangular patches. 

According to the experimental results in reference 2, the calculation time for a 

synthetic image with 128 x 128 pixels is over 100s. It is significantly slower than 

other approaches, thus this method is not considered. The other three methods use 

variational calculus to minimize the energy function. Among them, Zheng and 

Chellappa’s method uses intensity gradient constraint instead of smoothness 

constraint (which may cause over-smoothing problem) to ensure the convergence of 

iteration process. It also incorporates integrability constraint, thus it is able to 

reconstruct the surface height 𝑧 and surface gradients 𝑝 and 𝑞 simultaneously. 

And there is no special requirement for the initialization of the boundary, the initial 

values for both depth and gradients can be zero. Therefore, Zheng and Chellappa’s 

method is chosen.  

For propagation approaches, characteristic strips method and minimum downhill 

method are introduced in section 2.2.2. Characteristic strips method propagates shape 

information along the characteristic strips, and the initial known curve is required. 

This initial surface curves are often constructed around the neighborhoods of singular 



3.1 Experimental results for selected SfS algorithms 

 26 

points using a local spherical shape assumption and several additional information, 

the local normal of singular points and whether the surface is convex or concave with 

respect to the observer at this point. Compared with this method, minimum downhill 

method requires less additional information that only the depth value of singular 

points is needed. It is simpler and easier to implement, and it can directly recover 

depth and guarantee a continuous surface. Therefore, the minimum downhill method 

is chosen. 

For local approaches, Pentland’s method, Lee and Rosenfeld’s method are 

introduced in section 2.2.3. These two methods follow the same local spherical 

assumption. Pentland’s method recovers the shape using the first and second-order 

derivatives of intensity. Lee and Rosenfeld’s method is an improved method based on 

Pentland’s method. They proposed coordinate transformation between viewer 

coordinate system and illumination coordinate system, which simplify the calculation. 

And their method only uses first derivatives of intensity to derive shape information, 

which is able to avoid problem caused by high-order derivatives and less sensitive to 

noises. Therefore, Lee and Rosenfeld’s method is chosen.  

For linear approaches, Pentland’s method, Tsai and Shah’s method are introduced 

in section 2.2.4. Pentland’s method uses the linear approximation of the reflectance 

function in terms of surface gradients and applies Fourier transform to the linear 

function to obtain depth at each point. Tsai and Shah’s method applies the discrete 

approximation of surface gradients first, then employs the linear approximation of the 

reflectance function in terms of the depth directly. Since Pentland’s method uses 

Fourier transform and inverse Fourier transform, it is time consuming. While Tsai and 

Shah’s method does not, it is simpler and faster. Therefore, Tsai and Shah’s method is 

chosen. 

 

3.1.2 Experimental results 

Here, we used the observation data of KAGUYA (SELENE) disclosed by reference 

19. This archive provides the images of lunar surface and the corresponding digital 

elevation maps (DEMs). The main purpose of this section is to compare the results of 

four selected methods and to determine which method is most suitable for this 

research. Therefore, here using a relatively simple mosaic image to perform 
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experiments. This mosaic image is created from multiple lunar surface images with 

less shadow parts, thus it is a relative clean image with less noises. 

Since the image used here is a mosaic image that composed of several images taken 

in real-time, the direction of the light source is not given. Here we used the method 

proposed in reference 16 to estimate the light source direction. In reference 16, they 

used the assumption that the changes in surface orientation are isotropically 

distributed. When this assumption is translated into a mathematical statement in terms 

of tilt and slant, the probability density function for slant is (sin 𝜎)/2𝜋. Then they 

proved that the tilt and slant of illumination direction can be estimated by 

expectations of image and expectations of the first derivatives of image, which are 

 
𝜏G = arctan(𝐸{𝐼;}/𝐸{𝐼9})

𝜎G = arccos(2´µ�
B¶

·B¸B
− 1)

                    (3.1) 

where 𝜏G, 𝜎G are the tilt and slant of illumination direction, the expectation is taken 

over the given image region. 

The size of image we used here is 512 x 512 pixels. The image and corresponding 

DEM are shown in Figure 10 (a), (b), respectively. Four selected SfS methods, Zheng 

and Chellappa’s method, Bichsel and Pentland’s method, Lee and Rosenfeld’s 

method, Tsai and Shah’s method were applied to the image. In the implementation of 

Zheng and Chellappa’s method, the weighting factor for integrability constraint 𝜇 is 

set to 1 as suggested by authors. In the implementation of Bichsel and Pentland’s 

method, the initial depth values for singular points are all assigned to a fixed positive 

value. The height detection results are shown in Figure 11. Since the calculation result 

of SfS is relative height value, the height range of the detection results are mapped to 

the same height range as the DEM. 
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According to the detection results in Figure 11, it can be seen that the detection 

result of Bichsel and Pentaland's method is very bad, it cannot restore the surface 

shape at all. This is due to the inaccuracy of the given initial information, that is, the 

depth value of singular points. This method requires prior knowledge, the depth value 

for certain surface points need to be known. Since this prior knowledge is not 

available, we directly assigned the depth of singular points to a same positive value. 

(a) Image

Figure 10. Image and corresponding DEM for lunar surface 

(b) DEM
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Then the shape information of these singular points is propagated to the surrounding 

points, in this process, the error of them is also propagated. If the prior knowledge is 

not accurate enough, it will directly lead to poor recovery result. For synthetic image 

which is simpler and with fewer noises, using depth value of singular points as prior 

knowledge may work well. But for real image, the singular points and noises are often 

mixed together, thus the noise point may be mistakenly selected as a singular point. 

Also, since the actual depth value of each singular points is different, assigning them 

as same value is not reasonable. Therefore, this method is not suitable for real 

planetary surface images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Zheng and Chellappa’s method (b) Bichsel and Pentland’s method

(d) Tsai and Shah’s method(c) Lee and Rosenfeld’s method  

Figure 11. Height detection results for four SfS methods  
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The detection result of Lee and Rosenfeld’s method is also poor. Although the 

position of the craters can be roughly detected, the overall result is very bad, there are 

lots of noise points and it is difficult to see the overall terrain changes. This is because 

that this method estimates depth using local spherical assumption and intensity 

derivatives. It is very sensitive to noises and not suitable for non-spherical surfaces. 

