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Chapter 1

Introduction

When two solid bodies contact each other and one body subsequently slides against the
other, friction occurs [1, 2, 3, 4, 5, 7]. Enormous amounts of experimental data have shown
that energy, i.e., frictional energy is necessary for sliding contacting bodies. This indicates
that there is a force (friction force) parallel to the contacting surfaces.

Several models (or views) have been proposed to explain the origin of this friction force! .
Some relate to the mechanical locking of surface asperities [8], and others to the atomistic
origin, i.e., the molecular interactions between the constituent atoms of solids [9, 10].
Problems of friction in real systems can be solved from the viewpoint of phenomenology by
a priori assuming that a friction force exists [6, 11, 12]. In real systems the measured data
usually contains many unknown factors: surface roughness and poisoning by contaminants
such as O,, H,, and oil. It is difficult, therefore, to study the origin of the friction force
from the experimental data available at present.

More recent experimental studies [13, 14], however, excluded many of the unknown
factors by preparing well-defined surfaces. The purity and completion of such surfaces can
be detected by current surface analysis techniques such as scanning tunneling microscopy
(STM) [15, 16] and atomic force microscopy [17]. New technology developed by groups at
IBM [13] and the University of Basel [18] has made possible the measurement of friction
even at atomic-scale resolution. On the practical front, also, friction is an important issue
for future technologies such as micromachines [19].

The purpose of thesis is to study the origin of the appearance of friction from the atomistic
point of view. Two experiments show that friction forces of clean surfaces greatly depend on
the atomic arrangements of contacting surfaces. In the first experiment, the friction forces
of single-crystal muscovite mica are measured as a function of the lattice misfit between
the two contacting cleavage surfaces at a very light load under both dry and ambient
atmospheres [20]. The measured friction forces are anisotropic with respect to the lattice
misfit. They increase (decrease) when the surfaces contact without (with) lattice misfit.
The underlying mechanisms of the anisotropy are discussed by considering the effects of
interface atomic arrangements, which are theoretically examined in the latter half of this
thesis. The second experiment demonstrates the effects of interface atomic arrangements
by using atomically clean and well-defined surfaces [21, 22]. The friction forces of the

1 The first scientific descriptions of frictional properties of materials appeared in the Italian Renaissance.
Leonardo da Vinci studied solid sliding friction, and discovered the rules of sliding friction.
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2 CHAPTER 1. INTRODUCTION

atomically clean surfaces of Si(001) and W(011) are measured under ultra-high vacuum by
scanning tunneling microscopy. The surfaces are slid against each other while the tunneling
gap between them is controlled. This enables the surfaces to slide in elastic contact on the
atomic scale. The measured friction forces also exhibit anisotropy with the lattice misfit of
the contacting surfaces. The magnitude of the friction force is comparable to theoretical
values. The experiments also show that the friction force can be very smiall; below tHe
detection limit, at misfit contact conditions. These two experimental results ‘agree with
theoretical predictions.

The latter half of this thesis theoretically studies the atomistic origin; of the friction
force intrinsically generated by the molecular interactions between the ‘constittent atoms
of solids [23, 24]. It is shown that there are two origins: atomistic locking and dynamic
locking [23]. Atomistic locking occurs when the configuration of atoms on a contact surface
continuously changes with the sliding distance and when the interatomic potentials have
an arbitrary strength. In contrast, dynamic locking occurs when the configuration changes
discontinuously due to the dynarmc process and if the 1nteratom1c potential is stronger
than a specific given value. A criterion is derived for the occurrence of dyna.rmc locking.
From studies of various systems, it can be seen that dynamic locking is unlikely to occur
in realistic systems. The friction forces due to atomistic locking are calculated for a-iron.
One other important finding is that certain unique cases exist where friction force exactly
vanishes'if completely clean solid surfaces are prepared.

Dynamics in friction has also been theoretically studied from an atomistic point of view
[24]. Friction is formulated as a problem of whether or not a given kinetic energy for the
translational motion dissipates into the kinetic energies for the internal motions during
sliding. From a study of the Frenkel-Kontorova model with kinetic energy terms, it is
found that two different regimes appear in the parameter space specifying the model: the
superlubricity and the friction regimes. Friction completely vanishes in the superlubricity
regime and appears in the friction regime. The conditions for superlubricity to occur are
described. It is emphasized that a high dimensionality in the friction system is a key to
understanding the physics of superlubricity. For high-dimensional systems, superlubricity
is a generic phenomenon, appearing for a wide class of (strong or weak) adhesion such as
metallic bonding and the Van der Waals interaction. The problem of what triggers the
friction is studied by examining the available phase space volume in dynamics. Friction is
discussed, in relation to the mixing property in the dynamics for the internal motions.

The organization of this thesis is as follows:: Chapter 2 presents observations of the
anisotropy of friction forces with the atomic arrangements of contacting surfaces in single-
crystal muscovite mica, and discusses the underlying mechanisms of the anisotropy in con-
nection with the theory presented in Chapter 4, explaining the effects of interface atomic
arrangements on friction. Chapter 3 confirms the effects of interface atomic arrangements
by examining the sliding systems of atomically clean surfaces by using ultra-high vacuum
scanning tunneling microscopy. Chapter 4 provides the theoretical background of the exper-
iments presented in Chapters 2 and 3. It is shown how friction appears from the molecular
interactions, depending on interface atomic arrangements. Chapter 5 theoretically studies
the dynamics of friction from an atomistic point of view, and explains how the energy is
dissipated in dynamic friction.



Chapter 2

The Anisotropy of Friction Forces in
Muscovite Mica

2.1 Introduction

The frictional properties of various single crystals have been measured, and it has been
shown that the friction forces of some single crystals are anisotropic with respect to the
crystallographic direction of sliding [25, 26, 27, 28, 29]. For example, when sliding the {001}
planes of a single-crystal diamond against another in air, the frictional force is smaller for
sliding in the <110> direction than in the <100> direction by a factor of 2/3 [25]. The
clean surfaces of some hexagonal metals showed the anisotropy, in which the friction force
of the {0001} planes in the <1120> direction was smaller than that of the {1010} planes
in the <1120> direction by a factor of 1/2, when sliding single-crystal cobalt against
polycrystalline cobalt [26]. Some other materials such as copper [27, 28] and ceramics [29].
also showed frictional anisotropy, depending on the crystallographic direction of sliding.

Plastic deformations and fractures were observed at the rubbed surfaces when the anisotropy
appeared in the above systems, and the mechanisms of the observed anisotropy were ana-
lyzed by examining the preferred slip system in single crystals. The anisotropy of diamond
was interpreted by the preferred slip system in which <110> sliding is more likely than
<100> sliding to yield the critical resolved shear stress that activates the lattice slip and
the subsequent crack formation on the primary slip plane, which was assumed to be {111}
[25]. The anisotropy disappeared at very small loads, i.e., when the contact condition
approached being elastic below the determined critical mean contact pressure [25].

This chapter reports the first observation of frictional anisotropy in muscovite mica by
measuring the friction forces at very small load as a function of the lattice misfit angle
between the two contacting lattices. The underlying mechanisms of the observed frictional
anisotropy are examined in connection with the theoretical conclusion[23] on the effects of
the commensurability between contacting lattices. It is shown that the frictional forces are
anisotropic with respect to the lattice misfit angle, i.e., they increase (decrease) when the
contacting surfaces approach being commensurate (incommensurate). From studying how
introducing dirtiness into the contacting surfaces affects the friction forces and from mea-
suring the highly-resolved surface roughness of the mica cleavage surfaces, it is concluded
that the observed anisotropy stems from the change in commensurability of contacting

3
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Figure 2.1: (a) Back-reflection Laue pattern of muscovite mica. (b) Map showing lines
made by a set of reciprocal points of zone planes. The angles between zone axes [010] and
(110], and between [010] and [310], are respectively 29.89 degrees and 59.89 degrees. The
representative diffraction spots are identified as (1 3 23), (1 3 23), and (2 0 24). The high
intensities are due to satisfying the first-order diffraction condition.

lattices.

2.2 Experimental

Muscovite mica is suitable for my purpose since it is a relatively large single crystal
and its cleavage surface has few steps, being atomically flat. Mica surfaces have been suc-
cessfully used for measuring friction forces [30] and adhesive forces [31, 32]. The lattice
orientations were determined by X-ray diffraction prior to friction testing. X-ray diffrac-
tometer experiments confirmed that mica has a monoclinic structure, whose space group

s C3, [33]. Figure 2.1 (a) shows the back-reflection Laue pattern of the mica in approxi-
mately the [001] direction. Figure 2.1(b) shows the corresponding map representing lines
made by a set of reciprocal lattice points of zone planes, denoted (hkl), belonging to the
zone a\es denoted [hkl]. Several of these patterns were examined at different points over a
1-cm? area on the sample. The Laue patterns were nearly invariant at the dlfferent points,
implying that the mica used is a relatively large single-crystal over the 1-cm? area. The
lattice orientation of the cleavage surface was determined by specifying the primitive vector
b perpendicular to the line made by a set of reciprocal points of zone planes belonging to
the zone axis denoted [010] in the map shown in Fig. 2.1(b).

Figure 2.2 shows the schematic set-up for the measurement. Two mica sheets were cut
from a larger sheet as carefully as possible to make the edges of the mica sheets smooth.
One sheet was attached to a cylindrically curved substrate with an 8-mm radius and 5-
mm length (upper specimen); the other to a disk substrate with a 10-:mm diameter (lower
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plate
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Figure 2.2: Schematic illustration of friction-measuring apparatus. The sliding direction
is shown by the arrow corresponding to the direction of extension of the piezoelectric
transducer. Movement per unit voltage of the piezoelectric transducer is 0.18 um/V. The
resolution of the measured friction force is estimated to be 1 x 107¢ N according to the
0.1-um spatial resolution of the capacitance displacement meter.

specimen). Friction was measured under an argon-purged dry atmosphere with controlled
water vapor pressure and at a raised surface temperature (over 100 degrees) to reduce the
thickness of contaminants such as water and organic compounds on the cleavage surfaces.
The surface temperature was determined using a radiation thermometer to measure the
temperature of a black tape, whose emissivity is approximately 1.0, stuck onto the mica
cleavage surface. The mica sheets were cleaved again after finally attaining the lowest
water vapor pressure in the chamber. The upper specimen was then placed on the lower
specimen at a load corresponding to its own weight (1.2 x 1072 N); this gave an elastic
contact zone of 0.25 um by 5 mm and a mean contact pressure of 0.9 MPa according to
the measured elastic constants [34].

Static and dynamic friction forces were measured between the two contacting specimens
during one traverse of a few um. First, both the upper and lower specimens were moved by
extending the piezoelectric transducer at a speed of 2.7 pm/s toward the thin plate spring
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10

PZT voltage (V)
(42}

A
{
\

Static friction
Dynamic friction

Displacement (um)
m

2s

Figure 2.3: The voltage applied to piezoelectric transducer (upper curve) and the the
displacement of the plate spring during sliding of mica surfaces (lower curve).

(5 x 15 x 0.1 mm?®), whose spring constant is 30.6 N/m. As the two specimens approached
the plate spring, only the upper specimen touched the spring. The deflection of the spring
was monitored using a displacement meter to detect the change in capacitance between the
plate spring and the displacement meter sensor head. When the spring force overcame the
friction force, sliding occurred. The spring force during sliding determined the static and
dynamic friction forces.

The typical measured data are shown in Fig. 2.3. The upper curve shows the voltage
applied to piezoelectric transducer, and the lower curve shows the displacement of the
plate spring. Region A indicates pre-sliding before the onset of sliding. The maximum
displacement obtained at the onset of sliding gives static friction force. Dynamic friction
force is obtained from the averaged displacement of the plate spring after the the onset of
sliding at the sliding region B.

2.3 Results and discussion

The change in the measured static and dynamic friction forces with the lattice misfit
angle 0, the angle between the two contacting mica lattices, is shown in Fig. 2.4. The
two specimens were brought into contact such that each primitive vector a corresponded
to the sliding direction shown in Fig. 2.4. In a dry atmosphere with a relative water
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vapor pressure p/po ~ 9 x 107° and at a surface temperature of 130 degrees, the static
and dynamic friction forces show the anisotropy in which the friction forces increase as
the misfit angle approaches § = 0 degree or 60 degrees, and decrease as 1t approaches 0 =
30 degrees. Alternatively, they increase (decrease) when the contacting surfaces approach
being commensurate (incommensurate). The static friction force ranges from 2.2 to 7.6 x
10-* N. The changes in the friction forces seem to have sixfold symmetry, reflecting the
pseudo-hexagonal symmetry of the cleavage surfaces, which are defined as the potassium
layer sandwiched between the two hexagonal sheets of silicate tetrahedra. The measured
atomic parameters showed the mica structure to be slightly distorted from the ideal struc-
ture by a departure from hexagonal symmetry on the surface of the silicate sheets [35].
However, no frictional anisotropy can bé seen in the ambient atmosphere in Fig. 2.4. This
can be due to the introduction of dirtiness (water) to the contacting surfaces. McGuiggan
et al. [31] observed the anisotropy of the adhesion energy between two contacting mica
cleavage surfaces in distilled water and in aqueous KCl. The results showed the adhesion
peaks at specific angles corresponding to crystallographic atomic alignment (6=0, 60, 120,
and 180 degrees). However, their observation cannot be directly related to the observed
anisotropy because of the different atmosphere where the measurements were done. Their
results were explained by the excess surface energy of a low-angle grain boundary. On the
other hand, they observed no anisotropy of adhesion energy in an N, environment at a
relative humidity of 33%, corresponding to the results showing no frictional anisotropy in
ambient air.

The static friction forces are shown in Fig. 2.5 as a function of the twist angle between
the two contacting specimens with different relative water vapor pressures and at different
surface temperatures. Here, the lattice orientations of the upper and lower specimens were
measured, but not specified with respect to the sliding direction, i.e., each primitive vector a
does not necessarily correspond to the sliding direction, while the lattice orientation of both
surfaces were initially matched at the twist angle ;=0 degree. Figure 2.5 the anisotropy
of the static friction force, which ranges from 2.5 to 5.0 x 107% N over 6;=0 to 90 degrees
under a dry atmosphere and at a high surface temperature. The average thickness of the
water layer adsorbed on the mica cleavage surfaces can be less than a few A, ie., the
cleavage surfaces are clean, under an extremely low relative water vapor pressure p /poof 9
x 107°, according to the measurement made on a cleavage surface of lithium fluoride using
ellipsometry, in which the average water layer thickness was negligibly small below p /pa ~
0.3 [36]. By increasing the relative water vapor pressure and subsequently decreasing the
surface temperature, it is seen in Fig. 2.5 that the anisotropy gradually weakens, and then
disappears under an ambient atmosphere.

The mean contact pressure of 0.9 MPa at the mica contacting surfaces is three orders
smaller than the values of 0.4 GPa at cobalt surfaces [26] and 0.3 GPa at copper surfaces
[27, 28]. This suggests that the contact condition of the mica might be elastic if one
takes into consideration that the elastic constant ey of 12 GPa for mica is comparable in
magnitude to that of 75 GPa for cobalt and copper. The topographies of the contacting
surfaces were measured before and after sliding by both an atomic force microscope (AFM)
[17] over a 5-nm by 5-nm scan and by a point contact microscope (PCM) [37] over a 2000-nm
by 2000-nm scan. The as-cleaved mica surfaces were flat on an atomic scale, within 0.2-nm
resolution, according to the AFM measurements in repulsive mode. The atomically-resolved
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periodic variation in the surface force were obtained by scanning a sharp silicon nitride tip
[38]. The PCM images showed no topographical changes, within a 2-nm resolution, between
before and after sliding. Thus appreciable plastic deformations and fractures were unlikely
to occur at the sliding mica surfaces. This implies that the contact condition of mica
is elastic, which is different from the plastic contact in the previously observed frictional
anisotropy [25, 26, 27, 28, 29].

It was shown that the static and dynamic friction forces between contacting mica cleav-
age surfaces increase when the surfaces approach being commensurate, and decrease when
incommensurate. In Chapter 4 [23], new mechanisms for the atomistic origin of static and
dynamic friction forces is proposed by theoretically studying a three-dimensional many-
particle system, in which clean and flat surfaces contact elastically. My picture explained
how the static friction force appears in terms of interatomic potentials and atomic configu-
rations of surfaces, and how the given translational energy of a sliding body is dissipated in
dynamic friction. It was concluded that the friction force appears when contacting surfaces
are commensurate, and that they vanish, when incommensurate. Therefore, the observed
frictional anisotropy in mica is consistent with the theoretical conclusion [23]. Erlandsson
et al. [30] observed the atomic-scale periodic change in the friction forces of mica by scan-
ning a polycrystalline tungsten sharp tip on a mica cleavage surface. They also remarked
on the potential importance of the commensurability of contacting surfaces as a cause of
their observed periodic change.

The frictionless state has been discussed for the case of weak interfacial interactions such
as Van der Waals interaction [39, 40, 41, 42, 43, 44]. The criterion for the occurrence of the
frictionless state is derived in a three-dimensional many-particle system [23]. The threshold
of interfacial interaction strength for which friction forces vanish were determined for cubic
metals [23]. Consequently, it has been concluded that frictionless state appears for a wider
class of interfacial potentials including strong interactions such as metallic bonding, i.e.,
the state of superlubricity exists in realistic systems [23, 45, 46, 47].

It is clear from Fig. 2.5 that the friction forces become small as surfaces are cleaned
when contacting incommensurately. It is then expected to observe much smaller friction
forces by preparing more well-defined surfaces. However, the observed lowest friction force
at = 30 degrees (when incommensurate) shown in Fig. 2.4 is not so small. This might be
due to some deviation from perfect cleanliness and perfect periodicity ovet the contacting
area. Experiments using the well-defined surfaces under a high vacuum of 107! Torr will
be reported in future. o

2.4 Conclusion

The friction forces of muscovité mica were measured as a function of the lattice misfit
angle between the two contacting cleavage lattices, and it was found that the friction forces
are anisotropic with respect to the lattice misfit angle, i.e., they increase (decrease) when
the surfaces approach being commensurate (incommensurate). The observed frictional
anisotropy stems from the change in the commensurability between contacting lattices as
predicted by the theory [23].



Chapter 3

Frictional Anisotropy in Atomically
Clean Surfaces

3.1 Introduction

In the previous chapter, the frictional anisotropy, in which the friction forces on cleaved
mica surfaces increase (decrease) when surfaces contact without (with) the lattice misfit
along sliding direction, was observed. Martin et al. [49] found an ultra-low friction coef-
ficient (below 107%) in MoS; polycrystal films having the lattice misfit between the basal
planes in the grain. They attributed it to the friction-induced lattice orientation change
of an intercrystallite slip system, in which the basal planes were aligned in the sliding
direction and disordered around the c-axis.

The purpose of this experiment is to find experimental evidence for the frictional anisotropy
on interface lattice misfit in atomically clean surfaces by using ultra-high-vacuum scanning
tunneling microscopy (UHV-STM) [21, 22]. To do this, friction forces are measured when
sliding the atomically clean surfaces of Si(001) and W(011) by changing the lattice misfit
between them. It is shown that friction was not observed when the surfaces contact with
lattice misfit along sliding direction in measurements capable of resolving a friction force
of 3x10~2 N, whereas friction with a magnitude of 8x10~8 N, which is comparable to the-
oretical values, was observed when the surfaces contact without lattice misfit along sliding
direction.

In this chapter, the friction forces of atomically clean surfaces are measured by using
UHV-STM [21]. This method is used because it achieves “sliding in elastic contact” between
atomically clean surfaces by utilizing the tunneling between the suiface of the tip of a probe
wire and the surface of a single crystal. Therefore, plastic deformation does not occur
at sliding interfaces, as it does with conventional friction testing when surface asperities
interact with each other under the application of a certain amount of load normal to
surfaces. Here the friction between the surfaces is measured rather than the adhesion
between them, as was done in previous STM studies [50, 51].

11
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3.2 Experimental

In the present system, a clean Si(001) (n-type, 0.01 2-cm) surface was one-dimensionally
scanned against a clean W(011) surface at the tip of a polycrystalline tungsten wire (inset,
Fig. 3.1) using a piezoelectric tube scanner. The tunneling gap between the W(011) surface
at the tungsten tip and the Si(001) surface was controlled by adjusting the tunneling
parameters. The scanning was conducted under weak feedback control, i.e., it was done at
an almost constant height.

The area of the W(011) surface, i.e., the interaction area of contact, was estimated to
be a few nanometers square based on the observations of the tip with a scanning electron
microscope-(SEM), the same method as used by Kuroda et al. to observe a W(011) surface
and other various crystal planes located near the tip [52]. The tungsten wire was also
used as a flexible cantilever beam to probe the friction force between the W(011) and
5i(001) surfaces. This force was determined by measuring the deflection of the beam using
a focusing-error-detection optical displacement sensor [53] with a resolution of 2 nm. The
friction forces to be measured were on the order of 10~7 N in the friction regime, based
on calculated values [23]. Prior to scanning, the lattice misfit along sliding direction is
measured between the W(011) and Si(001) surfaces, by rotating the tungsten wire around
its longitudinal axis (Fig. 3.1). Theoretical predictions indicated that friction highly
depends on the the lattice misfit along sliding direction, as will be seen in Chapter 4. It
is then examined how the measured friction forces changed with the lattice misfit between
the W(011) and Si(001) surfaces. The lattice orientation and cleanliness of the surfaces
were determined by field electron microscopy (FEM) for the W(011) of the tip, and by low-
energy electron diffraction (LEED) and Auger electron spectroscopy (AES) for the Si(001).
The silicon sample was moved into appropriate position for it to be cleaned and for LEED
and AES measurements to be performed on it. The tungsten tip faced the silicon sample
during friction measurements and faced a microchannel plate during FEM measurements.
Since foreign gaseous elements in UHV are likely to stick to fresh tungsten surfaces, the
friction measurements was done within about ten minutes after cleaning the tip. This time
limit was determined by examining the degradation of FEM images with time in UHV.

The flat W(011) surface was made at the tungsten tip by heating (flashing) the tip to
over 2300 K in a UHV environment by electron bombardment. The radius of the tip is
around 20 nanometers based on the SEM observation of the tip. The tip radius was also
estimated from FEM measurements using Fowler-Northeim equation expresed by

I . 3/2
7= a exp( ‘f ). (3.1)
where [ is the total current and
a= A62 x 106(%)%(ﬂ + @) (akr) 2, (3.2)
b =6.8 x 107akr. (3.3)

In these equations A is the total emitting area, a the Nordheim image-correction term,
and kr the field voltage proportionality factor. A plot of In(1/V?) versus 1/V is therefore
linear with intercept Ina and slope § = —¥¢37. If a is taken to be unity and £ = 5, a value
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Figure 3.1: Schematic illustration of the UHV-STM friction measurement system in an
ultra-high vacuum with a base pressure of 107'* torr. The inset shows an atomic illustration
of the tip and surface. The measurement system was placed on a vibration isolation air
platform, which had a resonance at 1.2 Hz. -
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Figure 3.2: Fowler-Northeim plot, showing a plot of In(I/V?) versus 1/V.

of r, correct to within 20 percent, can be found at once from S if ¢ is known and uniform.
From the plot of In(f/V?) versus 1/V, shown in Fig. 3.2, the tip radius r is estimated to
be around 20 nanometers.

The tungsten tip was fabricated by electrochemically etching a polycrystalline tungsten
wire with a diameter of 0.25 mm. The side wall of the tungsten wire was also electro-
chemically etched to increase the reflectivity of the laser light (A=780 nm) from the optical
displacement sensor. The final diameter was 0.20 mm. The wire was made 40 mm long to
make it flexible énough to allow us to measure the wire deflection caused by friction. The
spring constant of the wire was set at 1.5 N/m. Prior to etching, the wire was straightened
by stretching it in a hot atmosphere. The straight wire could be set perpendicularly within
one degree to the Si(001) surface by careful mechanical alignment. The FEM image shown
in Fig. 3.3 (a) is a typical image of a clean tungsten tip, as previously observed by Miiller
[55]. The image reflects differences in the work function of the crystal planes located at
the tip, and this determines the lattice orientation of the W(011), shown in Fig. 3.3 (b).
The dark area at the center of the FEM image represents the W(011) because it has a high
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Figure 3.3: (a) FEM image of a clean tungsten tip. (b) lattice orientation of wW(011). (c)
LEED pattern of clean Si(001). (d) lattice orientation of Si(001).

work function; its area was roughly estimated to be a few nanometers square from simple
geometrical calculations.

Clean Si(001) surfaces were obtained as follows. A carbon-free 5i0; film was formed
on a silicon wafer by immersing the wafer into several solutjons [56]; the film was then
removed by heating the wafer at 1173 K for one hour in UHV by electron bombardment.
Clear (2x1) LEED patterns, as shown in Fig. 3.3 (c). were routinely obtained. The AES
measurements showed the typical spectra for clean silicon and no carbon spectra on the

Si(001) surface.

Fortunately, the contact without lattice misfit along a sliding direction between W(011)
and Si(001) is obtained by appropriately aligning the lattice orientations of their surfaces
(Figs. 3.3 (b) and (d)) in such a way that the [111] direction of the W(011) corresponds
to the [010] direction of the Si(001). The ratio between the lattice unit along the [111]
direction of the W(011) and that along.the [010] direction of the (2x1) superstructure of
Si(001) becomes rational in this alignment. The contact with lattice misfit along sliding
direction, on the other hand, is easily obtained at arbitrary lattice misfits.
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3.3 Results and discussion

The friction that occurred between W(011) and Si(001) surfaces was measured when
they came into contact with and without the lattice misfit along sliding direction. Figure
3.4 shows the data obtained during scanning when the lattice orientations of the contacting
surfaces were aligned without lattice misfit along sliding direction. The scanning amplitude
was 100 nm and the scanning frequency was 0.5 Hz. The average tunneling current was
maintained at the set value of 1 nA at a bias voltage of -100 mV applied to Si(001). The
wire deflection signal oscillated with a period corresponding to that of the scanning, i.e.,
the wire was actually bent by the friction between the surfaces. The clear FEM image of
the tip (Fig. 3.3 (a)) obtained after scanning shows that the tip was not damaged by the
scanning and that sliding in elastic contact was achieved. The friction force was determined
to be 8 x 107® N by multiplying the measured wire-bending deflection of 50 nm by the
lateral spring constant of 1.5 N/m. The measured friction force is comparable to that
calculated when sliding surfaces interact via short-range interfacial interactions [23].

Figure 3.5 shows the data obtained during scanning when the lattice orientations were
aligned with lattice misfit along the sliding direction, in such a way that, for example,
the [011] direction of the W(011) corresponded to the [010] direction of the Si(001). The
tunneling parameters, scanning amplitude, and scanning frequency were the same as those
in the case without lattice misfit. The wire deflection signal was very different from that the
case without lattice misfit. No oscillation of the wire deflection signal was observed in this
measurement, which can resolve a wire deflection displacement of 2 nm. The corresponding
friction measurement resolution was estimated to be 3x10~° N. At the different tunneling
parameters of -50 mV and 1 nA (Fig. 3.6(a)), and of -200 mV and 1 nA (Fig. 3.6(b)), no
wire deflection oscillation was also observed. As in the case without lattice misfit, the tip
was not damaged by scanning. Thus, no friction was observed at this friction-measurement
resolution. Any wire deflection oscillation was not observed in any of the other contacts
without lattice misfit.

The friction forces between W(011) and Si(001) surfaces were very sensitive to the tun-
neling gap. Figure 3.7 shows the wire deflection signals at two bias voltages (-100 and
-900 mV) and at tunneling current of 1 nA. At -100 mV, under the contact without lattice
misfit, using the same tip and Si(001) surface, the wire deflection signal oscillated, showing
that friction occurred. Both dynamic and static friction occurred; the latter occurred when
the tip stuck to the Si(001) surface.

The question is, what would happen when the bias voltage was decreased to -900 mV
to cause the tip and Si(001) to separate. It was found that the oscillation disappeared
even though the surfaces contact without lattice misfit along sliding direction. The gap
increased by around 10 A, as measured from the change in z-voltage applied to the tube
scanner to control the gap. The tunneling gap was thus comparable to the interatomic
distance at the tunneling parameters at which the upper curve was measured, and the
interacting forces between W(011) and Si(001) were short-range.

The change in the gap caused by varying the bias voltage at a certain tunneling current
was the same for both contacts with and without lattice misfit based on the measurement
of z-voltage change at various bias voltages. For example, the gap decreased by around 2 A
when the bias voltage was increased from -100 to -50 mV, and it increased by around 3.5 A
when the bias voltage was decreased from -100 to -200 mV at a tunneling current of 1 nA
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Figure 3.4: Scanning in no-lattice misfit contact conditions. This shows the tunneling
current between the tungsten wire and the Si(001) surface, the deflection of the wire, and
the scanning voltage applied to the piezoelectric tube scanner as a function of time.
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Figure 3.7: Dependence of tip-deflection signal on bias voltage applied to Si(001).

in both cases. Accordingly, the apparent tunneling barrier is the same for both of the cases
with and without lattice misfit along sliding direction, showing that the distance between
the W(011) and Si(001) surfaces can be set to the same value for both of the contacts with
and without lattice misfit.

Theoretical studies showed that friction appearing between atomically flat crystal sur-
faces is irrelevant to a load applied normal to sliding surfaces. because the energy barrier
resisting a surface sliding a unit distance is unlikely to change when the normal load is
changed by changing the interfacial distance. The calculations[54] actually showed that
there exists a case in which friction completely vanishes even when strong adhesion oper-
ates under the application of force normal to sliding surfaces.

With the method presented here, it will be determined if the adhesive interaction is
repulsive or attractive by simultaneously measuring the friction and adhesion by using a
flexible wire that can bend horizontally and vertically.

3.4 Conclusion

Friction was measured as a function of the lattice misfit of the contacting surfaces by us-
ing UHV-5TM and found that the experimental results agreed with theoretical predictions.
Friction was not observed when the surfaces contact with lattice misfit along sliding direc-
tion in measurements capable of resolving a friction force of 3x10~° N, whereas friction with
a magnitude of 8x10™8 N, which is comparable to theoretical values, was observed when
the surfaces contact without lattice misfit along sliding direction. It has been observed



3.4. CONCLUSION o1

that the friction forces in some single crystals change with the crystallographic direction of
sliding, and these changes were interpreted in terms of the preferred slip system in which
lattice slip is likely to occur on a primary slip plane [25, 26]. However, the changes in
friction force observed here due to lattice misfit were much larger, by a factor of 15, than
those observed in such single crystals. It is thus concluded that the observed dependence
of friction force on the lattice misfit of the contacting surfaces agrees with the theoretical
predictions, which will be described in next Chapter.






Chapter 4

Atomistic Locking and Friction

4.1 Introduction

This chapter theoretically considers the atomistic origin of frictional force on clean solid
surfaces. It clarifies the origin of the frictional force that is generated by intrinsic factors,
such as molecular interactions between constituent atoms, not by extrinsic factors such
as surface asperities or surface contaminants. The system studied consists of two solid
crystals; the upper and lower body. The lower body is assumed to be rigid, and the upper
body slides against it. The atoms belonging to both bodies are assumed to interact with
each other by pairwise interatomic potentials. The frictional properties are investigated for
a quasistatic case where the upper body slides very slowly against the lower one. Atoms
are considered to form the most favorable configuration by changing their positions during
quasistatic sliding. Thus the concept of adiabatic potential is introduced to analyze the
interaction energy operating between all the constituent atoms and the changes in their
configurations. In general, the configuration of the atoms changes either continuously or
discontinuously during sliding. The energy necessary for these configuration of the atoms
to change is the frictional energy. This energy could dissipate into lattice vibrations, but
the detailed mechanisms of such energy dissipation are not investigated here.

The organization of this chapter is as follows: Section 4.2 defines the model for friction.
The expressions for the adiabatic potential, frictional energy, and frictional force are ob-
tained by assuming a rigid lower body. Section 4.3 examines an unrelaxed upper body
case, in which both of the upper and lower bodies are assumed to be rigid, by allowing
the interplanar distance between the two bodies to vary during sliding. In this case, the
configuration of the atoms continuously changes, resulting in one atomistic origin called
atomistic locking. Section 4.4V analyzes a relaxed upper body case, where the upper body
is allowed to relax during sliding, in relation to the strength of the interaction poten-
tial existing between the two sliding bodies. In this case, the configuration of the atoms
changes either continuously or discontinuously during sliding. The discontinuous change of
the configuration results in the other atomistic origin called dynamic locking. In addition,
friction transition is observed where friction force changes from vanishing to finite as the
interaction potential strengthens and a criterion for this occurrence is derived. