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Abstract
Novel view synthesis is one of the challenging topics in computer vision, which aims
to synthesize images from unknown viewpoints with images seen from captured
viewpoints. Nowadays, with the development of Virtual Reality techniques, it has
become an increasing concern since rendering of free viewpoint images is one of the
basic problems in Virtual Reality. If we want to roam in a scene, it means that
we need to render the scene from different viewpoint. Traditional 3D modeling and
rendering could construct a photo-realistic scene with manual modeling software.
But high computational cost is inevitable since we usually need large illumination
calculation and complex geometric mapping and cropping. The computation cost is
high. Therefore, people began to pay more attention about whether we could get a
virtual, unknown viewpoint from a collection of images directly. That is what novel
view synthesis technique mainly focus on.
Image-based rendering technology has been applied to novel view synthesis problem
over the last two decades. Earlier works try to render new images without 3D ge-
ometry information by using simplified forms of the plenoptic function, while later
works utilized structural information to help interpolate novel image from known
image pixels directly. In addition, recent advances in deep learning have also made
it possible to improve the performing of novel view synthesis by leveraging a deep
learning network. Different from traditional approaches, deep learning model pro-
vides an end-to-end rendering and could learn to synthesize pixels from large amount
of images directly without complex formulas and computation. This kind of methods
utilize the ability of neural network to adapt wide-baseline cases. in recent years,
a lot of works in novel view synthesis began to combine geometry-based method
and learning-based method. In order to build a realistic novel view of an unknown
scene, [PKKS19] and [CGT+19] proposed pointcloud-based method to synthesize
novel views by using image descriptors and semantic labels respectively. However,
there still remains some limitations. Artifacts are generated from the quality of
auxiliary information, especially for the virtual viewpoints which are far away from
existed viewpoints. Inspired by these, we aim to leverage original image priors
directly to improve the synthesis results. We would like to propose a two-staged
synthesis network based on images and a sparse point cloud from structure-from-
motion(SfM) technique, which preserve basic structural information of the scene.
For the synthesis stage, we build a point cloud-conditional generative adversarial
network to generate an initial novel view. Then for the refinement stage, we lever-
age image priors selected from nearby viewpoints to correct the poor reconstruction
and artifacts. We acquire visually pleasing results with this two-staged network.
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1 Introduction

1.1 Overview

Figure 1.1: Novel view synthesis [Alj17]. The problem setting is that for one
scene, if we have a sparse set of images from blue cameras, we would like to get
rendering of other virtual views from orange cameras.

Novel view synthesis is one of the long-standing problems in computer vision and
has developed rapidly in recent years due in part to application in virtual reality.
Classical view synthesis problem aims to generate novel views from single or multiple
views of a scene. Basically, the problem setting is generating pixels of a novel view
from pixels of neighboring views.
Many approaches try to address this problem with view interpolation. A lot of
earlier works employed image-based rendering methods and have presented various
solutions, such as light field rendering [LH96, GGSC96], image warping [SD96] and
estimation for shape or visual appearance [VBR+99, ZKU+04, SAC+13]. Recent
works focus on combining geometry information with image warping together. Well-
performed image-based rendering usually require strong priors to recover the holes
generated by uncertain geometry and occlusions. Hence, this kind of methods are
usually largely hand-built and of high computational cost. However, it is still not an
easy work to remove artifacts especially for complex objects such as tearing, aliasing
and distortion by explicitly modeling the color, occlusion and stereo for each pixel
in novel view.
Furthermore, with the development of deep learning techniques, researchers be-
gin to apply deep networks to overcome these limitations. As deep networks have
already performed well for super-resolution [DLHT14], denoising [XXC12], style-
transfer [GEB16] and distribution estimation [GPAM+14, MO14]. Actually, novel

5



Figure 1.2: The concept of our novel view synthesis model.. We attempt
to build a novel view synthesis model consists of two sub-networks, which has the
potential to learn virtual views from a set of images. When given a projection
view, the synthesis network could generate an initial synthesized result, then we
refine it with the refinement network at patch level.

view synthesis can be simply seen as a learning task by training a model that generate
pixels for a novel view. Objective function are formulated by comparing synthesized
views to the ground truth. Recent works have applied deep learning to view interpo-
lation. Zhou et al. [ZTF+18] proposed a method to extract a layered representation
of the scene and perform extrapolation from two input views. Choi et al. [CGT+19]
further improved the extrapolation range and generate novel views father away.

However, unlike these works, our goal is to synthesize an arbitrary novel view of
a scene, as seen in Figure 1.2. We achieve the goal by utilizing a relatively sparse
image set of the scene. Our problem setting is more like [PKKS19], we aim to
train a novel two-staged neural networks for scene reconstruction by synthesizing
arbitrary views of the scene without knowing any auxiliary information or neigh-
bouring views. Technically, our model can be divided into synthesis network and
refinement network. 1) We acquire 3D shape from image collection by constructing
a sparse point cloud and invert it to synthesize novel views from arbitrary viewpoint
with synthesis network. 2) For each target views, we select relevant patches from
ground truth near by, and jointly train the refinement network at the patch level.
We demonstrate the effectiveness of refinement network.

