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Abstract

Owing to the pervasive use of displays and smartphones, mobile interactions with display
screens have gained attention within the advertising and gaming industries as well as in human–
computer interaction research. Communication through QR code-like markers and localization
via AR markers are common examples of such interactions. However, these visible markers
interfere with the display content; this problem is critical for localization over a wide range of
interactions, and fewer markers result in less reliability and accuracy. Although some studies
have addressed this issue, few have focused on near-screen interaction without additional hard-
ware. To address this problem, we propose an easy-to-install localization method that uses an
array of AR markers, which are made imperceptible to the human eye through chromaticity
vibration at 30 Hz. We mainly focus on applications, such as digital signage, where users point
their smartphones at the display content. Through four evaluations, we confirm that the point-
ing error is within 1 mm, and that the proposed system works, when the distance between the
screen and smartphone is 4–24 times the size of the AR marker. In addition, we establish that
our system is robust against rotation. Finally, we present two potential application scenarios,
advertising and navigation.
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Owing to the widespread use of smartphones and the increase in the number of public and pri-
vate displays, the interaction between display screens and smartphones has attracted attention
in the fields of human–computer interaction (HCI) and advertising. In this mobile interaction
with screens, the seamless connection of devices is crucial. The currently prevalent systems
mainly involve a scenario in which smartphones are only used as gateways for the input and
output operations of users, and hardly use the positional relationship between these devices.

Some researchers have focused on device interaction as a space-aware interaction (interaction
that varies according to the positional relationship between the screen and smartphone). In this
interaction, it is essential to localize the smartphone and measure the positional relationship
between the devices. This measurement enables intuitive operation (e.g., a smartphone as a
pointer or mouse on the display), enriching the interaction [4, 24, 39].

For measuring the relationship between the smartphone and screen, the capturing of AR
markers using the smartphone camera is a convenient method [9,29,32]. However, the display
of visible markers impairs the users’ visual experience because they occlude the display con-
tents [25, 29]. To solve this problem, various methods have been proposed. By using special
hardware, a wide range of interactions can be realized; however, the installation is inconve-
nient [8, 19, 36]. Feature tracking can be realized by off-the-shelf hardware [5, 7], but the
display content is limited to those containing rich features. Yamamoto et al. [48] embedded
random dot markers [41] on screens utilizing imperceptible color vibration, which displays two
different colors alternately. Color vibration can be generated in ordinary 60-Hz displays. How-
ever, approximately 20% of the random dot markers must be captured for reliable tracking [50],
preventing closer interaction.

In view of the above, we utilize imperceptible color vibration to embed an array of AR
markers for smartphone localization at a closer distance in space-aware mobile interaction with
screens, in this study. We define this type of interaction as near-screen interaction. We mainly
focus on applications, where a smartphone is pointed at the display content, in near-screen
interaction such as digital signage applications. The main motivation for realizing near-screen
interaction is because in some cases, users view signage (e.g. maps) from close proximity,
and it is convenient for them to receive information in their smartphones because they can
continue to access this information after moving away from the screen. In this case, we realize
interaction using the positional relationship between the screen and smartphone by measuring
the position pointed to by the smartphone in the display coordinate system. We measure the
display-pointing accuracy, and clarify the relationship between the marker size and the distance
over which marker detection works. We determine, whether our system works, even if the
smartphone is tilted or moving. Moreover, we develop a sample application for demonstrating
the proposed method, as shown in Figure 1.1.
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In summary, the main contributions of this study are as follows:

• Mapping of the related systems in space-aware mobile interaction with screens, consider-
ing the ratio of the images to be captured and the advantages, and the presentation of the
challenges to be addressed.

• Realization of smartphone localization by embedding an array of AR markers in the dis-
play content using imperceptible color vibration, and development of a method for design-
ing the AR-marker size based on the imaging range and angle-of-view of the smartphone
camera.

• Evaluation of the proposed system under laboratory conditions, for clarifying the pointing
accuracy and working environment. The results show that our marker-size design method
is reasonable, and our system is robust against camera shake and tilt.

