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Abstract

Recognizing human actions in videos can make machines better interpret the behav-
ior of human beings. As one of the basic fields of computer vision, action recognition
has attracted significant research attention. In particular, with the recent advance
of deep learning, there is a huge boost of action recognition performance. Deep
learning models that takes as input video clips can reliably recognize the actions
compared with traditional methods using hand-crafted features.

However, one of the main drawbacks of existing deep learning models is that the
input video clips are assumed to be pre-processed. This pre-processing step includes
trimming unrelated parts and deleting ambiguous noisy parts of the video clip. Other
than the huge human labour that is needed in the pre-processing, the assumption
that the videos are clean (pre-processed, noise free) is not realistic and strongly
restricts the real world application of action recognition models. In real world videos,
actions are performed naturally without restriction. This would result in the video
clips contain lots of un-informative or noisy frames. If we directly using the noisy
video clips as input to the existing methods, there would be a significant performance
decrease. We argue that an automatic frame selection method is needed for more
robust action recognition in real world applications.

In this work, we aim at alleviating the pre-processing problem and make action
recognition methods more robust under the input of un-processed videos. To best
leverage the existing success of action recognition models, we propose a plug-and-
play module for automatically pre-process the input video. The proposed module
acts as a frame selection tool and thus could be applied on top of any existing models
for action recognition. With the proposed module, the input to the recognition
system could directly be un-processed videos. The un-processed videos are first
selected by the proposed module. The selected informative frames are then used
as input to the recognition module. By this means we can allow action recognition
models to take as input noisy video clips without pre-processing, while in the mean
time robustly output reliable action recognition results.

Technically speaking, the proposed module contains two major sub-modules: the
sampler network and the evaluator network. The sampler network samples impor-
tant frames from long unprocessed video clips for action recognition modules. The
evaluator acts like a teacher to the sampler network by providing feedback on how
well the output of sampler is. By jointly end-to-end training the sampler and the
evaluator using the final action recognition loss, we could get a sampler that could



select useful frames best for action recognition. In the inference stage, the evaluator
is discarded thus further accelerates the inference even with long video clip as input.

We conduct our method on the public EGTEA dataset. EGTEA dataset contains
egocentric videos taken from head mounted cameras. More than 30 participants
were asked to cook in a kitchen with a certain recipe. As most participants are not
experts in cooking, there are many noisy frames in most of the actions. Thus we
use this dataset to validate the effectiveness of our method. Experiments show that
our proposed sampler can successfully select better frames for action recognition,
and that with the evaluator the sampler could be better trained to even boost the
selection performance.
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1 Introduction

1.1 Overview

There has been increasingly amount of attention from the research community on
video-based action recognition [WS13, GYZ"16]. This is because of action recog-
nition has wide applications in many areas such as security and human behavior
analysis. With recent advance of deep learning techniques, action recognition can
be more accurately performed by applying a deep CNN over fixed-length video
clips [SZ14, FPZ16]. Most modern action recognition models operate on manually
selected video clips in which irrelevant or noisy parts are filtered out. However, as-
suming input clips are pre-processed has great limitation in real world applications
and is also very unrealistic especially in first-person (or egocentric) videos, where
camera wearers may often be interrupted during the middle of an action. Moreover,
the manual pre-processing of videos tend to be extremely time-consuming, this is
especially important when the amount of data becomes large.

In this work we aim at alleviating the limitation of existing action recognition models
by introducing a plug-and-play model on top. The model can take as input unpro-
cessed video clips and output informative frame/clips for better action recognition.
By introducing a new Sampler-Evaluator model on top of any existing action recog-
nition models, we can make the best use of the success of recent action recognition
methods (for example [WGGH18, SEL19, WG18]) without the need of modifying or
tuning them.

Technically speaking, we propose a Sampler-Evaluator scheme for learning to select
informative frames for better action recognition. There are two main components
of the proposed model: sampler and evaluator. The sampler network takes as input
long and noisy unprocessed video clips, and outputs a sequence of selected infor-
mative frames. Since the ground-truth of noisy frames are unknown, we use an
evaluator network for better training the sampler. The evaluator network evalu-
ates the quality of the selected sequence, using the information that how well are
the selected sequence recognized by existing action recognition models. The role
of evaluator acts like a teacher that provides feedback for better training the sam-
pler network. During the inference step, the evaluator is discarded. We show in
experiments that by adding the sampler we can better recognize action from noisy
video inputs, and that by adding the evaluator in training it is able to boost the
final action recognition performance even more. In the experiments we also demon-
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Figure 1.1: Selecting frames for action recognition. Given an unprocessed
video clip containing a “cut onion" action, we showcase three sampling strategies
for action recognition. (1) Direct input all frames: (2) Uniform sampling and (3)
select informative frames. Since during the cutting action, the camera wearer peels
the onion with his hand, and also looked around several times, either direct input
all frames or uniform sample from the clip cannot make the action recognition
model output a correct result. In noisy video input like this, it is essential that
we select informative frames for better action recognition.
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strate that the sampler can effectively filter out different types of noise and select
informative frames/clips for better action recognition.

In summary, our main contributions are three-folded as follows:

e Firstly, we propose a novel model for selecting frames from noisy video inputs
for better action recognition. Our model can be built on top of any existing
models for action recognition and is end-to-end trainable without the need of
frame selection ground-truth. To the best of our knowledge, this is the first
end-to-end trainable frame-selection model for improving action recognition
performance, using only action recognition as supervision.

e Secondly, propose a novel sampler-evaluator mechanism for enabling end-to-
end training the proposed model. By using the evaluator that could measure
the performance of the sampler network and give the sampler feedback, our
model could be end-to-end trained without using ground-truth frame selections
which is too costly to acquire in real world data.

e Thirdly, we demonstrate in experiments that the proposed model can success-
fully filter out noisy components in the video input and increase the action



recognition performance by selecting informative frames.

1.2 Thesis Outlines

The rest of this thesis is organized as follows. In Chapter 2, we first provide an
overview of recent related works on action recognition and video based frame selec-
tion. For each field of related works we select at least three closely related methods
to be described in detail. We then present our method in Chapter 3, our method
is a plug-and-play model on top of any existing action recognition models. We will
introduce the sampler and evaluator as the main component of our proposed model.
We also introduce the training strategy. In Chapter 4, we evaluate our method and
show its superiority over other baseline methods. We conduct extensive experiments
under multiple noise conditions to validate the effectiveness of our method. Another
reason why we use multiple noise conditions is that we would like to simulate the
realistic noise that could happen during the video recording or video transmission.
Current limitations are also presented and possible solutions and other modifications
are discussed. Finally, Chapter 5 summarizes this thesis.






2 Related Work

The goal of our work is to achieve better action recognition under very noisy inputs.
Thus in this section we review related works from mainly two perspectives: action
recognition [PWWQ16, GYZ"16, WQT, CZ17, DFS*18, FPW16, FPZ16, XSH*18§]
and frame selection [KTT19, GCGS14, GGVG15, MMJ*18, MJM*18, CHCNGI6,
JVGJ*T14, KL14, PBTM17]. In the following of this section we will introduce the
overall research of action recognition and frame selection, together with some more
related works explained in detail.

2.1 Action Recognition

As one of the fundamental research topic in computer vision, action recognition
from videos has been extensively studied in recent years [ZSB18, YXL18, XSH" 18,
WMDI18, CKL*18, ZSZZ18, ZAOT18|. Basically, most works try to model the
spatial and temporal information in a video for action recognition. Earlier works
design hand crafted features for describing the object and motion in the video so as
to do the recognition. With the help of deep learning techniques, the performance
of methods using deep neural networks have surpassed those who use hand crafted
features.

2.1.1 Traditional Methods Using Hand-crafted Features

Before the age of deep learning, many representative works [WS13, JXYY12, WQT14,
CWPQ14, NMYY15] in action recognition encode motion information in hand crafted
features. For example, Wang et al [WKSCL11] propose to use dense trajectories.
Feature keypoints are sampled densely from each frame and then tracked based on
the displacement information from a dense optical flow field. This work is further
extended as improved dense trajectory [WS13| that takes into account the camera
motion. By compensating the camera motion, the motion inside the video could be
better represented, thus better action recognition could be achieved. Other than
just using hand-crafted feature alone, some work [WQT15, CLS15] also hand-craft
features extracted from deep convolutional neural networks.

Many works also devote to model the temporal structure of action [FGO*15, NCFF10,
WQT13, SJYS15]. Gaidon et al. [GHS13] propose to represent each atomic action



seperatedly, they annotated each atomic action for each video and proposed Ac-
tom Sequence Model for action detection. Niebles et al. [NCFF10] proposed to
decomposite actions into multiple sub-actions, and use latent variables to model the
temporal decomposition. For the classification they resorted to the Latent SVM
[FGMRO09] to learn the model parameters in an iterative approach. Wang et al
[WQT13] extended the temporal decomposition of complex action into a hierar-
chical manner using Latent Hierarchical Model and Segmental Grammar Model,
respectively. Fernando et al [FGO115] modeled the temporal evolution of Bag of
Visual Words representations for action recognition.

2.1.2 CNN based Deep Learning Methods

With the rise of deep learning, many works try to design effective models for action
recognition using convolutional neural networks (CNNs) [SZ14, SJYS15, SKS*18,
TBF*15, VLS17, WLLVG18, WXW*16, WGGH18, WG18]. In action recognition,
there are two significant while complementary aspects: appearances and motion.
As earlier CNNs only aim at extracting features spatially while ignoring temporal
information, Simonyan et al. designed a two-stream CNN that takes as input both
images and optical flows. This architecture is proved to be effective in capturing
both object and motion information. Afterwards, a bunch of works follow their steps
to use two stream architecture for action recognition.

For example, Wang et al. [WXWT16] proposed the Temporal Segment Network
(TSN) for modeling long-range temporal structure. Aiming at extracting and utiliz-
ing relavant appearance and motion information from long range temporal structure,
they build their TSN on top of the two-stream architecture [SZ14]. Since in most
videos consecutive frames are usually redundant, instead of densely sampling frames
from videos, TSN uses a sparse sampling technique. They first uniformly divide the
whole video into several segments, and randomly extract a short video snippet from
each of the segment. By late fusion of scores predicted from each of the segments, a
better recognition performance is achieved. However, one obvious drawback is the
randomness within the sampling process: some critical part of the video may be lost
during the random sampling in each video segment.

As an alternative way for capturing motion information in CNNs, 3D CNNs are
also extensively studied in the field of action recognition. C3D network [TBF*15]
firstly extended 2D convolution filters into 3D. By this means the motion informa-
tion within the videos can be implicitly extracted by the 3D convolution operations.
To reduce the computational cost of 3D CNNs, some works [QYM17, XSH*18§]
used two 1D convolutional kernels for replacement of 3D convolutional kernels. In
2017, Carreira et al. [CZ17] extended the BN-Inception network [SVIT16] to 3D
convolution network named I3D. They do this by inflating the 2D convolutional
kernels into 3D, thus enabling the network to extract seamless spatio-temporal fea-
ture from videos while leveraging the Imagnet architecture designs. Following works
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designed 3D-Resnet [WGGH18] by inflating the 2D kernels in ResNet [HZRS16] into
3D kernels. Remarkable performance gain is achieved. Most recent state-of-the-art
action recognition models [WG18, CKL*18, LLL19b, KPvD"19] are based on the
3D-Resnet as backbone.

2.1.3 RNN based Deep Learning Methods

Besides using optical flow as input or using 3D convolutional neural networks, an-
other direction to capture motion information in videos is to use Recurrent Neural
Networks (RNN). One of the most powerful recurrent neural network is Long Short
Term Memory (LSTM). The main idea of LSTM architecture is its memory cell,
input gate, output gate, and forget gate, which can encode the temporal order of
features over time. Its non-linear gating units can regulate the information to flow
into or flow out of the memory cell [GSKT16, UAM™17]. For example, Singh et
al. [SMPT17] compared the performance of action recognition using LSTM, Naive
Bayes [TIL04], Hidden Markov Model (HMM) [DBPV05], and Conditional Random
Fields (CRF) [VKNEKO0S8|. Experiments on public datasets demonstrate the effec-
tiveness of LSTM, as it outperforms all other compared baselines. However, using
RNNs alone cannot perform good results on action recognition. Researchers often
combine RNN with features extracted by CNN for better recognition accuracy.

2.1.4 Hybrid Models in the Context of Deep Learning

CNNs excel at extracting powerful representations from images while RNNs are good
at modeling temporal evolution information. Based on their unique strengths, sev-
eral researches focus on combining the strength of CNN and RNN by using features
extracted from CNNs as input to RNN [ZGY 118, SEL19, SL18, ZXL*18].

A recent work proposed by Sudhakaran et al. leveraged LSTM and applied attention
mechanism for better emphasizing important regions in the image. They present
Long Short-Term Attention (LSTA) which is a modified version of LSTM that ad-
dresses shortcomings of LSTM: LSTMs do not have spatial attention to focus on
more critical part of images. When the discriminative information in the input se-
quence can be spatially localized, conventional LSTM cannot emphasize this spatial
region. With this in mind, adding attention mechanisms to LSTM cells is a natural
solution. Attention mechanism was proposed for focusing attention on features that
are relevant for the task to be recognized. For generating the spatial attention, most
existing techniques [SL18, PFR17] consider each frame independently. Since video
frame sequences have an absolute temporal consistency, per frame processing results
in the loss of valuable information. In this work, the authors propose LSTA that
could learn spatial attention map in a top-down fashion utilizing prior information
encoded in one CNN pre-trained for object recognition and another pre-trained for
action recognition.
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The proposed LSTA extends LSTM with two novel components: recurrent attention
and output pooling. The recurrent attention part tracks a weight map to focus on
relevant features, while the output pooling component introduces a high-capacity
output gate. At the core of both is a pooling operation that selects one out of a
pool of specialized mappings to realize smooth attention tracking and flexible output
gating. The effectiveness of LSTA is evaluated on GTEA [LYR15] and EGTEA
[LLR18] datasets. LSTA is now the state-of-the-art method for egocentric action
recognition. In this work, we also explore the feasibility to combine CNN with RNN
for better model performance.

2.2 Video Frame Selection

Another research topic closely related with our work is video frame selection. The
task of video frame selection have various applications, ranging from video summa-
rization [RYW18, XE19], action localization [KWFS17, CVS*18, ZHT*19, GGCN19,
LLL"19a] to efficient video processing [KTT19]. Our work takes a step towards bet-
ter action recognition in noisy data, thus selecting a set of robust and reasonable is
a part of our goal. In the following subsections, we introduce some related works
about different aspects of frame selection that inspired our model design.