1.2 Challenges and Contributions

One fundamental challenge of novel view synthesis is the difficulty of acquiring
accurate geometry information. Early works on novel view synthesis employed image
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Figure 1.3: Occlusion problem. A 3D point cloud projection with its corre-
sponding ground truth. It is obvious that the blue box in the red circle should
be occluded in the view and points belong to it should be removed from the
projection, otherwise occlusion problem would happen.

interpolation methods decades ago. These methods interpolate pixels of novel views
between corresponding pixels of input images [CW93] and space rays [LH96], or
conducting a weighted combination with geometry information [BBM+01, DTM96].
This kind of approaches works based on the premise that additional depth or 3D
geometry are given as input.

However, the most common situation is that only images are known. Therefore, in
order to obtain additional information, one solution is to estimate depth information
from images directly [KWR16, CDSHD13, PZ17]. Another approach is to design an
intermediate representation including geometry information of the scene, as Zitnick
et al. [ZKU+04] and Zhou et al. [ZTF+18] have done in their works. However, there
still remains some limitations. For depth estimation, artifacts could be generated
by depth uncertainty. What is more, as shown in Figure 2.5, it is difficult to know
full 3D information of all visible geometry due to occlusion problem from input
images even with an intermediate representation. Therefore, the geometry for visi-
ble surfaces may be ambiguous and uncertain. These problems occur more often in
extrapolation rather than interpolation from input images. For methods using inter-
mediate representation of the scene, Zhou et al. limit the virtual camera to translate
along the baseline within a certain range. Furthermore, Choi et al. [CGT+19] allow
more flexible movement and larger magnification with referenced input images.

Recently, some pointcloud-based view synthesis methods have been proposed [CGT+19,
PKKS19]. [PKKS19] build a network with three sub-networks for scene reconstruc-
tion by using SIFT descriptor. However, the SIFT descriptor of each 3D point is
sampled from an arbitrary source image in the image set, which means it could lead
to unknown distortions and inconsistencies. [CGT+19] train an appearance encoder
and rerenderer with semantic labelings of high quality, but it is not an easy work to
obtain good segmentation mask and ghost pole may appear in synthesized images.

7



Figure 1.4: Challenges of repairing artifacts caused by depth uncer-
tainty. [CGT+19] (a)A 3D point cloud generated from the depth map of red
camera (b)(c)(d) Three different views from the blue, red, green cameras. It is
obvious that there would be large artifacts due to depth uncertainty if the view-
point is far away from the red one.

In address these problems, we propose a two-staged novel view synthesis method
and aim to generate novel views from an arbitrary appointed viewpoint. In our
case, what we have is a sparse set of images and a point cloud generated from them.
Furthermore, in order to solve the artifacts caused by photometric inconsistencies
and distortions, we directly leverage original images nearby the virtual viewpoint.
Our main contributions are summarized as follows:
• We further define the novel view synthesis problem with sparse set of images

and propose a approach based on two neural networks: synthesis network and
refinement network. As shown in Figure 1.2, the synthesis network generate
initial novel views from point cloud projections, while the refinement network
further refine the artifacts with ground truth patches.
• We reconstruct the scene roughly with a sparse SfM point cloud extracted

from images and present a method to find neighbouring viewpoints to help us
refine the synthesis results.
• We validate the effectiveness of utilizing original image patches to correct

artifacts in synthesized images rather than using auxiliary information such as
image descriptors or segmentation masks.

1.3 Thesis Outlines

The outline of this thesis is organized as follows. In Chapter 2, we make an introduc-
tion of recent related works on novel view synthesis problem, including image-based
rendering methods and deep learning-based methods. In Chapter 3, we present our
approach in detail, including the data set preparing, the network of generation stage
and refinement stage. In chapter 4, we evaluate our approach by comparing results
from generation stage and refinement stage with qualitative analysis. Then we made
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a discussion in chapter 5 and show more visualization results. At last in Chapter 6,
we made a summary of this thesis.
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2 Related Work

We made an overview of recent novel view synthesis works in this section. We
classify them into two main categories: images-based rendering and learning-based
rendering, and we especially focus on the latter one.

2.1 Image-based rendering

Over the last two decades, people have been trying to create free viewpoint scenes
roaming without time-consuming geometric modeling processes. The difficulty is
that, without 3D modeling process, how could we generate images of arbitrary view-
points from discrete cameras. Image-based rendering is the technique to solve this
issue. Intuitively, it should be able to get the visual content from discrete input
images and re-project them to a novel view.

2.1.1 Rendering without 3D geometry information

Earlier works try to solve this problem without using 3D geometry information.
Traditional rendering follows plenoptic function to render the observed the objects
in the scene [MB95, LH96]. With a plenoptic function, we could actually get the
panorama of specific viewpoint. Furthermore, we are able to simplify the plenoptic
function with Concentric Mosaics [SH99], which has only three parameters and is
much easier to be constructed. In addition, Debevec et al. [DDB+15] proposed a
method to realize scene roaming with constructing a spherical light field capture
system. Therefore, novel views can be rendered within the sphere outlined by fish
eye cameras.
However, this kind of method can only render novel view within a certain range, since
it is difficult to render the viewpoints far away from the rotation center. In addition,
the complicated capturing process has also increase the cost of data collection.

2.1.2 Rendering with 3D geometry information

Intuitively, it is inappropriate to ignore 3D geometry information contained in im-
ages due to the high complexity of Real-world scenes. With the development of
information acquisition technology, we could obtain spatial relationship between
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Figure 2.1: Image interpolation with correspondence. (a) and (d) are images
as correspondence, (c) and (d) are two middle views interpolated from correspon-
dence.

different objects from 2D images, which would be an auxiliary information for ren-
dering. This 3D information can be described in many different forms in rendering
process, such as depth maps or depth distributions [SGHS98, CBL99, PZ17], trian-
gle mesh [BBM+01, Rad99, VBK02] and 3D point cloud [CDSHD13, LKM14], or
utilizing only correspondence [CW93, SD96, NZS+16] as shown in Figure 2.1. In
rendering, color information and 3D information can be projected to any viewpoints
according to the camera positions and parameters. However, there still remains
some difficulties. First, there will be missing regions in rendering results since not
all pixels can be found in existed viewpoints. Second, visibility and de-occlusion
problem may lead to poor reconstruction. In order to solve these problems, we need
some post-processing to complete missing 3D geometry information and deal with
discontinuity and inconsistencies.

Chen and Williams [CW93] has proposed a method interpolate arbitrary viewpoints
with optical flow. They use morphing to generate intermediate frames. However,
this method performs well only in the case where two referenced viewpoints are
relatively close and there is a lot of overlapping area in input images.

In order to deal with the situation where input viewpoints are far away from each
other, Nie et al. [NZS+16] have proposed a method which is a combination of ho-
mography fitting and homography propagation. In detail, for the matched super-
pixels, they calculate a homography with correspondence estimation method. For
other poor matched super-pixels, they use propagation to obtain their homographies.
Therefore complex 3D reconstruction and accurate depth map are not necessary in
rendering process, so that the computational cost is not high. However, de-occlusion
problem cannot be solved without considering depth relationship between different
objects.

Chaurasia et al. [CDSHD13] proposed a method that associate depth synthesis algo-
rithm to sample depth value for areas with poor recovery of depth. They assumed
that pixels in the same super-pixel share same depth value. After obtaining the
complete depth map, they use shape-preserving warping to handle inconsistency
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problem and rendering error. However, obviously, the shortcoming of this method is
that depth estimation may be wrong if there is no corresponding super-pixels with
enough depth samples in the image.

Different from using depth map or 3D point cloud extracted by multi-view geometry
techniques, soft 3D reconstruction estimates a distribution of depth values instead of
fixed one for each pixel. Penner et al. [PZ17] have proposed a method based on soft
3D reconstruction and visibility function. They first estimate an initial depth map
with multi-view stereo. In order to obtain the depth distribution, they build several
layers of depth planes for different values and record vote-value and vote-confidence
for each pixel. Then, the visibility information can derive from depth distribution,
which could help render more visually pleasing novel views.

2.2 Learning-based rendering

With the rapid development of deep learning, researchers have paid more attention
to applying deep learning techniques to novel view synthesis problems. As learning-
based methods still take images as a fundamental element, it is of great importance
to utilize and invert image features which could improve the performance of render-
ing network. We would like to introduce three recent works in detail in this session
which are most related to our work and inspire us a lot.

Pittaluga et al. [PKKS19] present a novel view synthesis method based on point
clouds obtained from structure from motion(SfM) [SF16]. They use not only the SfM
point cloud, but also SIFT descriptors to reconstruct details in a view. What is more,
in order to handle visibility problems better, they construct a three-stage training
based on three different neural networks: VisibNET, CoarseNET and RefineNET.
First they project each 3D points in the point cloud from SfM to specific viewpoints
with camera parameters. For each 2D pixel in images, 3D point attributes such
as color information and SIFT descriptor are associated. Therefore, the input to
the networks could be a multi-dimensional nD array. The VisibNET is responsible
for visibility estimation. As the point cloud is relatively sparse, it is impossible to
estimate if a 3D point belongs to foreground objects without knowing the underlying
geometry of a scene. After removing 3D points belong to surfaces which are occluded,
they build a CoarseNET to perform novel view rendering and train this network by
combining L1 pixel loss and L2 perceptual loss. At the last stage, a RefineNET
is trained to further improve the quality of synthesis by adding an adversarial loss.
Each of the sub-networks is trained separately and shares similar U-Nets architecture
composed by an encoder and a decoder. Figure 2.2 has shown details of their network
architecture with three sub-networks.

Meshry et al. [MGK+19] have also proposed a neural rendering method based on
3D representations. As shown in Figure 2.3, They perform a staged training as well.
The first stage is to train a encoding network to estimate appearance vectors for
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Figure 2.2: Network Architecture of [PKKS19]. The network consists of three
sub-networks: VISIBNET, COARSENET and REFINENET. The input to this
network is a multi-dimensional array composed by depth value, color and SIFT
descriptor. All of the three sub-networks share similar U-Nets architecture and
symmetric skip connections between encoder and decoder. There are also extra
convolutional layers concatenated to the end of the decoder, which could help
interpret high-dimensional information.