• Demonstration of the user experience with a prototype application, using a public display
and a smartphone.
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(a) Advertising

(b) Navigation

Figure1.1: Application scenarios: By pointing the smartphone at a restaurant on the map (first frame), the user
can (a) download the menu or (b) be guided to the restaurant (second frame).
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There have been a lot of research that propose techniques to use display devices not only to
display the mere image but also to output arbitrary optical information with division and multi-
plexing of time and space. There are several terms for defining the field such as Display-based
Computing (DBC) [40] and screen-camera communication. But the scopes of these terms are
somewhat ambiguous. So in this paper, we simply divide the field by receiver: screen-sensor
method and screen-camera method. Both sections are further divided according to whether
they use markers perceptible to the human. Next, we describe research that is especially rele-
vant to our work, that is, research exploring the interaction between screens and smartphones
utilizing positional relationship. We divide these research into two by the distance between
screens and smartphones which the system works. Finally, we describe the method of embed-
ding and extracting matrix barcode utilizing imperceptible color vibration which we use in our
method.

2.1 Screen-Sensor Method

2.1.1 Visible Method

Augmented Coliseum [21, 40] projects visible markers (Figure [21]) on photo sensors put
on top of mobile robots and measures the position and direction of the robots (Figure 2.2).
However, this system indicates only the relative coordinates so initialization is unavoidable.

Lumitrack [46] projects structured light patterns called m-sequences on linear optical sensors
(Figure 2.3). An m-sequence is a binary sequence whose every consecutive subsequence of m
bits is unique [27]. Six degree of freedom tracking is available by combining multiple sensors.
The main problem of these visible methods is that light transmitting information is obtrusive
to human.

2.1.2 Invisible Method

It is known that the maximum flicker frequency perceptible to the human eye is approxi-
mately 60 Hz and it is called Critical Flicker Frequency (CFF) [33]. When the light is blinking
at frequencies higher than CFF, the flicker is imperceptible to the human eye and only time-
averaged luminance is perceived. Kimura et al. proposed a method embedding independent
data into each pixel of an image as high-speed flicker by a DLP projector [20]. This method
is called pixel-level visible light communication (PVLC). Figure 2.4 illustrates the principle
of PVLC. Many applications utilizing PVLC have been proposed. EmiTable [20] is a smart
tabletop surface with small LED displays which display images according to their position
(Figure 2.5). Phygital Field [11] is a system controls a swarm of robots on a projected image
(Figure 2.6).



Chapter 2 Related Work 7

Figure2.1: A fiducial marker used in Augmented Coliseum [21]. ai is the position of each sensor.

Figure2.2: Augmented Coliseum [40].

Figure2.3: System overview of Lumitrack [46].
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Figure2.4: The principle of PVLC.

Figure2.5: EmiTable [20].

Figure2.6: Phygital Field [11].



Chapter 2 Related Work 9

Figure2.7: Prakash [31].

Figure2.8: Tracking the location of a hand-held surface and then projecting content [22].

Prakash [31] is a high speed optical motion capture method realized by projecting gray coded
patterns (Figure 2.7). It transmits position data by aligned infrared LEDs with passive films.
Each LED represents one bit position of the binary Gray code and flashes in order. Photosen-
sors acquire position and orientation from the lights.

Lee et al. converted a light source of a DLP projector to red and infrared LEDs [22]. They
projected gray-coded binary structured light patterns [23] as location data by infrared LEDs
and visible image by red LEDs. Figure 2.8 shows the application where a hand-held surface is
being tracked and projected onto. There are infrared sensors on the surface and they detect the
structured light patterns and report their locations back to the projector.

Abe et al. [2] embedded imperceptible information into ordinary 60 Hz display utilizing
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Figure2.9: The smartphone plays the video in accordance with the thumbnail [2].

imperceptible color vibration and decoded using a photosensor. They embed five different
data values using the vibration of each RGB channel. Figure 2.9 shows the application that
different data values are embedded in four thumbnails respectively and the smartphone with a
photosensor plays the video in accordance with the thumbnail.

2.2 Screen-Camera Method

2.2.1 Visible Method

The most common example of data transmission using screens is QR code [15]. It displays
a two-dimensional (2D) black and white pattern. Although there are some similar 2D bar-
codes [13, 14, 16], the QR code is most widely used.

In the research area, a lot of barcodes which boost data capacity and robustness have been
proposed. PixNet [30] proposes orthogonal frequency division multiplexing (OFDM)-based
matrix barcode to boost data capacity and robustness. OFDM is the transmission scheme
widely used in radio frequency (RF) technologies. Unlike RF-based OFDM schemes that en-
code data in time frequencies, PixNet encodes data in 2D spatial frequencies of luminance.

COBRA [10] and RainBar [44] densifies the data by aligning colored cells (Figure 2.10).
They utilize color as another data channel compared to the QR code. COBRA realizes high
throughput with lower computational resource than PixNet.

LightSync [12] deals with synchronization between the screen and camera. It proposes a
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Figure2.10: Design of COBRA [10].

synchronization method applicable to existing 2D barcodes, independent from their design.
A typical method to capture each frame of the screen is to set the camera’s frame rate to the
double of display’s refresh rate, but LightSync requires the camera’s frame rate to be only
half the display’s refresh rate. LightSync adds several fields to the existing barcode to achieve
synchronization (Figure 2.11).

ShiftCode [53] encodes data bits with shifting shape patterns (Figure 2.12). It dealt with all
the issues of throughput, synchronization, and reliability at the same time. It has the highest
throughput among the codes we mentioned above, does not need synchronization between
transmitter and receiver, and has high reliability.

2.2.2 Invisible Method

InFrame [43] uses the vibration of luminance to embed data to video contents. It splits
a display into blocks, assigning 1 or 0 by vibrating or not (Figure 2.13). As mentioned in
section 2.1.2, CFF is about 60 Hz so this system requires a 120-Hz display, which is hard to
say prevalent. The captured frame is smoothed and the difference of it from the original frame
is used to acquire bits.

InFrame++ [42] improved the idea of InFrame. While InFrame simply displayed luminance-
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Figure2.11: LightSync codes added to COBRA [12].

Figure2.12: Design of ShiftCode [53].
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Figure2.13: Data embedding of InFrame [43].

Figure2.14: Data embedding of (a) InFrame and (b) InFrame++ [42].

added frame and luminance-subtracted frame alternately, InFrame++ aligns both added and
subtracted cells in the same frame (Figure 2.14). This is effective for suppressing the visibility
of data embedded. Furthermore, it introduced a Code Division Multiple Access-like modula-
tion scheme and the locator of the QR code for robust decoding.

HiLight [26] embeds data into images by modulating pixel translucency. Modulating α val-
ues require less computational time than RGB values like InFrame. It divides the screen into
grids and represents 1 and 0 by translucency change at 20 Hz and 30 Hz respectively (Fig-
ure 2.15). The receiver needs to be able to capture at least 60 fps and applies Fast Fourier
Transform for decoding.

There are some other researches that tackle with imperceptible data transmission, but most
of them use original marker pattern and full frame of the image [18,28,38,52]. Abe et al. [1,3]
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Figure2.15: HiLight embeds bits into the frequency of α value vibration [26].

Figure2.16: System operation of [1].

proposed a methodology of embedding an arbitrary matrix barcode into ordinary 60 Hz display
utilizing imperceptible color vibration and decoding with a smartphone camera (Figure 2.16).
Detail of the system will be explained in section 2.4.

2.3 Space-aware Mobile Interaction with Screens

Some studies have explored the space-aware interaction between screens and smartphones.
There are various methods for tracking smartphones, which determine the distance between
the smartphone and screen. These methods can be roughly divided into two types: near-screen
and far-range. Figure 2.17 compares the related work on space-aware mobile interaction with
screens in terms of 1) the ratio of the image to be captured, and 2) three advantages: the
unobtrusive feature (UF), off-the-shelf hardware (OH), and content independency (CI).
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Figure2.17: Comparison of the related work on space-aware mobile interaction with screens. The advantages of
the respective systems are mapped as per three categories: unobtrusive feature (UF), off-the-shelf hardware (OH),
and content independency (CI).
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Figure2.18: iPvlc [19].