2.2.1 Video Summarization

With the world entering the digital era, large amount of videos appear on the in-
ternet. Video data are often redundant: it is tiresome for human to observe all
of the video data for extracting useful information within. The technique of video
summarization, whose goal is to select a subset of the frames to create a sum-
mary video that optimally captures the important information of the input video
[ZCSG16, MLT17, RYW18|, is very important for the tasks such as video search
and browsing.

Recently, fully convolutional network (FCN) based video summarization has been
proposed [RYW18] and is proved to outperform RNN based video summarization
techniques [ZCSG16, MLT17]. In the paper of Rochan et al., temporal FCN is
used to capture long range temporal information by processing all frames simul-
taneously using the convolution operation. Based on the intuition that important
frames should be visually diverse, their model could also perform unsupervised video
summarization by encouraging the diversity of the selected frames.

To validate the performance of FCN on video summarization, experiments are done
on two public datasets: SumMe [GGRVG14] and TVSum [SVSJ15]. Their method
outperforms other models by a large margin, indicating the usefulness of FCN on
video summarization. More importantly, the authors tested video summarization
performance in a “Transfer Setting", where the model is trained on one dataset and
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tested on another dataset. This is a challenging setting since the data distribu-
tion may differ greatly between datasets. Experiments show that although in the
standard setting, FCN performs better than other methods (such as RNN based
method [ZCSG16]), in the transfer setting the FCN model and the RNN models
perform comparably. This indicates that current state-of-the-art works is still hard
in generalization to unseen data.

2.2.2 Video Highlight Detection

Video highlight detection is another important application of video frame selec-
tion, especially in sports videos. Due to the difficulty in getting ground truth of
video highlight, Yao et al. [YMRI16] propose a deep ranking technique for highlight
detection in paired videos. Different than the traditional supervised scheme like
[ZCSG16], where the absolute ground truth is given for training a video summa-
rization model, this work determines whether a video segment is highlight or not
by comparing it with other video segments. This greatly alleviates the effort of hu-
man labeling, and could also get more reliable annotations since relative highlight
difference is usually similar even across different human annotators. As one of the
contributions of this work, Yao et al. collected a new dataset of first person sports
videos, and crowd-sourced the annotations.

As another contribution of this work, the deep ranking model takes as input two
segments of video. After processing the segments using a Siamese network where two
identical branches share the same parameters, the output of each branch is compared
using a pairwise ranking loss. This loss encourages the output of the branch which
takes input the segment with higher highlight ground truth score to be higher than
the other branch. By this scheme, the model could be trained to output a highlight
score of a video with only training data with pairwise label. Experiments on the
newly collected dataset also validates the effectiveness of their proposed method. In
this paper, since we do not have a ground truth of the ranking score, we do not use
the ranking scheme for selecting important frames.

2.2.3 Action Localization

Action localization is a task of selecting frames of a certain action out of a video
containing both the action and background. This is an emerging field of research
[PBTM17, ZHT*19] as it benefits other research fields like action recognition and
video understanding. Previous approaches on this task can be grouped into two
categories: (1) two stage approaches where action proposals are first generated and
then classification and boundary refinement is applied on each proposals [SWC16,
ZHT"19]; and (2) methods with end-to-end architectures integrating the proposal
generation and classification in a one-stage framework [BEG™17]. Overall, methods
in the first category results in better performances while methods in the second
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category are faster and easier to train. As an example, Pei et al. proposed to use
a modified version of LSTM named Temporal Attention-Gated Model (TAGM) for
action localization. The TAGM can calculate a saliency score for each input frame
in the whole video. We use TAGM as an option of attention module in our proposed
method.

Recent researches not only focus on utilizing the spatiotemporal information of the
video, but also consider the relation within the video. For example, action proposal
relations in the video could help with the action localization task [ZHT19]. Zeng
et al. [ZHTT19] explicitly leveraged the relation between multiple action proposals
to improve the action localization result. They make use of the Graph Convolution
Network [KW16] for modeling the relations among proposals. In this work we also
considered using graph convolution networks for selecting relevant frames from noisy
video input, however the result is not satisfactory. We suspect this is because that
graph convolution networks are good at capturing global video information but

tend to ignore local importance, due to the node-wise average pooling operation
[KW16, WG18].

2.2.4 Frame Selection for Efficiency

Frame selection could also improve the efficiency of action recognition algorithms.
To increase the recognition accuracy, action recognition models tend to be complex
[KTT19], which is an obstacle for the adaptation on mobile devices. Also, videos
often contain redundant frames, and standard pooling operations can result in poor
video-level recognition, as informative clip features are outnumbered by uninforma-
tive features over long unimportant frames.

Very recently, researchers from Facebook Al [KTT19] propose to use an lightweight
network to determine the saliency of frames in a long video clip, so as to select frames
for the next computationally expensive action recognition step. The core idea is to
design an extremely lightweight network (sampler network) that can take as input
large number of video frames while in the meantime output a reasonable saliency
score. Their proposed way of making the sampler network lightweight is to make use
of the compressed image and audio information. While usually CNNs takes as input
RGB images, they design their network to take as input one RGB frame followed
by 11 motion displacement images. The motion displacement images have only 2
channels, and are resized to 1/16 of the original image size. By this means, the
computational cost of processing the input is drastically reduced, while information
within the frames are mostly preserved. The sampler network also leverages the
MEL-spectrograms from audio segments, since audio information is lightweight but
can provide some useful information indicating whether action is happening.

Due to the lack of ground truth saliency scores, the training of the sampler network
is not straightforward. As for the image input, the authors simply train the sampler
as an action classifier, and the saliency score is computed as the maximum score

14



over all the classes. As for the audio input, the authors further used the previous
classification score and train the audio-based sampler as a saliency ranker. Ranking
loss same with [YMR16] which is described in the previous subsection, is used for
training the audio-based sampler. The authors evaluated the proposed method on
Sports-1M dataset [KTS'14], where videos have average length of 5 minutes which
is good for validating the method.

Inspired by this work [KTT19], in this work our method also uses action recognition
as supervision for training the sampler network. However, different from their work,
we add an attention module for acquiring the importance score of each frame. For
better training the sampler network, in this work we also add an evaluator network
to encourage the sampler to draw better samples for action recognition. Details of
our network is described in the next section.
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3 Proposed Method

In this section, we will first give an overview of our full model for selecting informa-
tive frames from input videos. Then we will go into details about the three major
components of our model, especially the Sampler-Evaluator model which could work
with any existing action recognition models. In the end, we will introduce the im-
plementation details and the iterative training scheme for training our model.

3.1 Model Architecture

In this work, we aim at selecting informative frames from noisy input videos for
better action recognition. Our model can be viewed as the combination of the Action
Recognition Module and the plug and play Sampler-Evaluator Model. Figure 3.1
depicts the overall architecture of our model.

Given fixed-length clips with spatial resolution H x W, the Sampler module extracts
deep features from a single RGB image at each time step t € {1,..., N}. Attention
scores for each frame are then generated by applying self-attention on the deep
features. And the top n frames are selected according to the attention scores. Clip Vj
with n selected frames are further used as input for Recognition module to produce
the possibilities for each class {1,...,C}. At the same time, the Evaluator module
estimates an effectiveness score based on deep features and selected frames generated
from the Sampler module. The easier the selected frames are for the Recognition
module to make accurate recognition, the closer the score will be to 1. More details
of each module is explained in the following sections.