each views. Then for the rendering stage, a neural network is trained with fixed
appearance vectors. Both of the networks are jointly fine tuned at last. What
is more, after rendering a given viewpoint with appearance embedding, they also
condition the network on a desired semantic labeling. This could prevent artifacts
due to the encoding variations of transient objects. They expect better performance
with uncontrolled images from internet rather than images from carefully collected
data sets.
However, the limitation is that their method relies heavily on semantic, especially
for the regions of the image lack geometry information, such as the ground and
the sky. Figure 2.4 has shown some artifacts due to errors in predicted segmen-
tation. Therefore, it is difficult to validate this method if we don’t have ground
truth segmentation mask or cannot guarantee the accuracy of the semantic labeling
network.
Choi et al. [CGT+19] have also proposed a solution to extreme view synthesis with
a depth probability volume estimation and a refinement network, which aims to
render novel views from small number of input images. First they generate depth
probability volume for each novel viewpoints by warping and fusing of input depth
information, then to get an initial novel view from its depth volume. For artifacts
caused by depth discontinuities, they build a refinement network by leveraging can-
didate patches selected from input views. The key is that patches in input views
are extracted by regions re-projected from same depths of corresponding parts in
target novel view. In order to solve distortion and deformation problems, patches
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Figure 2.3: Network Architecture of [MGK+19]. Meshry et al. proposed a
staged method. The first step is to pre-train a encoder to estimate appearance
vector by using semantic labels, SfM output and deep buffer. Then train a rerender
model by generative adversarial loss and reconstruction loss. Finally they fine-
tuned the model together.

are warped with the homography calculated from the depth plane. In the training
stage, they take poor construction from initial synthesized views as well as all can-
didate patches as input to a U-Net architecture network. The model is trained by
perceptual loss [JAFF16] and ADAM [KB14] optimization algorithm.
Our work shares the same idea with [PKKS19] and [MGK+19] that synthesis
novel views based on sparse point clouds. According to this, we present a two-stage
synthesis network. For the synthesis stage, we build a point cloud-conditional gen-
erative adversarial network to obtain an initial novel view. Then for the refinement
stage, we leverage image priors selected from three nearest viewpoints to refine initial
synthesis.
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Figure 2.4: Example semantic labelings and output views of [MGK+19].
It is obvious that output view is better by using ground truth segmentation mask.
Artifact appears on the bottom when generated from predicted segmentations
since there is a misclassification of ground and building.

Figure 2.5: Network Architecture of [CGT+19]. Choi et al. proposed a
method for novel view synthesis from multiple input views (a). First generate
depth probability volumes by multi-view depth estimation for each view (b). Warp
and fuse the input depth probability volumes to get a novel view depth probabil-
ity with given camera parameters. (c). Generate an initial novel view directly.
(d). Refine the result from last stage with a refinement network to generate the
final novel view (e). The refinement network is trained at patch-level where patch
selection is guided by the depth distribution.

16



3 Proposed Method

In this section, we would like to describe the overview of our 2-stage training model
for novel view synthesis first. Then we introduce the details of the framework,
especially the proposed refinement network which helps refine the initial synthesis
by involving patches selected from nearby viewpoints.

Our goal is to learn a generative model for novel view synthesis. Given a set
of images, we first obtain sparse Structure-from-Motion point cloud as is done
in [PKKS19, MGK+19] and project the 3D point cloud into arbitrary viewpoints,
which could be an initial construction of detailed views of the scene. Figure 3.1 has
shown some examples of projected 3D points associated with source images.

The view synthesis model generate a initial synthesized view based on these paired
images. However, in general the resulting images will present some artifacts, blurs
and distortion, since we are not concerned with visibility problems and sparse point
cloud cannot preserve complex structures of the scene. Therefore, at this stage we
could only roughy generate initial estimates that contain general color information
and geometry information. Furthermore, the view refinement model is trained to
recover apparent artifact. Since complex structures are easily to be locally deformed,
we train this model to repair poor construction regions at the patch level. For a key

Figure 3.1: The illustration of real images with corresponding point cloud
projections. The sparse point cloud with 54,665 vertices is generated from
Structure-from-Motion. It could be projected into arbitrary viewpoints with spe-
cific camera parameters.
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Figure 3.2: The illustration of our synthesis network. The image translation
network T is a U-Net based framework with an encoder and a decoder. There
are 8 convolutional layers for both encoder and decoder of T and 5 convolutional
layers for discriminator D. We also build skip connections from the layers of the
encoder to the decoder. For the generator T , input is projected point cloud x and
output is a synthesized image T (x). For the discriminator D, input is projected
point cloud x combined with a synthesized image T (x) or a ground-truth image
y, and the output is a prediction to estimate whether the image pair is real or
fake.
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pixel in a initial estimate, we extract corresponding 64×64 patches from viewpoints
which are close to the novel viewpoint. The target of the refinement work is to
output a final results with less artifacts. We will illustrate each module in detail in
the following sections.

3.1 Synthesis of a Novel View

Similar to [PKKS19] and [MGK+19], we introduce a generative model based on
point cloud projections. In order to generate realistic images effectively, Our model
bases the famous pix2pix framework [IZZE17], an image-to-image translation model
with conditional Generative Adversarial Network [MO14]. Generative adversarial
networks (GANs) is a generative model that aim to learn distribution of true data
without formulating a complex equation. GANs learn a mapping from random noise
to output image.
In our case, the goal of synthesis stage is to map point cloud projections x to real
images y with a translator T , T : x → y, which can be seen as a domain transfer
process essentially.
The model takes groundtruth RGB images and the corresponding point cloud pro-
jection as input. Specifically, The image translator T is trained to produce output
images that are hardly distinguished from real images. The input is projected point
cloud x and output is synthesized images T (x); The discriminator D is trained to
detect fake images from translator T . The input image pairs are the combinations
of point cloud projections x and synthesized images T (x) or ground-truth images y,
while the output is a prediction to estimate whether the associated image is a real
or fake pair to the point cloud projection. Both image translator and discriminator
are trained simultaneously while optimizing the objective function of both T and
D. The objective of translator T can be expressed as:

Tloss = log(1−D(T (x))) + λLL1(T ) (3.1)

Where we use L1 loss to encourage less blur:

LL1(T ) = Ex,y[‖y − T (x)‖1] (3.2)

The objective of discriminator D can be expressed as:

Dloss = − log(D(x, y))− log(1−D(x, T (x))) (3.3)

As is shown in Figure3.2, we use a framework based on U-Net [RFB15] with skip
connections to build the image translation network T , which could deliver shared
low-level information between input and output. Specifically, there are 8 layers in
both encoder and decoder. We add skip connections between layer i in encoder and
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layer 8− i in decoder with simple concatenations of all channels. For the discrimi-
nator D, we build 5 convolutional layers and adopt PatchGAN [DU18] to learn high
frequency structure at patch level. The discriminator is trained to estimate if each
256× 256 patch in the input image is real or fake. Follow the standard training ap-
proach from [GPAM+14], we alternatively train the translator T and discriminator
D by optimizing the objective functions above.

3.2 Image Refinement

Images generated from synthesis stage still suffer from apparent artifacts. Most
notably, these include regions where point cloud is relatively sparse, so that the
generator have not received sufficient information and structures may be locally
deformed. In order to address these artifacts, we train a refinement network to
improve the quality of images furthermore.

3.2.1 Find nearby viewpoints

In order to refine regions apparently affected by artifacts, a possible approach is to
train a refine network at patch level. We could consider the denoising operation
that uses synthesized and ground truth patches as input at training time, and tries

Figure 3.3: The distance between two cameras is equivalent to average euclidean
distance between key points in image coordinate. The locations of 3D points could
be calculated by the camera poses of different viewpoints.
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to output refined results by optimizing an appropriate objective function. However,
this kind of method tends to utilize only generic image priors and easily neglect the
valuable information of input images at inference. Intuitively, we should consider
a refinement operation with utilizing more ground truth images together at both
training and inference time. Since our goal is to synthesize novel views from a set
of images, it is unreasonable to disregard the valuable information the images carry,
especially for those located close to the target virtual view.
Therefore, we turn to find the way of utilizing ground truth patches to improve our
synthesis results. First of all, the problem is to select valuable images among the
whole image set. Intuitively, cameras should capture similar views when appearing
close to each other. That means for a novel viewpoint, we could find cameras close
to the target camera to get image priors with relatively small distortion.
Although the location of cameras is determined by camera parameters including
camera intrinsics and camera extrinsics, it is not visually or intuitively understand-
able to calculate distance between camera matrices directly. Therefore, instead we
measure the distance between cameras by utilizing point cloud projections. For ex-
ample, as shown in Figure 3.3, a single point in the 3D point cloud can be projected
to different viewpoints. It is obvious that the distance between view(camera) k and
view(camera) l is equivalent to average euclidean distance:
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Where (xk
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k
i ) indicates the image coordinate in view k of pi ∈ {p1, p2, ..., pn},

where {p1, p2, ..., pn} are shared points appear in both view k and view l, views
vk, vl ∈ {v1, v2, ..., vn}. In order to obtain the 2D image coordinate from the 3D
world coordinate, we apply camera parameters to coordinate system transformation.
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(3.5) describes the process of transforming, where Rk and T k are rotation matrix
and translation matrix of camerak, f is camera focal length, while (Xi, Yi, Zi) de-
notes the world coordinate of point pi and (x0, y0) indicates the principal point of
image coordinate. After obtaining image coordinates, points placed in areas that
are outside of the frusta of input cameras are removed from the point sequence.
For each novel view, we could find its three nearest views among input groundtruth
images and select corresponding patches from those views for training. For each
point in the point sequence, we extract its surrounding region(a 64x64 box) from
initial synthesized images and referenced groundtruth views separately. Intuitively,
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relevant patches from groundtruth views can inform the refinement network about
correct content and structure information. We describe our refinement network and
its training in detail in the next section.

3.2.2 Refinement network

We show our refinement network and strategy in Figure3.4. We take quadruplets
of patches consist of a patch PNV

i,j from initial synthesized views Ii and three can-
didate patches P 1

i,j, P
2
i,j, P

3
i,j from referenced views as input. The candidate patches

contributed to each PNV
i,j are selected from referenced views nearest to view Ii.

The refinement network is developed based on a U-Net architecture since it has
performed well on many vision problems by propagating information to higher res-
olution layers with multiple feature channels. Rather than concatenating patches,
we would like to make each of the patches go through the encoder network indepen-
dently. Before concatenation with the output of synthesized patch, features gener-
ated from different candidate patches should be aggregated with different weights
according to their locations. Intuitively, the camera is closer, the more information
it contributes. Therefore, we define aggregate weights for each candidate patch by
the reciprocal of distance to target view i:

wi = di,k
′

di,k
′ + di,l

′ + di,m
′ , where di,k

′ = 1
di,k

(3.6)

We perform three kinds of pooling operation for aggregation in the refinement net-
work to show the contribution of each view:

Max-pooling: Apply a max filter over the features of candidate patches to down-
sample an representation from all relevant patches, for each value of the feature
map: max(fv1 , fv2 , fv3)

Average-pooling: Apply a average filter over the features of candidate patches
to down-sample an representation from all relevant patches, for each value of the
feature map: 1

3
∑3

i=1 fvi

Weighted-pooling: Apply a weighted filter over the features, where we use the
viewpoint distance to estimate the contribution from each candidate views: ∑3

i=1 wifvi

There are seven convolutional layers in encoder and four of them are down-sampling
layers where we use skip connections to corresponding layers in decoder. In detail,
for each skip connection, features of synthesized patches and aggregated features
of candidate patches are concatenated together. We train the refinement network
using a Mean Square Error(MSE) loss with ADAM at the present stage.
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Figure 3.4: The illustration of our refinement network. The U-Net based
framework is composed by an encoder and a decoder. For the encoder, we take a
patch of synthesized images from synthesis stage as input, and a variable number
of corresponding patches from three of the cameras nearest the target viewpoint.
All patches go through the encoder separately. The encoder has 7 convolutional
layers and we extract features of layer 2, 4, 6, 7, which is down-sampling layers.
Then we perform aggregation with aggregate weights, defined by the distance
between target views and referenced views. Intuitively, the closer the camera is,
the more feature information it will contribute. For the decoder, we use skip
connections. The input are feature sets of patches from the four down-sampling
layers of synthesized images and candidate views. Features of the synthesized
patch and features of candidate patches after a weighted-pooling operation are
concatenated in the decoder at layer0, 2, 4, 6 to generate final refined patch. We
perform Batch Normalization after each convolutional layer in both encoder and
decoder
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3.3 Implementation Details

We generate sparse point cloud from image collection first by COLMAP [SF16] ,
and obtain point cloud projection of each viewpoint with camera parameters P in

and P ex. An example of the output projection can be seen in Figure (3.3).
At the synthesis stage, the input images are randomly cropped with a 256x256 box
at each epoch for training. The pairwise framework is trained with 200 epochs. We
set learning rate as 2E-4 and batch size as 1. There are 8 layers in both encoder
and decoder of image translation network while 5 layers in discriminative network.
All the layers have kernels with a size of 4x4 and strides with a size of 2x2.
At the Refinement stage, We select key points from point sequence by adding an
interval value 200 to decrease the overlapping, and obtain about 60 patches for
each view. We use PyTorch [PGC+17] to implement our framework. All the input
patches are resized to 64x64. Skip connections are used from the four down-sampling
layers(layer2, 4, 6, 7) of the encoder to the decoder(layer0, 2, 4, 6). Layers are
followed with batch normalization. We set learning rate as 1E-4 and 1E-3 with
weight decay, our model is trained and tested separately.
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4 Experiments

We evaluate our proposed method on the NYU-Depth V2 data set [SHKF12], which
consists of a variety of indoor scenes recorded by Microsoft Kinect. We report our
results of synthesis stage and refinement stage by a validation set. We would like to
present some visual results and provide a numerical evaluation of images from two
stages, such as SSIM [WBSS04] and PSNR.

Figure 4.1: (a) Samples of the RGB image and the raw depth image of different
scenes from NYU-Depth data set. (b) Samples of Basement data set. Only RGB
images are used in our experiments.
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4.1 Datasets

We train the model with the NYU-Depth V2 data set that consists of 464 new
scenes taken from three different cities. The data set is comprised of several video
sequences and records a variety of indoor scenes. Both RGB and Depth images from
the Kinect are sampled from video frames and the sampling rate lies between 20
and 30 FPS. According to our problem setting, we only use the raw RGB images
to synthesize realistic novel views in the experiments. We take two of the indoor
scenes from the NYU-Depth V2 data set: study room scene with 595 images and
basement scene with 1407 images. We train our model on basement data set and
test on both. We also divide the basement image set into two different set: 1000
pairs for training and 407 pairs for testing. Figure 4.1 has shown several example
images. We describe our data processing for synthesis stage and refinement stage in
detail.

Data processing at synthesis stage: For our purpose, at synthesis stage we
require pairs of images and their corresponding point cloud projections. In order to
create image pairs, we need to estimate camera motion for each image and construct
a sparse point cloud at first. Actually, for camera tracking there are few well-
performed available tools. We use a structure-from-motion technique in computer
vision to estimate camera poses, such as COLMAP [SF16] which is optimized for
image collections. We obtain a sparse point cloud with 54,115 points.

Data processing at refinement stage: At refinement stage, we need quadru-
plet of synthesized patches together with their three candidate patches from nearby
cameras. In detail, for each synthesized images, we extract patches by cropping a
key point-centered 64x64 bounding box. In order to find corresponding patches in
candidate views, we need to find key points that could be visually seen in the target
view as well as candidate views. There are in total 54,115 key points in the point
cloud, for each quadruplet, about 20,000 points could be seen simultaneously. As
described in section 3.2.1, we select key points from seen point sequence by adding
an interval value 200 to decrease the overlapping, and obtain about 4x60 patches
for each target view in the end. In the experiment, we use 20011 quadruplets of
synthesized patches and their candidate patches from 300 images of basement for
training, while 6846 quadruplets for testing.

4.2 Baseline methods

Most previous works about novel view synthesis concentrate on predicting novel
views from one or multiple given views directly. For instance, DeepStereo [FNPS16]
tries to imagine the frame between two static images. Pittaluga et al. [PKKS19]
present a pointcloud-based method but mainly focus on scene reconstruction and
have not shown quantitatively evaluation for novel view synthesis.
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According to our problem setting, we aim to generate novel views from arbitrary
viewpoint with a sparse set of images. As there is no previous work focus on arbitrary
view synthesis for a complicated scene, we take the pix2pix method as our baseline
and compare the results with it to validate the effectiveness of our 2-stage training.
We evaluate the methods both on views included in the testing set and virtual views
set by virtual camera poses.

4.3 Performance comparison

In this section, we present a numerical evaluation of our proposed method and show
some visual examples. To obtain a quantitative evaluation, we use two different
image quality evaluation metrics PSNR and SSIM [WBSS04]. Both of them compare
synthesized images with ground truth images and higher value means higher image
quality. We evaluate our proposed method on testing set of basement scene from
NYU-Depth V2 Data Set.
Figure 4.2 shows samples of the results from our synthesis network and refinement
network. It is obvious without refinement, some regions of the results are strongly
affected by artifacts, especially those with abundant details, such as the washing
machine in Figure 4.2 (a). What is more, some of the distortions are removed and
occlusion relations between objects have been corrected. Table 4.1 shows quantita-
tive comparison with specific PSNR and SSIM values. Comparing with Baseline-
Pix2Pix, our 2-stage work presents higher PSNR and SSIM values. It is clear that
the refinement network training at patch level does indeed improved the quality of
synthesis. To further evaluate the performance of refinement work and validate the
effectiveness of guiding patches, we also train our refinement network with another
two aggregation methods. As shown in 4.3, our weighted-pooling method with dis-
tance between views performs more visually pleasing results than max-pooling and
average-pooling.

Method Mean SSIM Mean PSNR
Baseline-Pix2Pix 0.433 18.03dB
Max-pooling 0.559 19.64dB
Average-pooling 0.563 19.96dB
Our weighted-pooling 0.580 19.99dB

Table 4.1: Quantitative analysis of proposed method: Baseline refers to the
novel views produced by pix2pix image-to-image translation method without any
refinement. Max-pooling refers to performing aggregation by conducting max-
pooling over the features of the three candidate patches. Average-pooling refers
to performing aggregation by regarding the three candidate patches as equal. The
accuracy is measured by both SSIM and PSNR quality metrics.
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Metrics 0-0.25px 0.25-0.5px 0.5-0.75px 0.75-1px 1-1.25px 1.25-1.5px >2px Avg.
(1838) (2280) (789) (1513) (354) (63) (9) (6846)

Mean SSIM 0.587 0.584 0.576 0.570 0.565 0.566 0.606 0.580
Mean PSNR 19.14dB 19.79dB 20.69dB 20.81dB 21.00dB 18.47dB 18.06dB 19.99dB

Table 4.2: Quantitative comparison between different image:We divide the
test images into 7 different groups by average distance from target view to its
three corresponding candidate views. We show number of images in each group
and evaluate the image quality for each group with PSNR and SSIM.

Method [PKKS19] 20% [PKKS19] 40% [PKKS19] 60% Ours Avg.
Mean SSIM 0.539 0.605 0.631 0.580

Table 4.3: Quantitative comparisons with [PKKS19], where 20%, 60% and 100%
indicates the utilization of SIFT features in their work.

In addition, we also show some detailed quantitative comparison on synthesized
novel views of different groups divided by average distance from target view to its
corresponding candidate views in Table 4.2. The distance are measured in pixels.
Intuitively, the smaller the average distance is, the better final results we should get.
Our results generally follow the rule but still have some exception, which we would
explain in detail in next section.
We compare against the results from [PKKS19] in Table 4.3. It has shown that
our results performs better when they use 20% of the SIFT features in training.
Other works by [ZTF+18] and [CGT+19] focus on interpolation or extrapolation
from many fewer neighbouring inputs, whose problem setting has larger difference
with us.
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Figure 4.2: Samples of the results from our synthesis network and refine-
ment network. (a) are initial synthesized novel views from synthesis network.
(c) are refined novel views generated from refinement network. (b) are selected
patches (initial patches and refined patches). It is obvious that some distortions
are removed after refinement. Also, the occlusion relation of the blue box and the
pillar is corrected in refined patch compared to initial one.
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Figure 4.3: Example results generated with different pooling operations.
Weighted-pooling method performs more visually pleasing results than other
methods by removing distortions and noise.
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5 Discussion

5.1 Analysis of experimental results on Basement
dataset

We have shown that our proposed 2-stage network has achieved better performance
by training with image priors from nearby views in the section of experiments. We
test our model on Basement dataset where two different rooms are included.

Obviously, performance of novel view synthesis is strongly affected by transformation
of camera pose. It is much more difficult to generate novel views under larger
viewpoint changes. We measure the viewpoint changes by average distance in pixel
from target view to its three corresponding candidate views. Intuitively, we should
get better results when the distance is relatively small. However, as shown in Table
4.2, the group of distance(>2) obtain highest score with SSIM Metric, while the
group of distance(1-1.25) get higher value than others with PSNR Metric even if we
could see little visual differences on them.

There are two main reasons. First, the experimental results are affected by the
data size. For instance, the numerical result of the group with viewpoint distance
larger than 2px is not meaningful since the group size is too small. Second, there
are still limitations on assessment metrics. Since PSNR is defined via the mean
squared error(MSE), it performs better in assessing the quality of noisy images rather
than discriminating structural content, while SSIM is more sensitive to structural
information. As is shown in Table 4.2, without considering the meaningless data,
structural content of novel view is better reconstructed when candidate views are
closer, which not means less noise(higher PSNR value) in images.

5.2 Analysis of different pooling skills

To validate the effectiveness of training with candidate patches, we also perform
three different aggregation method in our refinement network and get numerical re-
sults respectively: Max-pooling, Average-pooling and Weighted-pooling as described
in section 3.2.2. Table 4.1 shows quantitative results. Our weighted-pooling oper-
ation achieved best performance under both SSIM and PSNR perceptual metrics.
Figure 5.1 shows visualization samples generated with different pooling operation.
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Figure 5.1: Results generated with different pooling operations. It shows
that when compare to ground truth, weighted-pooling method suppresses oth-
ers and performs better in removing noise and preserving detail contents of the
washing machine.

Comparing to groundtruth, we could see that structural content has been better pre-
served and less noise is produced in synthesized result. Therefore, closer view would
contribute more to the novel views. Also, it is believed that larger visual difference
would be seen if there is an increasing difference between viewpoint distances.

5.3 Limitations

As shown in Figure 5.2 and Figure 5.3, although we have synthesized better results
with refinement stage compared to baseline, there is still some noise in final output.
The refinement network can mainly fix artifacts such as distortion and structure
errors. However, it is struggle to fix natural artifacts and is unable to hallucinate
regions where projected points are rarely found.
As our point cloud is generated from a image collection of the scene, it is obvious
that there is no point corresponded with pixels in areas outside of input images. We
set our novel view by translating or rotating the cameras. Therefore, there might
be regions in novel views, where point cloud is extremely sparse or even no point is
projected. The synthesis would fail in this kind of cases.
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Figure 5.2: Samples of limitations. When comparing (c) with (d), we could
find that to a certain extent, refined patches have smaller distortions and higher
structural similarity with the groundtruth. However, some detail information is
lost at the same time so that the image becomes more blurry.
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Figure 5.3: Samples of failure cases. Image pairs of point cloud projections
(left) and synthesized results (right). First row: original viewpoint; Second
row: virtual viewpoint generated by a translation offset {-2,0,-4}; Third row:
virtual viewpoint by a translation offset {-2,0,-2}. It is clear that poor reconstruc-
tion and strong artifacts are found in areas with fewer projected points.
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6 Conclusion and Future work

We propose a new method for novel view synthesis in this thesis and further define
the problem setting. We specifically target the case that rendering a scene from a
novel viewpoint when given some other views of it. Most of previous works focus on
generating novel views by interpolation and extrapolation with input images and the
position of virtual camera often differs little from the input. However, there would
be missing regions in synthesized views due to occlusion and depth uncertainty. To
deal with this problem, existing works use depth-synthesis approach [CDSHD13] or
formulating a soft 3D reconstruction explicitly [PZ17]. Recent approaches use deep
learning techniques to learn novel views directly by leveraging large image priors.
This kind of methods try to correct artifacts at a high level.

Our work focuses on a increasingly common case, so that the challenges lie on two as-
pects: 1) Find most valuable image priors from large amount of input. 2) Overcome
traditional difficulties of novel view synthesis, such as the artifacts caused by occlu-
sion problem and uncertain geometry. To tackle the first challenge, we first build
a sparse point cloud with Structure-from-Motion techniques from image collection
to get a rough construction for the scene. Key points in the world coordinate could
be projected to different image coordinate with different camera poses, forming a
geometry representation for each view. Intuitively, views from cameras that close
to the target camera should share similar components with target view. Therefore,
we use these intermediate representations to measure the distance between cameras
and seek out valuable image priors. To solve the second challenge, we propose a two-
stage framework consists of synthesis network and refinement network, to predict
and refine novel views respectively. We combine traditional geometric method with
deep learning techniques and validate on a real scene from NYU-Depth V2 data set.
The visualization results and quantitative evaluation have proved the effectiveness
of our approach. As a discussion, we showed more visualization results to reveal
how patches help correct artifacts.

We also analyzed the limitations of our method and would like to solve those in our
future work. First, there still remains some artifacts caused by occlusion. To handle
this, we could estimate point visibility at synthesis stage by adding a depth buffer to
our network input, and depth value is calculated from the 3D point cloud. However,
it is still difficult to perfectly remove all points lie on surfaces which are occluded
from that viewpoint, since the points belong to foreground may not exist in the
original point cloud. Next, in order to obtain higher quality images with less blur
and noises, we could train our refinement network with a perceptual loss rather than
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L2 loss to preserve high-frequency information. The second challenge for us is how
to fix the regions of strong artifacts and poor reconstruction due to sparse projected
points. We would like to further build an end-to-end neural network and train all
parameters simultaneously with one loss, and target to achieve better performance
of generating more realistic views.
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