Figure2.19: THAW [25].

2.3.1 Near-screen Interaction

The iPvlc realizes interaction between a screen and a smartphone placed on the screen (Fig-
ure 2.18) [19]. This system transmits position information utilizing pixel-level visible light
communication (PVLC) [20], and the smartphone receives information through photodetec-
tors. Although this method realizes precise tracking, it requires special hardware.

The THAW [25] tracks a smartphone that is placed on or hovered over a screen by displaying
a 2D color pattern in the camera’s field-of-view alone (Figure 2.19). This system requires only
off-the-shelf hardware. Although its color pattern is meant to be occluded by the smartphone,
it is impossible to hide the pattern completely.

The CapCam [47] uses a touchscreen for tracking (Figure 2.20). In addition, it automatically
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establishes a wireless link between the smartphone and screen by displaying a sequence of
color to the smartphone rear camera. Although this system is completely independent of the
displayed content, the smartphone needs to touch the screen. There are several studies using a
touchscreen but most of them have similar limitations [37, 51].

Figure2.20: CapCam [47]

2.3.2 Far-range Interaction

Chan et al. [8] combined an infrared and ordinary color projector to project visible content
and invisible markers, simultaneously (Figure 2.21). This system projects AR markers through
an infrared projector and detects the markers using an infrared camera connected to a smart-
phone. It dynamically changes the marker size such that the camera can detect the markers
from various distances. Although this approach realizes a wide range of interaction by chang-
ing the marker size dynamically, special hardware, such as the infrared projector and infrared
camera, are undesirable because they are difficult to install.

Virtual Projection [5] tracks a smartphone by detecting the feature points [6] in the displayed
image (Figure 2.22). While this system does not require obtrusive markers or special hardware,
its display content is limited to that containing rich features, i.e., tracking depends upon the
display content. Moreover, the smartphone needs to capture 20% of the image for reliable
tracking.

Visual SyncAR [49] surrounds the display content with a white frame, and tracks a smart-
phone by detecting the frame (Figure 2.23). This system sends a timestamp of the content
through a digital watermark. It vibrates the pixel values of the content slightly such that the
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Figure2.21: The hardware architecture of the system [8].

Figure2.22: Content-based image tracking process [5].
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Figure2.23: Visual SyncAR [49].

human eye cannot distinguish the modulated images. Although this system does not depend
upon the display content, the smartphone has to capture the entire display for tracking.

Yamamoto et al. [48] embedded random dot markers [41] on screens utilizing imperceptible
color vibration (Figure 2.24) (color vibration will be explained in detail in the next section).
Although this system uses an ordinary 60-Hz display and does not need to capture the entire
display, approximately 20% of the random dot markers must be captured for tracking [50].

Figure2.24: An overview of the method [48].
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2.4 Imperceptible Color Vibration

Imperceptible color vibration is a promising method for embedding invisible code into im-
ages, in the temporal domain. The maximum chromatic flicker frequency perceptible to the
human eye is approximately 25 Hz [17], which can be generated by an ordinary 60-Hz display.
Several studies have utilized imperceptible color vibration [3,45,48]. The system proposed by
Yamamoto et al. [48] is unsuitable for our purpose because it uses a webcam and desktop PC
for decoding. When digital signage is used, it is preferable, if the receiver is a device usually
carried around by people. Abe et al. proposed a method for embedding matrix barcodes into
images utilizing imperceptible color vibration, and extraction using a smartphone camera [1,3].
This system satisfies our requirements because the receiver is a smartphone.