3.2 Recognition Module

The focus of our work is to propose a plug and play frame selection module which
can work with any existing action recognition models, so we are not committed to
optimizing the existing models, but pay attention to the cooperation between our
Sampler-Evaluator modules and the existing models.

As mentioned in Korbar et al. [KTT19], the majority of modern action recognition
models constrain the number of input frame n to keep memory consumption man-
ageable in both training stage and testing stage. Usually, n frames only allow their
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Figure 3.1: Architecture of our Proposed Model. Our proposed model con-
tains three main modules: (1) the Sampler module samples discriminative frames
from noisy input frames, (2) the Evaluator module evaluates the performance of
the Sampler and provides feedback for better training the Sampler network. (3)
The Recognition module which essentially could be any existing models for action
recognition.

models to see a handful of of seconds at one time, which imposes a horizon for the
model to understand the whole input clip. And this problem is particularly salient
when the action recognition model goes more complex.

Given n input frames, Recognition module will first encode spatial-temporal infor-
mation using CNNs or RNNs to deep feature Xz. With regard to 2D networks,
Xgr € R™4 is extracted from each frame and aggregated on temporal dimension.
And for 3D networks, Xy € R? is directly generated for the whole clip.

After extracting deep feature Xg, a fully connected layer is used to produce action
classification possibilities P, over all action classes.

P, = sotfmax(WXp + b) (3.1)

3.3 Sampler Module

Our technical interests lie in selecting informative frames which benefit Recognition
module to make correct action recognition, so the Sampler module is critical and
indispensable in our proposed model. Given N frames, our Sampler module will
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select the most informative n frames from them. Obviously, this not only requires
the Sampler module to be able to handle more input frames, but also requires it to
be salience-sensitive and noise-robust.

Considering computational efficiency, we choose to use down-scaled gray-scale frames
as the input of our Sampler module. First of all, we randomly take N gray-scale
frames from each long input video clip to form the Sampler input V € RN*HxW,
For the efficiency of feature extraction process together with the effectiveness of
extracted features, ResNet18 [HZRS16] pretrained on ImageNet [DDS109] is used
to generate deep feature X, € RV*4. Afterwards, attention scores a € RY among
all N frames are produced by applying attention mechanism on deep feature Xj.
High attention score indicates that more relative to other frames, and vice versa.

Attention mechanism in deep neural networks [WJQ™17], has been widely exploited
in many aspects of image and video processing. Spatial attention endows models
with great discrimination, and allow them to liberate from vast information and
concentrate on key regions in images.

However, rather than spatial attention, we put more emphasis on introducing tem-
poral attention over N frames to highlight informative frames as well as ignore
irrelevant frames. In this work, we exploit the following two methods to calculate
attention scores and further generate improved deep features.

Self-attention [VSP*17] method was proposed by Vaswani et al. in 2017. Different
from other methods that take the advantage of CNN or RNN, they employed a
transformer architecture to generate scaled dot-product attention, which accelerates
computational speed and prompts to capture long-term dependency.

In our work, deep features X; are first mapped to value embedding V € RN*d
query embedding Q € R¥*% and key embedding K € RY¥*% .  Then similarity
between () and K are calculated by taking dot product of query embedding with
key embedding. And the attention scores are generated by applying softmax on
scaled similarity.

QK[
vy,

Finally, we can use attention scores to weight the deep features:

) (3.2)

a; = softmax(

N
X, =Y aV,; (3.3)

t=1

Temporal attention-gated model [PBTM17] Unlike self-attention method, they
use attention gate to determine whether ‘keep’ or ‘neglect’ information from cur-
rent frame to learn informative representation recurrently. Based on this temporal
attention gate, they can prize salient clips over redundant or noisy frames.
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Following their method, we use bi-directional GRU(Gated Recurrent Unit) to get
hidden state h;. By integrating information from both directions, attention score a
are inferred as:

a; = o(Why + b) (3.4)

At each time step t, the hidden state h; is updated using previous hidden h;_; and
candidate hidden state h’. This renewing process is effected by attention scores
estimated above. If the attention score of frame t is closer to 1, then a new hidden
state will be mainly incorporated from the current input frame. Otherwise, the
hidden state will remain similar to the previous one.

ht = (]. — CLt> . ht_l + ag - h; (35)

And the candidate hidden state is formulated as the sum of linear transformed h’
and current feature x;.

h;ZU(W'ht,1+U'Xt+b) (36)

W and U refer to liner transformation, and ¢ denotes the activation function. After
finishing recurrent adaptation, we use the last hidden hy state as an improved deep
feature X;.

We initialize the Sampler module using an action verb recognition task, therefore
we use a fully connected layer to get possibilities P, for each verb class.

A

P, = sot fmax(WX; + b) (3.7)

After initialization, we adopt softmax to preserve the gradient while obtaining the
discrete selected frame index I. More details about comparison between two atten-
tion mechanisms can be found in Section 5.2.

3.4 Evaluator Module

Since the input of Recognition Module are the indices of selected frames rather
than deep features generated by the Sampler module, gradient between Recogni-
tion Module and Sampler module cannot be back propagated. In order to enable
gradient back propagation, the Evalutor module is indispensable for directing the
Sampler module to select frames that benefits Recognition Module to make correct
recognition.

To achieve a balance between efficiency and effectiveness, we proposed to use 1-
layer GRU(Gated Recurrent Unit) and 3-layer MLP(Multi-Layer Perceptron) as the
prototype of Evaluator.

20



Given deep features X, € RV*? and frame selection index I € {1,...,n} generated
by the Sampler module, the Evaluator module takes deep features of selected frames
X, € R™? as input. In order to reduce temporal dimension, we firstly attempted
to use 1D convolutional layer to get compact representation X, € R”,

Xe’ = U(-Fconvld(Xe)) (38)

However, experiments shows that representation produced by 1D convolutional is
insufficient to encode all n selected frames, which makes training of the Evalua-
tor module more difficult to converge. Gated recurrent unit was proposed in 2014
[CGCB14] as a simpler variant of LSTM(Long Short Term Memory). By maintain-
ing reset gate and update gate, GRU is able to summarize the temporal information
between n selected frames and aggregate latent representation X.. The recursive
computations of activation of of GRU are as follows:

1y = 0(Wepwy + Wiphy_1 + by)
2 = o(Wooay + Wizhe—y +0.)
ny = tanh(Wynxy + byn + 10 © Whnhi—1 + bpn))
hi =2 Ohi1+ (1 —2z)On

(3.9)

where o denotes the activation function and © denotes element-wise production.

Afterwards, a 3-layer MLP is adopted to get the final effectiveness score S € [0, 1].

3.5 Training and Implementation Details

3.5.1 Training

Since our proposed module contains multiple modules and no ground truth of noisy
frames are available, successfully training the Sampler module and the Evaluator
module with only the action recognition loss is not straightforward. Thus we intro-
duce the training strategy we adopted to effectively train the Sampler and Evaluator
modules. Our training follows a weakly supervised manner: we only use the action
recognition result from the Recognition module as supervision. We show in experi-
ments that even though the ground truth of noisy frames are not given, our sampler
module could still localize informative frames and filter out noisy frames.