This is because that when there is no available prior knowledge, this method tends 

to fall into a local minimum when searching for the minimum value (if the height 

values of singular points are used as prior knowledge, the same problem as in Bichsel 

and Pentlang’s method will occur). Also, there are distortions along image 

discontinuities. While for Tsai and Shah’s method, it shows the best result. The 

approximate shape is recovered, and it is able to preserve more details.  

There are mainly two problems with these two methods: (1) The reconstruction 

results of craters are not good. The image of crater has the feature that the part facing 

the direction of the light source is very bright, and the rest part facing away from the 

light source is very dark. SfS estimates shape information based on the intensity value 

of each pixel, it cannot process shadow parts, thus the shape of craters cannot be 

recovered well. In the detection result of Zheng and Chellapa’s method, the height 

value of edges of craters tends to be too high. In the detection results of Tsai and 

Shah’s method, the height result of craters presents a problem that the partial height 

value is too high, and the partial height value is too low. (2) The reconstruction result 

of regions that height slowly changing is not good. For this kind of feature, the 

intensity values change is also not obvious. It is very hard for SfS to capture these 

slow changes, thus the error of recovered height of this part is large. 

Based on the above analysis, Bischel and Pentland's method, Lee and Rosenfeld’s 

method are not applicable for this research. The height values recovered from Lee and 

Rosenfeld’s method, Tsai and Shah’s method are not accurate, but the positions where 

the height value changes can be detected. Since the error of height value is very large, 

it is not meaningful to compare the height results directly with the DEM. So here first 

using height detection results to calculate the slope results (the change in height 

value), then comparing the slope detection results with slope map calculated from 

DEM for quantitative analysis. The slope results are shown in Figure 12 (a), (b), the 

slope map calculated from DEM is shown in Figure 12 (c). Figure 13 shows slope 
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error results for Lee and Rosenfeld’s method, Tsai and Shah’s method, respectively. 

The mean error and standard deviation of slope error are shown in Table 1. From the 

slope results, it can be seen that the slope error of these two methods are not much 

different. Both methods can detect the large slope changes but failed to detect small 

changes and details. The main problem is the crater parts and areas that height 

gradually changing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Zheng and Chellappa’s method

(c) Slope map generated from DEM

Figure 12. Slope detection results 

(b) Tsai and Shah’s method 
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Table 1. Average and standard deviation of slope error 

Methods Average slope error (°) Standard deviation of slope error (°) 

Zheng and Chellappa 12.8003 11.9930 

Tsai and Shah 11.7996 11.9475 

 

Table 2 gives the computation time for these four methods. 

 

Table 2. Computation time for four methods 

Methods Computation time (s) 

Zheng and Chellappa 12.012066 

Bichsel and Pentland 5.270131 

Lee and Rosenfeld 0.895480 

Tsai and Shah 1.238389 

 

 

Figure 13. Slope error results 

(a) Zheng and Chellappa’s method (b) Tsai and Shah’s method
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Based on the experimental results (the height detection results in Figure 11 and the 

slope results in Figure 12, 13) and the theoretical analysis in section 2.3, it can be 

concluded that: 

(1) Propagation approach is not suitable for this research. This approach requires 

prior knowledge (e.g. the height of singular point(s)), while it is difficult to obtain such 

priori knowledge in the actual image. We tried to deal with this problem by setting the 

height values of all singularities to the same value and used as prior knowledge as 

Bichsel and Pentland did. However, the detection result shows that it did not work well, 

the basic shape was failed to be recovered.  

(2) Local approach is not suitable for this research. This approach often assumes a 

local spherical shape feature and uses derivatives of the intensities to recover shape 

information. It is simple and fast. But it only works well when the surface of the object 

satisfies the local shape assumption. It is not suitable for non-spherical surfaces and 

very sensitive to noise. The detection result is very noisy and failed to capture the 

overall terrain changes.  

(3) Minimization approach can reconstruct the three-dimensional topography of the 

lunar surface. Since this method obtains solution of SfS by minimizing the energy 

function, the constraints used for constituting the energy function will directly affect 

the detection results. It is very important to choose the appropriate constraints. We 

tested the Zheng and Chellappa's method which considers three constraints, brightness 

constraint, intensity gradient constraint and integrability constraint. The detection result 

shows that this method is able to recover the approximate shape, but there are 

distortions along image discontinuities. And the calculation time is the longest.  

(4) Linear approach shows best performance. This approach recovers shape based on 

the linearization of the reflection function. The algorithm is relatively simple, does not 

require priori knowledge about occlusion boundaries or singular points. The detection 

result shows that this method can recover the approximate shape, while preserving more 

details. And since the search for solutions is limited to a local range, the algorithm is 

quite fast.  

Therefore, the Tsai and Shah’s method (linear approach) is chosen for this research.
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3.2 Hapke model 

In the previous section, the lambert model was used to implement experiments. This 

most commonly used model in the traditional solution of SfS is too simple. In order to 

further improve the detection results, we considered using another model which is more 

suitable for the reflection characteristics of the planetary surface, Hapke bidirectional 

reflection model.  

 

3.2.1 Introduction of Hapke model 

Hapke model, proposed by Bruce Hapke [21], is a bidirectional reflection model that 

considers multiple scattering (isotropic) and particle mutual shadowing effects. It is 

designed to study light scattering properties of planetary surfaces. It is based on 

radiation transmission, divides the received radiation into two parts: single-scattered 

radiation and multiple-scattered radiation. The single-scattered radiation is accurately 

calculated, and the multiple-scattered radiation is assumed to be isotropic. Figure 14 

shows the geometry of the light source, target surface, and viewpoint in the Hapke 

model. The bidirectional reflectance function is expressed as equation (3.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Schematic diagram of geometry of Hapke model 
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 𝑅(𝑖, 𝑒, 𝑔) = »
o¼

V§
V§IV

µQ1 + 𝐵(𝑔)R ∙ 𝑝(𝑔) + 𝐻(𝜇£)𝐻(𝜇)¶𝑆(𝑖, 𝑒, 𝑔, 𝜃)  (3.2) 

where 𝑖 is the incident angle, 𝑒 is the emission angle, 𝑔 is the phase angle, 𝑤 is the 

particle single-scattering albedo, 𝜇£ and 𝜇 are cos 𝑖 and cos 𝑒, respectively. 

  The opposition effect functions 𝐵 include the Shadow-Hiding Opposition Effect 

(SHOE) function 𝐵ÁÂ(𝑔) and the Coherent Backscatter Opposition Effect (CBOE) 

function. They are expressed as: 

 𝐵ÁÂ(𝑔) =
ÃÄ§

0I(0/ÅK) ���(Æ/1)
   (3.3) 

where ℎD is the width of SHOE, 𝐵Á£ is the amplitude of SHOE. 

 𝐵ÈÂ(𝑔) = 𝐵È£
0I@®É

®(@/ÊË) ÌÍÎ(Ï/B)]

(@/ÊË) ÌÍÎ(Ï/B)]

1[0I(0/ÅË) ���(Æ/1)]B
   (3.4) 

where ℎÈ  is the width of CBOE, 𝐵È£ is the amplitude of CBOE. 

  The single-particle angular scattering function 𝑝(𝑔) represents the change in the 

reflected light intensity with respect to the phase angle in the case of single scattering. 

Various phase functions have been proposed in which the empirical equation of the 

Henyey-Greenstein phase function is given by: 

 𝑝(𝑔) = 0�ÒB

(0I1Ò ~��ÆIÒB)A/B
   (3.5) 

where 𝜉 is asymmetry parameter. 

  𝐻-functions are for isotropic scattering, which can be approximated by: 

 𝐻(𝑥) = 0I19
0I1	Ô9

   (3.6) 

where 𝑥 is either 𝜇£ or 𝜇, 𝛾 = √1 − 𝑤. 

The shadowing function 𝑆  corrects the measured bidirectional reflectance for a 

smooth surface to the reflectance of the same surface characterized by a mean slope 

(photometric roughness) angle 𝜃 , which is a measure of the surface texture at a 

resolution that is below the detector limit. 

The Hapke model contains lots of parameters, and the value of each parameter 

varies according to the terrain type. Reference 22 gives the values of Hapke 

parameters for several asteroids, as shown in table 3 (CBOE is not considered). 
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Table 3. Hapke parameters for several asteroids  

Object Phase 𝑤 𝐵Á£ ℎD 𝜉 𝜃 

Ave. C-type <25° 0.037±0.003 1.03±0.01 0.025±0.001 -0.47±0.01 (20°) 

Ave. S-type <25° 0.23±0.02 1.32±0.03 0.020±0.001 -0.35±0.01 (20°) 

Geres (G) 1-22° 0.057±0.004 1.58±0.01 0.059±0.006 -0.40±0.01 (20°) 

Vesta (V) 2-25° 0.040±0.03 1.03±0.10 0.044±0.010 -0.30±0.03 (20°) 

Ida (S) 1-110° 0.218�£.£0£I£.£1o 1.53±0.10 0.020±0.005 -0.33±0.01 18±2° 

Mathilde (C) 1-140° 0.035±0.006 3.18±1.0 0.074±0.003 -0.25±0.04 19±5° 

 

3.2.2 Simplification of Hapke model 

As mentioned in the previous section, Hapke model contains many free parameters, 

the values of these parameters are different for different topography. And the accurate 

determination of these free parameters directly from the data inversion (model fitting) 

is difficult. In order to minimize this issue and reduce the computation, the Hapke 

model is simplified according to reference 23.  

Theoretically, the coherent backscatter opposition effect (CBOE) dominates only at 

very low phase angles (< 3◦), thus CBOE is not considered here. The calculation of 

shadowing function 𝑆 is too complex and it is ignored here. Then further simplifying 

the model by setting 𝐵ÈÂ(𝑔) to 0 and setting 𝑝(𝑔) to 1. According to the analysis 

in reference 23, the scattering of lunar surface can be considered isotropic, thus 𝑝(𝑔) 

is set to 1, then the phase angle is negligible, thus 𝐵(𝑔) is 0. This not only simplifies 

the expression of the Hapke model, but also guarantees that singularity does not 

occur, and retaining the basic properties of the Hapke model. The simplified model is 

expressed as: 

 𝑅(𝑖, 𝑒) = »
o¼

~�� [
~�� [I~�� Ø

0I1~�� [
0I1Ù~�� [

0I1~�� Ø
0I1Ù~�� Ø

   (3.7) 

Now there are only three parameters, incident angle 𝑖, emission angle 𝑒 and 

single-scattering albedo 𝑤 are needed. The parameter 𝑤 is selected according to 

Hapke parameters of the moon table given in reference 24, 𝑤 is set to 0.25 

corresponding to average terrains. Angle 𝑖 and 𝑒 are related to the sun position and 
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camera position when the photo was taken and can be obtained from the image 

description file. 

Then combining this simplified Hapke model with the Tsai and Shah’s method. For 

light source direction 𝐿.⃗ = (−𝑝D, −𝑞D, 1), and camera direction 𝐶 = (−𝑝Ø, −𝑞Ø, 1), 
we can get:  

 cos 𝑖 = ?.⃗ ∙G.⃗

|?|∙|G|
= 0IJJKILLK

M0IJBILBN0IJKBILKB
   (3.8) 

and 

 cos 𝑒 = ?.⃗ ∙È⃗
|?|∙|È|

= 0IJJÉILLÉ

M0IJBILBN0IJÉBILÉB
  (3.9) 

Substituting the above two expressions into equation (3.7) gives the reflectance 

function of the Hapke model in terms of surface gradients (𝑝, 𝑞):  

 𝑅(𝑝, 𝑞) = »
o¼

ÈÉÚK
ÈKÚÉIÈÉÚK

ÚÈKI1ÚK
ÚÈKI1ÙÚK

ÚÈÉI1ÚÉ
ÚÈÉI1ÙÚÉ

  (3.10) 

where 

 𝐶D = M1 + 𝑝D1 + 𝑞D1    (3.11) 

 𝐶Ø = M1 + 𝑝Ø1 + 𝑞Ø1   (3.12) 

 𝐹D = 1 + 𝑝𝑝D + 𝑞𝑞D   (3.13) 

 𝐹Ø = 1 + 𝑝𝑝Ø + 𝑞𝑞Ø   (3.14) 

 𝐹(𝑝, 𝑞) = M1 + 𝑝1 + 𝑞1    (3.15) 

Similar to the analysis process of Tsai and Shah's method described in section 2.2.4, 

using the finite difference to get a discrete approximation of surface gradients, then 

getting the iterative scheme as follows.  

 𝑓Q𝑧[,\R = 𝐼[,\ − 𝑅Q𝑧[,\ − 𝑧[,\�0, 𝑧[,\ − 𝑧[�0,\R = 0  (3.16) 

 𝑧[,\? = 𝑧[,\?�0 −
ªf8«,¬

­®@g
¯°
¯±«,¬

f8«,¬
­®@g

  (3.17) 

Assuming the initial estimate is 𝑧[,\£ = 0 for all pixels, the depth can be iteratively 

derived using above equation. 

 

3.3 Experimental results for SfS with Hapke model 

In section 3.1.2, in order to facilitate the verification of which SfS method is more 
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suitable for this research, we used the mosaic image composed of multiple lunar surface 

images for experiments. From here, we perform experiments using images taken by the 

spacecraft in real time. Here we used the data from KAGUYA (SELENE) disclosed by 

reference 19, and data from Lunar Reconnaissance Orbiter Camera (LROC) disclosed 

by reference 20. The incident angle and emission angle are given by the image 

description file. Experiments were performed on three sets of data. The detection results 

are shown in Figure 15, 16 and 17 respectively. In order to compare the height detection 

result with the DEM, the height range of the detection result is mapped to the same 

height range as the DEM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Lunar surface image (b) Corresponding DEM 

(c) Detection result  

Figure 15. Lunar surface image, corresponding DEM and detection result for data 1 
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(a) Lunar surface image 

 

(a) Lunar surface image 

 

(a) Lunar surface image 

 

(a) Lunar surface image 

 

(a) Lunar surface image 

 

(a) Lunar surface image 

 

(a) Lunar surface image 

 

(a) Lunar surface image 

(b) Corresponding DEM 

(c) Detection result  
Figure 16. Lunar surface image, corresponding DEM and detection result for data 2 

(b) Corresponding DEM 

 

(b) Corresponding DEM 

 

(a) Lunar surface image 

 

(a) Lunar surface image 
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By observing the height detection results, it can be found that:  

(1) Similar to the experimental results in section 3.1.2, even if the Hapke model 

which is more consistent with lunar surface reflection is used, SfS can only roughly 

recover the approximate shape, the error of height value is still large.  

(2) Although the height value error is large, it is able to detect the position that height 

changes, that is, SfS is effective for detecting obvious obstacles.  

(3) Unlike the mosaic image used in section 3.1.2, there are many shadow parts in 

the image captured in real time. Since SfS recover the object’s three-dimensional shape 

according to the distribution of image brightness, it cannot process shadow. Therefore, 

the height values of these shadow parts cannot be correctly recovered. 

(4) Different types of obstacles have different detection results. For obstacles that 

have obvious characteristics such as craters and valleys, they can be clearly detected. 

However, the slope surfaces cannot be detected, the overall terrain of detection result 

tends to be flat. Thus the detection results for different types of terrains are discussed 

separately. 

The images, corresponding DEMs and detection results for craters, valleys and slope 

surfaces are shown in Figure 18, 19, and 20, respectively. 

 

 

 

 

(c) Detection result  

 

(b) Corresponding DEM 

 

Figure 15. Lunar surface 

image and the 

corresponding DEM(b) 

Corresponding DEM 

 

(b) Corresponding DEM 

 

(c) Detection result  

 

(b) Corresponding DEM 

 

Figure 15. Lunar surface 

image and the 

corresponding DEM(b) 

Corresponding DEM 

 

(b) Corresponding DEM 

Figure 17. Lunar surface image, corresponding DEM and detection result for data 3 
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For image of crater, the part facing the direction of the light source is very bright, 

and the part facing away from the light source is very dark. Since the image of crater 

has such feature, and SfS recovers shape based on intensity values, the recovered height 

result also has similar feature, that the height result of the part facing the light source 

direction is very high, and the height result of the part facing away from the light source 

direction is very low. Although the recovered result is not accurate, the craters and non-

crater parts can be clearly distinguished. Small craters can also be detected. 

The result of valley is similar to the crater. SfS cannot recover the shadow parts and 

the height result is not accurate. But overall, it is easy to distinguish the location of the 

valleys from the detection result. 

 

 

 

 

 

(b) Corresponding DEM (a) Image  (c) Detection result 

Figure 18. Image, corresponding DEM, detection result of crater 

Figure 19. Image, corresponding DEM, detection result of valley 

 

(b) Corresponding DEM (a) Image (c) Detection result 
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For slope surfaces, it cannot be detected by current method. According to DEM 

(Figure20 (b)), the overall terrain of this part should be a slope surface that height is 

constantly changing. But in the detection result (Figure20 (c)), this slope change did 

not be detected by SfS, it shows a relatively flat plane except for some small craters. 

This is because that, except for these small craters, the intensity values of this part 

change in a small range, and the intensity change between adjacent points is very small. 

Since SfS recovers shape based on the intensity value of pixels and the change between 

adjacent pixels, it cannot detect such slope surface.  

At first, we considered that this small intensity value change between pixels may be 

related to the direction of the light source. When the light source direction is consistent 

Figure 20. Image, corresponding DEM, detection result of slope surface 

(b) Corresponding DEM (a) Image  (c) Detection result 

(d) DEM viewing from side 
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with the descent direction of the slope when imaging, it may result in a very 

insignificant change in brightness. So we found some images of slope surfaces, that the 

light source direction is perpendicular, parallel, or have a certain degree to the descent 

direction of the slope surface. However, the brightness distribution change for slope 

surfaces are all small for different situations.  

If the image contains slope surface information, the change in brightness value 

should correspond to the change in the height of this slope surface. But in fact, by 

observing the image of slope surface (Figure20 (a)), it is impossible even for human 

eye to find out that this part is actually a slope surface but not a plain. There is not 

enough information provided by a single image, therefore only using SfS cannot 

recover the shape of slope surfaces. In order to detect slope surfaces, additional shape 

information is required. 
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4 SfS combined with low resolution DEM 

In last chapter, we performed experiments using SfS with Hapke model and 

analyzed the detection results. Then came to the conclusion that the information 

provided by a single image is not enough to reconstruct the slope surfaces. In order to 

do this, additional shape information is required. 

In this chapter, we consider a method that incorporate a low-resolution DEM into 

SfS algorithm. Using a single image and low-resolution DEM as the input to recover 

the shape.  

4.1 Related works 

Several SfS combined with low-resolution DEM algorithms have been proposed 

and developed.  

Barron and Malik [25] have proposed a method that recover the albedo and shape 

simultaneously using models normally reserved for natural image statistics. In their 

works, the albedo parameter is written as a function of surface shape and is optimized 

toward certain statistical properties. Then they built up an optimization problem that 

optimizes over the Laplacian pyramid representation of depth, to maximize the 

likelihood of a prior over the Gaussian pyramid representation of the albedo implied 

by depth. The experiment results show that their algorithm can produce a reliable and 

detailed depth result. However, it requires training datasets, which limits its 

application. 

Grumpe et al.’s method [26] separates shape and albedo and optimizes them 

alternately. The surface shape is recovered by the constraint built by input low-

resolution DEM, and the albedo is optimized by a low-pass algorithm to obtain low-

frequency information. They introduced a constraint built by the input DEM. This 

DEM constraint requires the low-pass component of a group of surface gradients to 

approach with their counterparts in the input low-resolution DEM, that is, the pair of 

surface gradients which is closest to gradients calculated from DEM is searched. 
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Then this DEM constraint is combined with brightness constraint and integrability 

constraint to construct an energy function to recover the surface shape. Their method 

is able to recover the surface shape on the basis of ensuring the overall terrain changes 

comply with the terrain given by the input DEM. And since no training sets are 

required, it is easier to perform. 

 

4.2 Proposed method 

We adopt a similar DEM constraint as Grumpe et.al introduced [26], and proposed a 

new SfS algorithm that combines the linear approach and minimization approach. The 

linear approach which has fast calculation ability is used to obtain the preliminary 

height result, and then the minimization method is applied to optimize this preliminary 

height result and make sure that the detection result complies with the general geometry 

given by the input low-resolution DEM. For the minimization approach, here no longer 

using the iterative scheme to compute surface gradients and depth iteratively, but 

instead using a heuristic algorithm only to optimize the depth result obtained in the 

previous step. The flow chart of our method is shown in Figure 21. It works in several 

steps. 

(1) The inputs of this method are a low-resolution DEM and a single image (high 

resolution). Since the resolution of the input image and the DEM are different, it’s 

necessary to use the pyramid hierarchical algorithm to decompose the input image to 

obtain images in different resolutions. Then the image is resampled to fit to the grid 

resolution of the DEM. 

(2) At each level of the pyramid, the resampled image and resampled DEM are first 

used to estimate the reflectance parameter for each pixel. Then the linear method is 

applied to obtain the preliminary depth result, and the minimization constraint is used 

to optimize this detection result. The refined depth result of current level is generated 

in this step. 

(3) The refined DEM of previous level is up-sampled and taken as the input for the 

next level, and the same processes in (2) are performed until the depth result reaches 

the same resolution as the input image. Finally, a refined pixel-level resolution depth 

result is produced. 
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Detailed procedures are described in the following sections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.1 Reflectance parameter estimation 

The Hapke reflectance model contains several different parameters describing the 

surface properties, and it is impossible to estimate all parameters. Therefore, here 

using the simplified Hapke model introduced in section 3.2.2. The reflectance 

function is expressed as, 

 𝑅ÂÛJÜØ =
»
o¼

~�� [
~�� [I~�� Ø

0I1~�� [
0I1Ù~�� [

0I1~�� Ø
0I1Ù~�� Ø

  (4.1) 

Figure 21. Flow chart of proposed method 
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For this simplified Hapke model, only one parameter, single-scattering albedo 𝑤 

needs to be estimated. According to the image-irradiance equation (𝐼 = 𝑅(𝑝, 𝑞)	), 𝑤 

can be calculated.  

At each level of hierarchy, the 𝑤 parameter is estimated using input DEM and 

image, then it is used for surface shape reconstruction. After depth result of current 

level is obtained, the depth result is up-sampled and used to compute the subsequent 

new set of 𝑤. 

 

4.2.2 Shape reconstruction 

The surface shape is reconstructed by two strategies: using the linear method 

proposed by Tsai and Shah in combination with the simplified Hapke model to obtain 

preliminary depth result, then optimizing this preliminary depth result through DEM 

constraint. This section introduces the first one.  

The simplified Hapke model is expressed as,  

 𝑅(𝑝, 𝑞) = »
o¼

ÈÉÚK
ÈKÚÉIÈÉÚK

ÚÈKI1ÚK
ÚÈKI1ÙÚK

ÚÈÉI1ÚÉ
ÚÈÉI1ÙÚÉ

  (4.2) 

where 

 𝐶D = M1 + 𝑝D1 + 𝑞D1  (4.3) 

 𝐶Ø = M1 + 𝑝Ø1 + 𝑞Ø1   (4.4) 

 𝐹D = 1 + 𝑝𝑝D + 𝑞𝑞D   (4.5) 

 𝐹Ø = 1 + 𝑝𝑝Ø + 𝑞𝑞Ø    (4.6) 

 𝐹(𝑝, 𝑞) = M1 + 𝑝1 + 𝑞1    (4.7) 

 𝛾 = √1 − 𝑤     (4.8) 

Then the image-irradiance equation (𝐼 = 𝑅(𝑝, 𝑞)	) can be rewritten as: 

 𝑓 = 𝑅Q𝑝[,\, 𝑞[,\R − 𝐼[,\ = 0   (4.9) 

Using finite differences to linearize 𝑓, it yields,  

 
𝑓 = 𝑅Q𝑝[,\, 𝑞[,\R + 𝛼 Ý

7¤
7J
∙ f7J

79
+ 7J

7;
g + 7¤

7L
∙ f7L

79
+ 7L

7;
gÞ

−𝐼(𝑖, 𝑗) − 𝛼 f𝐼9(𝑖, 𝑗) + 𝐼;(𝑖, 𝑗)g
  (4.10)          

 

where  
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(4.11) 
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    (4.13) 
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   (4.14) 
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(4.15) 

 𝑄𝐴 = ÈÉÈKLK(JÉJI0)�ÈÉÈKLÉ(JKJI0)
(ÈÉÚKIÈKÚÉ)B

   (4.16) 

 𝑄𝐵 = 1(Ù�0)ÈKLÚKI1(0�Ù)ÈKLKÚB

Ú(ÈKÚI1ÙÚK)B
   (4.17) 

 𝑄𝐶 = 1(Ù�0)ÈÉLÚÉI1(0�Ù)ÈÉLÉÚB

Ú(ÈÉÚI1ÙÚÉ)B
  (4.18) 

Taking the Taylor expansion of function 𝑓 about 𝑧[,\ = 𝑧[,\?�0 up through the first 

order terms to obtain, 

 0 = 𝑓Q𝑧[,\R ≈ 𝑓Q𝑧[,\?�0R + (𝑧[,\ − 𝑧[,\?�0)
7ª
78«,¬

(𝑧[,\?�0)  (4.19) 

For 𝑧[,\ = 𝑧[,\?  (the depth at 𝑛-th iteration), there is, 

 𝑧[,\? = 𝑧[,\?�0 +
�ª(8«,¬

­®@)
¯°
¯±«,¬

(8«,¬
­®@)

      (4.20) 

The height value given by low resolution DEM is used as initial values for 𝑧, then 

the preliminary depth result is obtained using above equation iteratively.  

 

4.2.3 Optimization  

In the previous section, the linear method is used to obtain the preliminary depth 

result. Then constructing an energy function to add the known surface shape to 

optimize this depth result. For the preliminary depth result, even using the input low 
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resolution DEM as initial height value to recover the surface shape, the detection 

result tends to be flat, the overall terrain change given by input low resolution DEM is 

lost. Therefore, this input low resolution DEM is first superimposed on preliminary 

depth result, then it is optimized by minimization method to ensure the depth result 

conform to the overall geometry given by the input DEM. 

The DEM constraint we use is also built by the input DEM, but unlike Grumpe et 

al.’s method, we use the depth value instead of surface gradients to build constraint. 

This constraint requires the low-pass component of depth value to approach with the 

input DEM. It is expressed as, 

 
𝐸8 = ∬(𝐺(𝑧) − 𝐺(𝑧á´â))1𝑑𝑥𝑑𝑦

																								= ∬(𝑔�ãäå ∘ 𝑧 − 𝑔�ãäå ∘ 𝑧á´â)
1𝑑𝑥𝑑𝑦   (4.21) 

where 𝑔�ãäå is a Gaussian filter of width 𝜎á´â, ∘ is the correlation operator.  

The energy function is built by the weighted sum of above constraint and integrability 

constraint (equation (2.9)), which is 

 
𝐸}ØJ�Å = 𝐸[?� + 𝜏𝐸ç = ∬𝐹Q𝑧, 𝑧9, 𝑧;R𝑑𝑥𝑑𝑦

𝐹Q𝑧, 𝑧9, 𝑧;R = f(𝑧9 − 𝑝)1 + Q𝑧; − 𝑞R
1g + 𝜏(𝑔�ãäå ∘ 𝑧 − 𝑔�ãäå ∘ 𝑧á´â)

1   (4.22) 

It can also generate a Euler equation,  

 𝑝9 + 𝑞; = 𝑧99 + 𝑧;; − 𝜏(𝐺(𝑧) − 𝐺(𝑧á´â)) ∙
7è(8)
78

   (4.23) 

where 7è(8)
78

=
8h	∙	

¯
¯hè(8)I8i	∙	

¯
¯iè(8)

8hBI8iB
. 

It is possible to obtain the iterative formula for 𝑧 using the above Euler equation, 

however it is quite time-consuming. Therefore, here applying a heuristic algorithm to 

find the locally optimal choice by minimizing the absolute value of the right-hand side 

of equation (4.23) for a given 𝑧. The heuristic algorithm works in several steps. 

(1) The initial values for 𝑧 are taken from the preliminary depth result. The order of 

all pixels is set to 1, indicating that the depth of this pixel is admissible for changes. 

(2) For all pixels (𝑖, 𝑗), 𝑧[,\ is increased by ℎ (ℎ is set according the the height 

range of DEM). If the error value (the absolute value of the right-hand part of the 

equation (4.23) decreased, the new 𝑧[,\ value is saved. Otherwise, the 𝑧[,\ is 

decreased by ℎ, and this new 𝑧[,\ value is saved only if the error value decreases. If 

the error value increases, the order of 𝑧[,\ is changed to 0, indicating that the depth of 

this pixel is not admissible for change anymore.  
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 (3) The above procedure is continued until the order of all pixels become 0 or the 

maximum number of loops is reached. 

A refined depth result is generated after optimization. Then it is up-sampled and 

taken as input for the next level of hierarchy until the resolution of depth result 

reaches the resolution of the image.  

 

4.3 Experimental analysis 

4.3.1 Datasets 

Three datasets were presented and used in this research. 

(1) Lunar Reconnaissance Orbiter Camera (LROC) images. LROC is a system of 

three cameras mounted on the Lunar Reconnaissance Orbiter (LRO) that capture high 

resolution images of the lunar surface. It consists of two Narrow Angle Cameras 

(NAC) and one Wide Angle Camera (WAC). Here using the LRO NAC images as the 

input images. The LRO NAC images have high resolution, 0.5—2 meters per pixel, 

they can provide very detailed lunar terrain. The images were obtained from the 

LROC Archive [20]. The details of selected images are listed in Table 4. 

(2) Digital elevation models (DEMs) provided by the LROC RDR (Reduced Data 

Record) products. RDR is a product that made from one or multiple images that are 

processed and reduced for the purpose of, for example, making a high resolution 

global digital elevation model created with stereo observations. Here using the DEMs 

provided by RDR product for the comparison purposes. These DEMs have high 

resolution (~2m/pixel), and they were also obtained from the LROC Archive [20]. 

(3) Low resolution DEM provided by SLDEM2015. The SLDEM2015 data product 

is the DEM created by the Lunar Orbiter Laser Altimeter (LOLA) data and images 

from stereo SELENE Terrain Camera (TC) datasets. The resolution is near 512 pixels 

per degree, equivalent to 60 meters per pixel near the equator, and better at higher 

latitudes. The SLDEM2015 data were obtained from the website in reference 27.  
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Table 4. Details of LROC images used in the experiments  
 

Dataset 1 Dataset 2 

Image ID M173246166 M160139273 

Resolution 2 m/pixel 2 m/pixel 

Covered longitude 308.48 — 308.75° 332.03 — 332.19° 

Covered latitude 43.60 — 44.55° -1.99 — -2.93° 

Sun azimuth 121.85° 184.41° 

Incidence angle 49.04° 50.03° 

Emission angle 16.32° 16.28° 

Phase angle 43.7° 64.1° 

Image size used in the 

experiments 

350 x 228 pixels 970 x 940 pixels 

 

The LROC image and low resolution DEM obtained from SLDEM2015 are used as 

the input to reconstruct three dimensional terrain of selected area. Then the detection 

result is compared with DEM provided by LROC RDR product to analyze the 

performance of the algorithm. 

 

4.3.2 Experimental results for dataset 1 

The image of dataset 1 is selected from the LROC image with ID number 

M173246166. It contains an area of 350 x 228 pixels with a resolution of 2m/pixel. 

This input image is shown in Figure 22(a). According to the latitude and longitude 

information for this LROC image (Table 4), the corresponding area is selected from 

the SLDEM2015 data to use as the input low-resolution DEM. It covers the testing 

region with only 12 x 8 pixels, with a resolution of 60m/pixel, as shown in Figure 

22(b).  
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Using the image and low-resolution DEM as input, and applying our SfS algorithm 

to obtain the detection result, which is shown in Figure 23 (a). Another DEM 

(referred to as LROC DEM) used for comparison is shown in Figure 23(b). Its 

resolution is the same as the input image, which is 2m/pixel.  

 

 

 

 

 

 

 

 

Figure 22. Input image and low resolution DEM for dataset 1 

(b) Input low resolution DEM of dataset 1 

(60m/pixel)  

(a) Input image of dataset 1 (2m/pixel)  
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Figure 24 gives the 3D view of the input low resolution DEM, detection result, and 

reference LROC DEM. 

 

 

 

 

 

 

 

 

 

 

 

 

(b) LROC DEM used for comparison (2m/pixel)  

Figure 23. Detection result and LROC DEM for dataset 1 

(a) Detection result (2m/pixel)  

(a) 3D view of input low resolution DEM 
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The overall terrain of dataset 1 is a slope surface with obvious inclination change. 

There are two large craters on it, and several relatively small craters around the crater 

at upper left corner.  

The key topographical structure of this region (the overall slope change and two 

large craters) represented by LROC DEM are well preserved in the input low 

resolution DEM. Therefore, it allows the algorithm to converge to the detection result 

with high correspondence with the LROC DEM, the overall terrain change is well 

recovered. Especially for the slope surface changes that failed to be recovered only 

using SfS, they can be recovered well after incorporating the low resolution DEM as 

constaint. 

For the details, it can be seen from the comparison in Figure 24 that the algorithm 

can recover some details that are not presented in the LROC DEM. Since SfS recovers 

the surface shape based on the intensity value of pixels, the detailed small features 

apparent in the input image can be well recovered. For example, there are a few small 

craters inside the big crater at the upper left corner, as shown in Figure 25 (a). These 

(c) 3D view of the LROC DEM  

Figure 24. 3D view of the input low resolution DEM, detection result and reference LROC 

DEM for dataset 1 

(b) 3D view of the detection result  
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small craters are recovered in the detection result (Figure 25 (b)), while there is no such 

information in the LROC DEM (Figure 25 (c)). 

 

 

 

 

 

 

 

 

 

In order to analyze the detection result objectively and qualitatively, the detection 

result was first normalized to the same height range with LROC DEM, then compared 

with LROC DEM to calculate the height value error. Table 5 gives the average 

absolute height error value, maximum height error and standard deviation of absolute 

height error for dataset 1. The average absolute height error is within 3 meters and the 

standard deviation of absolute height error is within 2 meters, which indicates that the 

algorithm can recover shape very well. However, the maximum height error value is 

quite large, about 20 meters. 

 

Table 5. Statistical analysis of experimental dataset 1. 
 

Average of absolute 

height error (m) 

Maximum height 

error (m) 

Standard deviation of 

absolute height error (m) 

Dataset 1 2.7262 20.2859 1.5647 

 

Figure 26 gives the absolute height error value map, which allows us to visually 

observe locations where the large error exists. It can be seen that the height error 

mainly exists in several craters. Especially these three relatively small craters near the 

big crater at the upper left corner have larger error values. This is because the 

algorithm recovers surface shape based on input low resolution DEM, and in the 

optimization stage of the preliminary depth result, we directly use the height value of 

Figure 25. Image, detection result and LROC DEM for details in dataset 1 

(a) Image (b) Detection result  (c) LROC DEM 
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low resolution DEM as a constraint to optimize the detection result. Therefore, the 

overall terrain of the final detection result complies with the terrain given by the input 

DEM. If the overall geometry in low resolution DEM is not preserved as well as the 

LROC DEM, it will lead to errors in the results. This can be improved by using other 

information obtained from the input low resolution DEM (eg. estimated reflectance, 

surface gradients) as constraints instead of directly using height values to optimize 

depth result. 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.3 Experimental results for dataset 2 

The image of dataset 2 is selected from the LROC image with ID number 

M160139273. It contains an area of 970 x 940 pixels with a resolution of 2m/pixel. 

The input image is shown in Figure 27(a). According to the latitude and longitude 

information for this LROC image (Table 4), the corresponding area is selected from 

the SLDEM2015 data to use as the input low-resolution DEM. It covers the testing 

region with 32 x 31 pixels, with a resolution of 60m/pixel, as shown in Figure 27(b).  

 

 

 

Figure 26. Absolute height error map for dataset 1 
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Figure 27. Input image and low resolution DEM for dataset 2 

(a) Input image of dataset 2 (2m/pixel)  

(b) Input low resolution DEM of dataset 2 (60m/pixel)  
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Applying the algorithm to obtain the detection result, which is shown in Figure 28 

(a). LROC DEM used for comparison is shown in Figure 28(b). Figure 29 gives the 

3D view of the input low resolution DEM, detection result, and reference LROC 

DEM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) LROC DEM used for comparison (2m/pixel)  

Figure 28. Detection result and LROC DEM for dataset 2 

(a) Detection result (2m/pixel)  

(a) 3D view of input low resolution DEM  
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Figure 29. 3D view of the input low resolution DEM, detection result and reference 

LROC DEM for dataset 2 

(c) 3D view of the LROC DEM 

(b) 3D view of the detection result  
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Compared to dataset 1, dataset 2 is more complex and covers much more pixels. 

There is a large crater located in the center of the image, the height differences 

between two sides of this crater is very large, which increases the difficulty of 

recovery. There is also a relatively small crater in the upper left corner, and these 

topographical structures are well preserved in the low resolution DEM, while the 

small crater in the lower left corner does not. And there are lots of small craters cover 

the whole image.  

Similar to the detection result of dataset1, since the key topographical structure of 

this area is well preserved in the low-resolution DEM, the algorithm can recover the 

overall terrain well, and can also recover the local details which are not preserved in 

the LROC DEM. Comparing the detection result of current method (Figure 29 (a)) 

with the detection result in Figure 17 (c) that using only a single image as an input. It 

can be found that the slope surface changes that failed to be recovered only using 

information provided by a single image can be recovered well after incorporating the 

low resolution DEM as constraint. 

For qualitative analysis, here giving the height value error between the detection 

result and the LROC DEM as shown in Table 6. The average absolute height error is 

about 4 meters and the standard deviation of absolute height error is within 2 meters, 

which indicates that the algorithm can recover shape very well. However, the 

maximum height error value is quite large, about 24 meters. Figure 30 gives the 

absolute height error value map, allows us to visually observe locations where the 

large error exists. 

 

Table 6. Statistical analysis of experimental dataset 2. 
 

Average of absolute 

height error (m) 

Maximum height 

error (m) 

Standard deviation of 

absolute height error (m) 

Dataset 2 4.0108 24.2040 1.7420 
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It can be seen that the error mainly exists in the large crater located in the center of 

image, two relatively small craters in the upper left and lower left corners. The height 

error of these three large craters is caused by the error between the input low 

resolution DEM and the LROC DEM. As mentioned in section 4.3.2, this problem 

can be improved by using other information obtained from input DEM rather than 

height value as constraint.  

We performed our algorithm on MacBook Pro with 2.3GHz Core i5 CPU and 8GB 

memory. And for dataset 2 (970 x 940 pixels), the computation time is 21.15 seconds.

 
 

Figure 30. Absolute height error map for dataset 2 
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5 Conclusion and future work 

5.1 Conclusion 

This research proposed a method using Shape from Shading combined with low 

resolution DEM to reconstruct terrain on planetary surface and estimate slope surfaces. 

We first tested four approaches for SfS and analyzed their results. Then we performed 

experiments using linear method with Hapke reflectance model. The detection results 

were analyzed, and come to the conclusion that the information provided by a single 

image is not enough to restore the slope topography, thus additional shape information 

is needed. 

Then we introduced a SfS algorithm combined with low resolution DEM, using 

image and low resolution DEM as input. First the pyramid hierarchical algorithm is 

used to decompose the input image to obtain images in different resolutions. At each 

level of the pyramid, the resampled image and resampled DEM are used to estimate the 

reflectance parameter, then SfS algorithm is applied to reconstruct surface shape. The 

depth result of current level is up-sampled and use as the input for next level. Same 

processes are performed until the depth result reaches the same resolution as the input 

image. The detection results of two datasets show that after incorporating the low 

resolution DEM as constraint to recover shape,  the algorithm can reconstruct the 

overall terrain very well and detect detailed small obstacles, the average height error is 

small. 

 

5.2 Future work 

Although proposed method can reconstruct the overall terrain well and the height 

error is small, there are still some problems that need improvement. 

The algorithm uses depth value from input DEM as constraint to reconstruct surface 

shape, thus the detection result conforms to the overall geometry given by the input 
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DEM. However, since there are inaccuracies in the input DEM, it may lead to errors in 

the detection result. For the future work, considering using other information obtained 

from the input DEM (eg. reflectance function, surface gradients) to construct 

constraints instead of directly using the height value. This may reduce the error in 

detection result caused by the inaccuracies of the input DEM. 

In the simulation experiments, we used the input low resolution DEMs with 

60m/pixel resolution and images with 2m/pixel resolution, and obtained promising 

results. However, if the resolution difference between image and low resolution DEM 

is larger, the key geometry information may lost, which leads to inaccuracies in shape. 

Thus for future work, it is necessary to discuss the suitable range of resolution 

difference between image and input DEM. 

As for calculation time, for dataset 2 (970 x 940 pixels), it took 21.15 seconds. In 

order to further shorten the calculation time, it is possible to delete pixel points that the 

intensity value is too high or too low which corresponds to the obvious obstacles, thus 

reduce the amount of data to shorten the calculation time. Also, it is possible to use 

DEM that has smaller resolution difference with the input image to reduce the number 

of usage of SfS algorithm, thereby reducing the calculation time. 

In the proposed method, the reflectance parameter of each pixel is estimated using 

the height value and the intensity value of pixels, and then used for terrain 

reconstruction. We did not assess the accuracy of reflectance parameter map since there 

is no available reference reflectance parameter map. And since the height values of the 

input DEM used in the experiment are relatively accurate, good depth results were 

obtained. However, if there are large height errors existing in input DEM, it may result 

in errors in the reflectance parameter map. Therefore, for future work, considering using 

a piece-wise constant albedo assumption to estimate reflectance parameter for each 

pixel to reduce the influence from the inaccuracies of the input DEM. 

Currently, we take a single image and a low resolution DEM as input and use the 

Shape from Shading algorithm to recover the surface shape. For the future work, it is 

possible to include more image information. For example, considering the multi-views 

Shape from Shading method, using multiple images and a low resolution DEM as inputs 

to restore terrain.
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