To transmit information without impairing the display content, Abe et al. modulated the
original color of each pixel with two colors that have the same luminance as the original [1].
Imperceptible color vibration can be generated by displaying these two colors alternately, using
ordinary 60-Hz displays. The code pattern can be embedded either by vibrating or not vibrating
each pixel, thereby representing black or white, respectively. For decoding, a simple solution
is to capture a video at 120 fps using a smartphone. Then, the two modulated colors alternately
appear in the captured frames, as shown in Figure 2.25. However, this is not practical because
of the restriction of the Android Platform. Currently, capturing and processing images in real
time when captured at faster than 30 fps is unavailable. To solve this problem, they record a
video at 24 fps and set exposure time to 1/120 s (Figure 2.26). Then the idle time becomes
1/30 s (vibration cycle) so the two modulated colors alternately appear just like when captured
at 120 fps. The vibrating pattern can be extracted by considering the difference between the
two frames, and thresholding the output.
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Figure2.25: Time sequences of the frames for the system components and human eye when captured at 120 fps [3].

Figure2.26: Time sequences of the frames for the system components and human eye when captured at 24 fps [1].
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Figure3.1: System operation with the proposed method. Two color-vibrated images are displayed alternately. The
smartphone camera extracts the embedded AR markers, while the human eye perceives the normal image alone.

We propose a smartphone localization system by embedding an array of AR markers into
images using imperceptible color vibration, and a method for designing the marker size based
on the imaging range and angle-of-view of the smartphone camera. As shown in Figure 3.1,
we embedded an array of AR markers into the display content using imperceptible color vibra-
tion, and detected them using a smartphone. We can calculate the position of the smartphone
from the detected markers. The size of the AR markers and their arrangement determines the
maximum and minimum distances of the smartphone from the screen. Let M be the length
of the marker-side and G be the interval between markers. We assume that the center of the
smartphone camera points to a location within the dashed rectangle, as shown in Figure 3.2.
The distance between the rectangular border and the outermost markers is G/2. Let θ be the
diagonal angle-of-view of the smartphone camera, m : n (m ≥ n) be the aspect ratio of the
video, and L be the distance between the smartphone and screen. Assuming that the smart-
phone is parallel to the screen, the area of the screen captured by the smartphone will be a
rectangle with a diagonal length of 2L tan θ

2
(the orange rectangle in Figure 3.2). The length

of the shorter-side of the rectangle is αL, where α =
2n tan θ

2√
m2+n2 .

To determine the minimum L needed to capture an entire marker, regardless of how the
smartphone is translated and rotated, it is sufficient, if a marker is always present within the
circle, centered on the center of the rectangle and inscribed within the rectangle (green circle in
Figure 3.2). This condition is satisfied, if the diameter of the circle is greater than the diagonal
length of the square surrounding 2× 2 markers. Therefore,

αL ≥
√
2(2M +G) (3.1)
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Figure3.2: Marker-alignment example. The orange rectangle indicates the region captured by the smartphone.
The green circle indicates the region always captured by the smartphone, regardless of its rotation.

must be satisfied to capture an entire marker.
Next, we consider the maximum L at which camera localization is possible. Let R be the

number of pixels of the captured image corresponding to αL, P be the number of pixels of
the captured marker corresponding to M , and Pmin be the minimum P required for detecting
the marker. The value of P can be calculated from the product of R and the ratio of M to the
length of the shorter-side of the rectangle. Hence,

P = R
M

αL
≥ Pmin. (3.2)

In summary, the range of L is

M
R

αPmin

≥ L ≥
√
2(2M +G)

α
. (3.3)

The value of Pmin is calculated experimentally and discussed in the next section. Table 3.1
shows definitions of the variables and Figure 3.3 illustrates the meaning of variables.
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Table3.1: Variables definitions.

Variables Definitions
M Marker size
G Marker spacing
θ Diagonal angle-of-view of the smartphone camera

m : n Aspect ratio of the video (m≥n)
L Screen-smartphone distance

αL Short side length of (α =
2n tan θ

2√
m2+n2 )

Captured region
Circle centered on the center of

R Number of pixels of the captured image corresponding to αL
P Number of pixels of the captured image corresponding to M

Pmin Minimum P required to detect marker

Figure3.3: Variables.
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Figure4.1: Setup for Experiment 1.

We conducted four experiments for measuring the display pointing accuracy and the maxi-
mum length between the smartphone and screen, and for evaluating the robustness against mo-
tion and rotation, respectively. We used a 13.3-inch 1080p laptop (MB-S250XN1-EX3, Mouse
Computer) as the screen and the Galaxy S8 (Samsung) as the smartphone (θ ≈ 70◦,m =

16, n = 9, R = 720 px). The experiments were conducted in an assembled darkroom (ADR-
F2, ASONE).

4.1 Experiment-1: Pointing Accuracy

4.1.1 Condition

To avoid error between the ground truth and the actual position of the smartphone, we esti-
mated the relative position from a certain position, where the smartphone was pointed at.

Figure 4.1 shows the experimental setup. We embedded 10×5 AR markers (M = 120 px, G =

60 px) into a gray single-color image ((R, G, B) = (128, 128, 128)). We used the ArUco [34,35]
to generate 4×4 bit markers. The modulated colors were (R, G, B) = (158, 117, 131) and (R, G,
B) = (85, 138, 125). Figure 4.2 displays the actual images. We used an XY plotter to move the
smartphone in increments of 50 mm, parallel to the edge of the display. The smartphone was
positioned 140-mm above the display. We measured at 5×3 points, starting from a certain point
on the upper-left of the display. We performed 100 measurements at each point, and calculated
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the relative position by subtracting the measured value from the starting point. In addition, to
determine the accuracy of pointing using the AR markers themselves, we conducted the same
experiment with visible markers, i.e., black ((R, G, B) = (0, 0, 0)) markers on a white ((R, G,
B) = (255, 255, 255)) background using the images shown in Figure 4.2.

4.1.2 Result

We defined the error as the distance between the ground truth and the measured value. The
results are depicted in Figure 4.3. The median of the error with visible markers was 0.30 mm
and the maximum error was 0.80 mm. In contrast, the median of the error with imperceptible
markers was 0.29 mm and the maximum error was 0.92 mm. There were no significant dif-
ferences between the visible and imperceptible markers. It was confirmed that our system has
sufficient accuracy for practical applications because the error was within 1 mm.

4.2 Experiment-2: Maximum Distance Between the Smartphone and Screen

4.2.1 Condition

We measured the detection rate at various values of L (distance between the smartphone
and screen) and M (marker length), in this experiment. Figure 4.4 shows the experimental
setup. We positioned the smartphone to capture the center-part of the display, and moved it
perpendicular to the display in increments of 50 mm. We performed 100 measurements at
each point and calculated the detection rate. We used the same gray image and modulated
colors as in Experiment-1. We used multiple sizes and varied the numbers of markers (M =

9.24, 13.85, 18.47, 23.09 mm).

4.2.2 Result

The result of detection rate is shown in Figure 4.5. The starting point is different for each M

because the range of L changes with respect to M , as shown in the right side of inequality (3.3).
We can estimate the maximum L with respect to M from the result. We plotted the largest L
for which the detection rate was higher than 50% for each M (Figure 4.6); line, Lmax, is their
least-squares approximation (Lmax ≈ 24M ). The value of Pmin can be calculated from the
left-side of inequality (3.3) and the slope of Lmax, i.e., Pmin ≈ 43. Line, Lmin, is derived from
the right-side of inequality (3.3), when G = 30 px (Lmin ≈ 4M + 9.5). Hence, the values of
L between Lmax and Lmin are the distances over which our system works. For example, the
smartphone captured approximately 5% of the screen at L = 50mm and 100% at L = 230mm,
under the conditions of the conducted experiment.
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Figure4.2: Images used in Experiment-1; these two images are displayed alternately at 60 Hz.
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Figure4.3: Error results; there were no significant differences between the visible and imperceptible markers.

4.3 Experiment-3: Detection Rate with a Moving Smartphone

4.3.1 Condition

We measured the detection rate, when the smartphone was moving. Figure 4.7 shows the ex-
perimental setup. The smartphone was set on an electrical linear slide (EZS6-D085-AZMAD-
1, Oriental Motor) and moved at constant speed, 140 mm above the display . The distance
moved from the starting point was measured. We performed 100 measurements at each speed
and calculated the detection rate. The same gray image, modulated colors, and embedded
markers, as in Experiment-1, were used.