Initializing the Sampler Module As shown in previous works [LYR15], compared
with correct recognition of nouns in actions, it’s more difficult for existing action
recognition models to accurately recognize the verbs in actions. Take action ‘take
cup’ as an example, existing models can predict the noun ‘cup’ with high confidence,
but they are feeble in distinguishing ‘take’ from other verbs like ‘put’ and ‘open’.
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Our experiments results also verify this observation. We suppose this kind of ob-
servation can be attributed the fact that existing models cannot adequately encode
temporal information in deep features. However, with the assist of powerful CNN
networks, spatial information is better included in deep features. To encourage
the Sampler module to learn more temporal information, we propose to use verb
recognition task to initialize the Sampler module.

Given ground-truth action verb labels v and predictions © produced by the Sampler
module, we use standard multi-class classification cross-entropy loss to initialize the
Sampler module. We refer to this loss as Lg:

o
Ls == wilog(t;) + (1 = v;)log(1 — &) (3.10)
=1

Training Recognition Module After training the Sampler module, we take se-
lected frames as the input of the Recognition module. Given ground-truth action
labels y, we also minimize the standard cross-entropy loss Lz to optimize the pa-
rameters of the Recognition module:

]

Lr=— Zyilog@i) + (1 —yi)log(1 — §:) (3.11)

i=1

where y and ¢ denote truth action labels and predictions respectively.

Training the Evaluator Module In this stage, we fix the Sampler module and the
Recognition module, and then train the Evaluator module to generate effectiveness
score S € [0,1]. When selected frames are easier for Recognition module to make
confident recognition, the effectiveness score will be closer to 1.

Taken selected frames as input, the Recognition module produces predictions ¢
which contains classification possibilities over all action classes. When the possibil-
ity of ground-truth action class ¢4 is larger, the Recognition module will be more
likely to give right result. Obviously, g, can be contemplated as self-supervision for
training the Evaluator module.

For the sake of better frame selection and higher learning ability of the Evaluator
module, we set a threshold 7 to quantify g,

~ 0 ggt <T
Gt = { e (3.12)

Many people may naturally regard the training of Evaluator module as a 0-1 clas-
sification problem after seeing the above equation. However, binary classification is
too simple to learn a meaningful score. For example, score with value 0.55 and score
with value 0.95 will be treated equally in 0-1 classification problem, but actually
they are quite different as for a score.
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Therefore, we treat the training of Evaluator module as a regression problem rather
than a classification problem. Moreover, we introduc weighted L1 loss with weight
wg to alleviate sample imbalance.

EE:ZwE|S—g]gt| (313)

Adapting the Sampler Module In order to guide the Sampler module to select
frames that benefit final action recognition, we fix the trained Evaluator module and
Recognition module and then use all three loss mentioned above to form loss Lgqp:

'Cadap = )\SES + >\R£R + )\EACE (314)

Then we optimize the parameters in Sampler module to minimize the loss Legqp-
More detail of loss used to adapt Sampler module can be found in Section 5.1.

3.5.2 Implementation details

We use PyTorch [PGC*17] to implement our model. For the Sampler module, all
the input frames are convert to gray-scale images and resized to 64 x 48, and the
feature size d is set as 512. All the input images given to Recognition modules
are resized to 320 x 240. The Evaluator module consists of one 1-layer GRU with
512 output channels, followed by a 3-layer MLP with output channels to be {1024,
256, 1} respectively. For all experiments, N frames are correspond to 64 frames.
However, n frames cat be 4/8/16 frames for different experiments.

About the threshold 7, we set it as 0.65 for ResNet I3D backbone, and set it as
0.15 for ResNet101 backbone and I3D backbone. With regard to wg in Lg, we use
wp=[1,0.85] when training the Evaluator module, and change it to wg=[1,0.5] when
adapting the Sampler module. Ag,Ag and \g are all set to 1 in adapting the Sampler
module stage.

We use the Adam[KB14] optimizer to update all the parameters. For initializing
the Sampler module and training the Recognition module, the learning rate is set
as le-3 and will be decayed by 0.1 at epoch [8, 14, 18|. For training the Evaluator
module and adapting the Sampler module, the start learning learning rate is set as
Se-4, and will be decayed by 0.1 at epoch 10.
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4 Experiments

In this section, we first describe the dataset we use to to evaluate our proposed model.
Then we introduce the experimental setup of our experiments in detail. We report
the anti-noise results and the action recognition performance in the following two
sections. In the end, we show the ablation study result to validate the effectiveness
of different modules in our proposed model.

4.1 Dataset

In this work, we use the Extended GTEA Gaze+ dataset [LLR18] (EGTEA Gaze+)
to evaluate our models. The dataset is composed of 29 hours of first-person videos
collected by head-mounted cameras in a naturalistic kitchen scenario. Figure 4.1
shows representative frames selected from the dataset. Currently, EGTEA Gaze+
dataset is the standard as well as one of the largest egocentric dataset widely used
by the research community.

EGTEA Gaze+ dataset consists of 86 unique sessions which come from 32 subjects
performing 7 different recipes such as making a pizza or cooking a cheese burger.
The video frames are collected at 24 fps with resolution 1280 x 960. For video clips
which contain actions, action annotations are given in the form of verb+noun pair,
such as ‘put + cup’, ‘open + condiment container’. In total, the dataset contains
106 different action classes, 19 verb classes and 51 noun classes.

With regards to split training and testing data for action recognition task on trimmed
dataset, we follow the same train-test split of Li et al. [LLRI18] to split the data
without overlapping. This train-test split finally forms 8299 clips for training and
2022 for testing. For the action recognition results, we report mean class accuracy
at the clip level as the final action recognition result following [LLR18].

4.2 Experimental Setup

4.2.1 Recognizing interrupted actions

Unlike trimmed videos in normal dataset of third-person videos, first-person videos
(like vlogs on YouTube) in real-life setting are much more casual and noisy, which
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Figure 4.1: Example images in EGTEA Gaze+ dataset. Videos in EGTEA
Gaze+ dataset are collected by head-mounted cameras in a naturalistic kitchen
scenario.

brings great challenges to correctly recognizing the interrupted actions within. We
refer the action irrelevant frames in a video clip as noise. In this work we mainly
take into consideration the following two conditions of interrupted actions:

Subject-irrelevant actions For example, someone may suddenly look around when
she or he is taking the bowl. This is especially common for the camera wearers who
is not very familiar with cooking. Since this ‘look around’ action is not relevant
with the subject-related action ‘take bowl’; it will bring negative impacts on model
performance. If these two actions are mixed and fed as input togetherthe model
would have a substantial chance to produce incorrect output.

Outlier frames Due to the lack of professional camera holder, outlier frames may
also exist because of the egomotion of the first-person camera. So outlier frames
such as background images may appear unexpectedly in continuous actions. And
these kinds of outlier frames confuse the model and hinder the training process.

Both of these conditions will have adverse effects on action recognition performance,
so we propose our Sampler-Evaluator model to reduce this negative influence. How-
ever, since video clips in EGTEA Gaze+ dataset are already manually trimmed,
most of subject-irrelevant actions and outlier frames are removed. In order to simu-
late real-life interrupted actions in egocentric videos, we add noisy frames in trimmed
videos and then validate the effectiveness of our model on it.

For the sake of scene consistency, we randomly choose none-action frames from
leftover parts (which do not have action annotations) in EGTEA Gaze+ dataset
original videos to form noisy frames set A. Among all 24217 noisy frames, 25%
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of them are used for testing and 75% for training, following the train/test ratio in
trimmed dataset. Figure4.2 shows examples of frames that we used in add noise
experiments.