4.3.2 Result

The result is depicted in Figure 4.8. The markers could not be detected at more than 45
mm/s. Figure 4.9 shows the measured values and ground truth at 15 mm/s and 30 mm/s. The
ground truth includes the raw data from the linear slide. The measured values were smooth at
15 mm/s and jagged at 30 mm/s. Although our system performance was unsatisfactory when
the smartphone was moving, this result implies that our system can withstand camera shake.

4.4 Experiment-4: Detection Rate with a Tilted Smartphone

4.4.1 Condition

We measured the detection rate, when the smartphone was tilted. The smartphone was po-
sitioned 90-mm above and parallel to the display, and rotated in increments of 15◦ along the
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Figure4.4: Setup for Experiment 2.
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Figure4.5: Detection rates for different M (marker size) and L (distance between the smartphone and screen).
Each legend shows the number of markers, M , and G (marker interval).

three axes defined in Figure 4.10, respectively. Figure 4.11– 4.13 shows the experimental setup
for each axis. We measured the distance from the pointing position at 0◦ to the pointing posi-
tion at each angle. Errors within 8 mm were defined as correct detection. We performed 100
measurements at each angle and calculated the detection rate. We used the same gray image,
modulated colors, and embedded markers as in Experiment-1.

4.4.2 Result

The result is depicted in Figure 4.14, confirming that our system is robust against rotation.
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Figure4.6: Range of L according to M . The points indicate the largest L at which the measured detection rate
is higher than 50% for each M , Lmax is their least squares approximation, and Lmin is a line derived from the
right-side of inequality (3.3). Our system can be used in the range between Lmax and Lmin. The green horizontal
line indicates the ratio of the screen captured by the smartphone from a distance, L.
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Figure4.7: Setup for Experiment 3.

Figure4.8: Detection rates for different smartphone movement speeds.
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Figure4.9: Measured values for smartphone speeds of 15 and 30 mm/s. The ground truth includes raw data from
the linear slide. The markers could not be detected immediately, after the movement commenced at 30 mm/s.
This result implies that our system can withstand camera shake.
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Figure4.10: Definition of the three rotation axes.

Figure4.11: Setup for Experiment 4 (yaw).
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Figure4.12: Setup for Experiment 4 (pitch).

Figure4.13: Setup for Experiment 4 (roll).
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Figure4.14: Detection rates for the three rotation axes. It is confirmed that our system is robust against rotation.
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We developed an application in which the display screen depicts a floor map and a user
acquires information on a region of the map by pointing a smartphone at it (Figure 1.1). The
user can either jump to a related webpage or obtain directions to the spot indicated on the map.
We confirmed that the AR markers worked for various positions of the hand-held smartphone.
This application demonstrates the potential of this method for application in fields such as
advertising and indoor navigation.

We also developed an application of the world map. The smartphone calculates longitude
and latitude from the pixel position where the camera center is pointing, and then it conducts
reverse geocoding to get the country name.

In Figure 5.2 the smartphone is displaying the decoded image and the pixel position at which
it is pointing.
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Figure5.1: World map application.
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Figure5.2: The smartphone is displaying the decoded image.
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In this study, we proposed an easy-to-install method for localizing a smartphone near a
screen, with embedded AR markers through imperceptible color vibration. We demonstrated
that our system has sufficient accuracy and robustness against rotation for practical applica-
tions, and clarified the relationship between the marker-size and distance-range. Specifically,
our system works, even when the smartphone captures only 5% of the screen. In addition,
we developed an application to demonstrate our method, and established the potential of the
proposed method for application in fields such as advertising and indoor navigation.

A limitation of our method is that our system does not work, when the smartphone is placed
on the screen. In future, we aim to develop a method for tracking smartphones that are placed
on the display screen. Our system will be more practical, if we can create an embedded marker
that can handle a wider distance range.
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