Figure 4.2: Example of none-action frames. We randomly choose none-action
frames without action annotation from original videos to build noisy frame set .A.

We here describe the strategy of adding noisy clips into trimmed clips: given
trimmed video clip with length N, we first randomly divide it to 4 small snip-
pets with arbitrary length. We then randomly choose 2 snippets and replace them
with a noisy clip from set A which is of the same length. Finally, we build mixed
input clips with around 50% noisy frames.

4.2.2 Localizing informative frames in super noisy videos

Although the previous experiment on recognizing interrupted actions randomly re-
place 2 clean snippets with noisy snippets to simulate real-life conditions, it may
cause noisy frames to show up intensively in the head or tail of input, which leads
to loss of location diversity as well as the dumbing down robustness of model. To
further validate the anti-noise ability of our proposed model, we design a more
challenging experiment setting: localizing noise frames experiments on super noisy
videos.

Given a noisy video clip (non-action clip) with length N and a pre-defined noise
rate r (r > 0.5), we randomly choose N x (1 — r) frames from clean trimmed clip,
and insert them in random locations of noisy frames to build the synthetic super
noisy videos. As for the action recognition task on super noisy videos, we report
both mean class accuracy and final noise rate in selected frames.
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4.3 Recognizing Interrupted Actions

4.3.1 Comparison with baseline methods

In order validate whether the Sampler module can select informative frames for
better recognition, and in the mean time to test the anti-noise ability of our model,
we conduct experiments of recognizing interrupted actions following the experiment
settings described in the previous section.

There are two previous methods closely related to our work: SCSampler [KTT19]
which aimed at sampling salient clips to achieve efficient action recognition; and
TAGM (Temporal Attention-Gated Model)[PBTM17] which works on robust ac-
tion classification by giving higher weight to relevant frames. Of the two methods,
the first method relies on ground-truth selection generated by applying brute-force
search, which is essentially different from our weakly-supervised method with only
ground-truth action classes are used as supervision. Therefore, we only compare our
approach against TAGM.

To ensure the number of total informative frames used for action recognition to be
the same, our Sampler network takes NV frames as input and select 16 of them as the
input to the Recognition module. For fair comparison, since the noise rate of input
noisy videos are around 0.5, TAGM will take 32 frames as input. Thus, the number
of effective frames for action recognition are both 16 for our method and TAGM.

Both TAGM and our model employ ResNet101 as the backbone to extract visual
features from the input frames. In addition, we build another baseline: we use
ResNet101 trained on clean trimmed videos and uniformly samples 16 frames from
clean trimmed videos as input. We introduce this baseline as the Oracle of action
recognition performance.

Model Recognition Acc (%) selected frames noise rate
TAGM [PBTM17] 30.42 /
Proposed 49.16 0.0221
77777 Oace 5277 [

Table 4.1: Action recognition performance comparison with baseline
methods. We validate whether our proposed Sampler-Evaluator model can select
informative frames on recognizing interrupted actions task. Given interrupted ac-
tions with around 50 % noisy frames, our Sampler module selects 16 frames from
them for Recognition module to generate final recognition results. Recognition
module trained on trimmed clean videos and uniformly sampled 16 clean frames
as input is viewed as oracle of action recognition performance.
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Quantitative results are shown in Table (4.1). Given input noisy videos with noise
rate around 0.5, our proposed modules can distinguish informative frames from
noisy frames and remarkably reduce the noise rate in selected frames. With the
same number of informative frames used for recognition, our Sampler-Evaluator
modules can greatly improve the action recognition accuracy compared with TAGM
baseline.

Based on the above results, we can conclude two points. Firstly, although the TAGM
method can achieve robust action recognition to some extent by adding temporal
attention, it’s turns out that their model can’t recognize interrupted actions with
around 50% noisy frames. We think this is because attention used in TAGM may
help model to put emphasis on salient frames, but it can’t completely eliminate
the effect of noise frames. As a result, when the noisy frames becomes dominant,
their method fails to function well. Differently from their method, the output of
our Sampler module are discrete selected frames, so the frames that are not selected
will have no impact on the final recognition. Secondly, taken the advantage of
Sampler-Evaluator modules, our whole model can obtain similar action recognition
performance as in clean trimmed videos.

4.3.2 Cooperating with multiple recognition backbones

Since our Sampler-Evaluator modules work in a plug-and-play fashion, in this subsec-
tion we verify the cooperation between our Sampler-Evaluator with different Recog-
nition modules as backbone. Here we choose three most commonly used action
recognition models as the backbone of our Recognition module:

ResNet101 A common problem in CNNs is that as the network becomes deeper,
it becomes easier to overfit, which greatly reduces the learning ability of the
model. ResNet utilizes residual blocks to alleviate overfitting problem. With
the assist of residual block, ResNet can grows deeper and thus generate more
representative features.

I3D [CZ17] I3D is the short name of Inception 3D network, which extends 2D
spatial convolutions to 3D spatial-temporal convolutions. Compared with 2D
convolutional networks, I3D can better aggregate and utilize the temporal
information.

ResNet I3D [WGGH18] ResNet 13D is Inception 3D convolutional network with
ResNet as it backbone. As it combine bottleneck structure the with 3d con-
volution, it also inherited the advantages of both methods and can generate
better spatial-temporal deep features for video understanding. Experiments
show that ResNet I3D works as a strong baseline for both third-person action
recognition tasks and first-person action recognition tasks. However, with the
complexity of structures, the calculation consumption also increases dramati-

cally. As a compromise, we use a relatively light-weight ResNet50 network as
the backbone.
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For each backbone, we define backbone trained on trimmed videos as clean backbone,
and accordingly we call backbone trained on videos with interrupted actions as noisy
backbone. Under the premise that the number of frames given to Recognition module
is the same, we consider following alternatives:

e clean backbone on clean input (Oracle)

e clean backbone on noisy input

e noisy backbone on noisy input

e clean backbone + Sampler-Evaluator on noisy input (Proposed)

Obviously, the first alternative works as the Oracle of action recognition perfor-
mance.

Action recognition Acc (%)

Alternatives Input
ResNet I3D  I3D  ResNet 101
clean backbone noisy videos 41.89 34.27 39.17
noisy backbone noisy videos 52.13 44.26 41.89
clean backbone+ours noisy videos 57.74 48.22 49.16

clean backbone (Oracle) trimmed videos 60.68 52.18 92.77

Table 4.2: Quantitative comparison on cooperating with different back-
bones. We validate the ability of our proposed Sampler-Evaluator modules on
recognizing interrupted actions task. We compare our method with 3 alternatives,
and the first alternative which given trimmed videos as input works as the oracle
of action recognition performance. For all the alternatives, the number of input
frames given to backbones are set as 16.

Quantitative results are shown in Table 4.2. The clean backbone with our Sampler-
Evaluator module clearly outperforms clean backbone without our modules and
noisy backbone trained on noisy videos. Also, for all backbones our proposed model
performs consistently better than the other two alternatives, indicating that our
plug-and play Sampler-Evaluator modules cooperate well with all the backbones.
By comparing the performance of different backbones, it can be seen that ResNet101
network itself is more robust on recognizing interrupted actions. And due to the
disruption of information coherence in time dimension, two 3D convolution based
network are badly affected. Fortunately, our Sampler-Evaluator modules can reduce
the negative impact of action-irrelevant frames and restore them to a level similar
to that in clean trimmed videos.
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Figure 4.3: Visualization of frame selection results for recognizing inter-
rupted actions. For the sake of simplicity, each unit of square represents two
consecutive input frames. Green and gray denote action-relevant frames and
action-irrelevant frames respectively. And orange represents frames selected by
our Sampler module.

4.3.3 Visualizing frame selection

In this subsection, we visualize the frame selection generated by our Sampler mod-
ule. Figure 4.3 shows examples of frame selections on noisy input videos used for
recognizing interrupted actions task. For the sake of simplicity, one unit of square
in the figure represents 2 consecutive input frames. We can clearly observe that
our Sampler module is fully capable of distinguishing action-relevant frames from
action-irrelevant frames. More importantly, the distribution of frame selection is
also diverse, which means frame selection is not simply based on relative position
in all input frames. In addition, from the bottom example in Figure 4.3, we can see
that the Sampler module may also incorrectly choose noisy frames as one of selected
frames, which demonstrates that our model has not yet achieved 100% accuracy.

4.4 Localizing Informative Frames in Super Noisy
Videos

To further validate the ability of finding informative frames of our Sampler-Evaluator
model, we randomly insert very few useful frames in noisy frames to build super
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noisy videos to evaluate our proposed model. Similarly, we solve this problem in
a weakly-supervised setting, where only ground-truth action classes of Recognition
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Figure 4.4: Quantitative results of selected frames noise rate. The abscissa
corresponds to total input video noise rate, and the ordinate represents the noise
rate of selected frames generated Sampler module. Blue, green and red lines show
the results of selecting 4/8/16 frames from all input frames. And the black dotted
line demonstrates noise rate from random sampling.

For N input frames with data noise rate ranging from 0.5 to 0.8, we report the
selected frames noise rate of our model. Without loss of generality, we set the our
Sampler module to select 4/8/16 frames from N input frames.

Figure 4.4 depicts qualitative results of selected frames noise rate. We confirm that
the noise rate in our selections is significantly lower than data noise rate, which
means our Sampler-Evaluator module is capable of localizing and finding the infor-
mative frames even in super noisy videos. In the case of selecting 4 frames from N
input noisy frames, we can achieve selection noise rate results well below 0.1 even
with data noise rates as high as 0.8. For selecting 8 frames from input frames with
noise rate, only about one frame will be wrongly selected as a noisy frame. This
strongly indicates that our proposed model is very effective in finding noisy frames
and selecting informative frames for better action recognition.
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Figure 4.5: Visualization of frames selection results on super noisy videos.
Each unit of square represents two consecutive input frames. Green, gray and
red denote action-relevant frames, action-irrelevant frames and frames selected
by our Sampler module respectively. Frames connected with black lines are the
same. In (a), the action is ‘Take sponge’. Our modules give priority to frames
which contains the key object sponge. In (b), for recognizing action ‘Take bread
container’, the Sampler module sacrifices a few details of taking process and select
more representative frames which could obviously find bread in it.
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In the mean time, we also find that the when selecting 16 frames, localization per-
formance decreases in the case that data noise rate is greater than 70%. We suspect
this phenomenon can be attributed to the fact that when data noise rate is greater
than 0.7, the total number of informative frames in all N input frames is less than
16. As a consequence of this, our Sampler module has to choose some noisy frames
as selection.

For better analyze the performance of our Sampler-Evaluator model, we also qual-
itatively visualize examples of frame selections results on super noisy videos. Both
the selection results of selecting 4/8 frames and the corresponding frames can be
found in Figure 4.5.

From Figure 4.5 we can see that our Sampler-Evaluator modules can accurately
locate informative frames even if informative frames account for only 20% of the
whole input. Additionally, by comparing 4 selected frames and 8 selected frames,
we can draw a conclusion that our modules have the ability to select salient frames for
better action recognition. As shown in Figure 4.5(a), in order to enable Recognition
module to correctly recognize action ‘Take sponge’ as far as possible when only four
selected frames are input, our modules finally give priority to frames which contains
key object sponge.

Similar conclusion can be obtained from Figure 4.5(b). For recognizing action ‘Take
bread container’ with limited frames, the Sampler module sacrifices a few details
of taking process and select more representative frames which could obviously find
bread in it.

4.5 Ablation Study

To validate the effectiveness of each module of our proposed model, we conduct
ablation study with the following baselines:

e Recognition module only (RM): without loss of generality, we use recog-
nition module with ResNet I3D as backbone trained on clean trimmed videos
as one of the baseline. In the test stage, the input frames are uniformly sam-
pled from noisy videos. The performance of this baseline reveals the anti-noise
ability of ResNet I3D network itself.

e Recognition module + Sampler module (RM+SA): In this baseline,
the Sampler module is initialized with verb recognition task, which only uses
ground-truth verb class as supervision. As in previous baseline, Recognition
module is also trained on clean trimmed videos, but it takes selected frames
from the Sampler module as input. We build this baseline to validate the
effectiveness of our Sampler module.

e Recognition module + Sampler module + Evaluator module (pro-
posed, RM+SA+EV): First of all, we fix Recognition module and initial-
ized Sampler module to train Evaluator. Then Sampler module is adapted
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according to the guide of Evaluator. By adding Evaluator module, we en-
able end-to-end training of the whole model. The performance of this baseline
shows whether Evaluator module is effective to lead Sampler module towards
selecting more informative frames for Recognition module.

For simplicity of writing, we call each baseline as RM, RM+SA and RM+SA+EV
respectively.

4.5.1 Results on recognizing interrupted actions

Module Selection noise rate Recognition Acc(%)
RM 0.5016 41.89
RM+SA 0.0389 57.34
RM+SA+EV 0.0221 57.74

Table 4.3: Ablation study for different parts of our model on recognizing
interrupted actions. We conduct recognizing interrupted actions task on noisy
videos with around 50% noisy frames. For different combination of our modules,
both selection noise rate and final action recognition accuracy are reported.

Quantitative results of the ablation study on recognizing interrupted actions are
shown in Table 4.3. We can observe our Sampler module can distinguish action-
relevant frames from action-irrelevant frames and select informative frames for Recog-
nition module. Taken selected frames generated by Sampler module, Recognition
module gains a substantial increase in final recognition accuracy. At the same time,
Evaluator module can slightly improve the frame selection performance of Sampler
on account of selection noise rate and final recognition accuracy. However, since the
selection noise rate of Sampler module itself is already very low, the improvement
brought by Evaluator module is not obvious.

4.5.2 Results on localizing useful frames from super noisy videos

Quantitative results of the ablation study on localizing informative frames in super
noisy videos are shown in Table 4.4. In this table the noise rate is set as 0.8 and the
Recognition module (RM) is ResNet I3D. From the results we can conclude that by
using ResNet 13D network alone (the first row), the network has barely anti-noise
ability. As a result, the action recognition accuracy becomes very low - only around
14% given super noisy videos. Also, the comparison of the result with/without the
Sampler module demonstrates the effectiveness of our Sampler module trained on
action verb recognition task.
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Module Selection noise rate Action recognition Acc (%)

4 frames 8 frames 16 frames 4 frames 8 frames 16 frames

RM 0.8047 0.8046 0.8045 14.19 13.24 13.88
RM+SA 0.1327 0.2246 0.4603 44.59 43.01 34.08
RM+SA+EV  0.0581 0.1454  0.4297 47.50 49.06 41.72

Table 4.4: Ablation study for different parts of our model on localizing
useful frames in super noisy videos. We validate the effectiveness of Sampler
module and Evaluator module on noisy videos with 80% noisy frames. For se-
lecting 4/8/16 frames from noisy videos, both noise rate of the selection and the
action recognition accuracy with selected frames as input are reported.

In addition, our experiment results prove that after adapting Sampler module through
end-to-end training it can select more informative frames and thus reduce noise rate
as well as improve recognition accuracy, which validate our Evaluator module is
capable of enabling gradient back propagation and guiding Sampler module.
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5 Discussion

5.1 Impact of Different Kinds of Loss in Sampler
Adaption

During our experiments, after training the Evaluator module, we try different kinds
of loss to adapt the Sampler module:

e Replace ground-truth class recognition possibility with 1 in Lg

Since we introduce the Evaluator module to guide the Sampler module to select
frames that benefit final action recognition, the value of ground-truth class
recognition possibility is the most important reference for adapting Sampler
module. So we propose to replace that values with 1 to form new Evalutor
loss La4qp and adapt Sampler module to minimize this loss.

Lodap = > wg |S — 1] (5.1)

However, although replacing ground-truth possibility with 1 sounds theoreti-
cally feasible, it turns out that in actual experiments the Sampler module fits
in one epoch but doesn’t optimize in the right direction. That means by using
this loss Sampler module hardly learn any useful things.

e Combination of Evaluator loss and Recognition loss

We also attempt to use the combination of Evaluator loss and Recognition
loss to adapt the Sampler module. Theoretically, Recognition loss L will
encourage higher possibility of ground-truth action class, which will thus af-
fect Evaluator loss Lz and then indirectly guide the selection process of the
Sampler module.

Lodap = \eLr+ AgLp (5.2)

Unfortunately, experiments shows that combination of these two losses is too
implicit to optimize the Sampler module.

e Combination of Evaluator loss, Recognition loss and Sampler loss
After the above attempt failed, we further try to add Sampler loss Lg to
Eq.5.2.

Ladap = AsLs + ArLr + ApLE (5.3)
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Experimental results of clean Recognition module trained on trimmed videos
with initialized Sampler module demonstrates that Sampler loss itself is able
to guide the Sampler module to select meaningful frames. Therefore, the
addition of Sampler loss can assist in optimizing Sampler module in right
direction. Experimental results also prove our assumption.

Based on above attempts, we finally decide to use the combination of Evaluator
loss, Recognition loss and Sampler loss. We fix the Recognition module and the
Evaluator module to minimize L,q4,, by adapting the Sampler module.

5.2 Comparison between Different Attention
Mechanisms

In Section 3.3, we explain details of two attention mechanisms: self-attention and
TAGM. To have a better knowledge about two attention mechanisms, we discuss the
difference between selection noise rate and final action recognition accuracy when
adopting these two attention mechanisms to calculate attention scores for N input
frames.

Action recognition Acc (%)

ResNet I3D 13D ResNet 101

Attention mechanism  Selection noise rate

Self-attention [VSP*17] 0.0381 57.34 47.02 49.05
TAGM [PBTM17] 0.0257 56.25 46.83 48.81

Table 5.1: Quantitative comparison on using different attention mecha-
nisms. We compare the selection noise rate of initialized Sampler with two dif-
ferent attention mechanisms on recognizing interrupted actions task. Final action
recognition results of three backbones with different initialized Sampler are also
reported.

On recognizing interrupted experiments, we report the selection noise rate of the
Sampler module with two different attention mechanisms initialized by the same
verb recognition task as well as the action recognition of the Recognition module
with initialized Sampler module. For the sake of fairness, all the parameters and
backbones are the same except for applying different attention mechanisms.

According to Table (5.1), we observe that the noise rate of selected frames given
by TAGM attention mechanism is lower than self-attention mechanism. However,
for all three backbones, Sampler module with self-attention mechanism consistently
outperforms the other one with TAGM attention mechanism in action recognition
accuracy. We suppose the ability to determine ‘keep’ and ‘neglect” of TAGM ac-
counts for lower selection noise rate. However, this ‘keep’ and ‘neglect’” ability also
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lead to more emphasis on absolute relations between frames and aggregated clip
features rather than paying attention to relative relations between N frames. On
the contrary, self-attention mechanism has more advantages in getting the relative
relations between frames, so it can select relatively more informative frames from
N frames and thus obtain higher recognition accuracy. In the rest of thesis, all the
reported results are based on self-attention mechanism.

5.3 Limitation of Our Model

While the proposed approach presents strength in selecting informative frames from
noisy input videos, there are some limitations of our model. First, each module is
very dependent on other modules and has to be trained one by one. The training
method of our model is explained thoroughly in Section 3.5. Currently we need to
follow previously described order to train the whole model.

In addition, the training of the Evaluator module may face data imbalance prob-
lem. For example, if the trained Recognition module can achieve 80% recognition
accuracy on training set, then around 80% of the Evaluator ground-truth will be 1,
which is probably 4 times of ground-truth 0. Although we have introduced weighted
L1 loss and threshold 7 to alleviate the impact of ground-truth imbalance, but in
extreme cases the training of the Evaluaor module still get affected by this problem.
One possible solution is early stopping in the training process of Recognition mod-
ule, leaving the Recognition module not so overfitting. We will keep finding other
better solutions in the future.
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6 Conclusion and Future work

In this thesis, we propose a new method for selecting informative frames from noisy
video clips to better perform action recognition. Action recognition is one of the
primitive research field in computer vision. It attracts significant research attention
due to the wide application ranging from surveillance to human behaviour analysis.
Although recent deep learning techniques have made great success in action recogni-
tion, existing methods still cannot work well on real-world videos where many noisy
frames exist.

Built on the success of existing methods for action recognition, we propose a Sampler-
Evaluator model for filtering out noisy frames from the input. Our proposed model
works in a plug-and-play fashion, so it could be applied on top of any existing mod-
els for action recognition. To be specific, our model can take as input unprocessed
noisy video clips and output only a few informative frames. As most state of the art
models for action recognition only needs a few informative frames however decreases
significantly when the input frames are not carefully selected, our model provides a
complementary functionality against the existing models that could select frames in
order to better perform action recognition in more general and natural videos.

Other than the recognition module which essentially could be any models for action
recognition, the model we proposed contains two major modules as components:
the Sampler module and the Evaluator module. The sampler network takes as
input long and noisy unprocessed video clips, and outputs a sequence of selected
informative frames. Since the ground-truth of noisy frames are unknown, we use an
evaluator network for better training the sampler. The evaluator network evaluates
the quality of the selected sequence, using the information that how well are the
selected sequence recognized by existing action recognition models. The role of
evaluator acts like a teacher that provides feedback for better training the sampler
network. During the inference step, the evaluator is discarded.

We show in experiments that by adding the sampler we can better recognize action
from noisy video inputs, and that by adding the evaluator in training it is able to
boost the final action recognition performance even more. We also analyzed the
limitations of our method and will tackle those in our future work. The biggest lim-
itation of our method is the difficulty in training the whole network. While with our
proposed training strategy, we can successfully train the sampler and evaluator and
in the mean time optimizing the performance of the action recognition, the training
procedure is complicated with many hyper-parameters to be carefully tuned. In the
future we will be continue working on this to make the training more straightfor-
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ward. We will also collect a novel dataset simulating the interrupted actions, for
better evaluation and designing for new models.
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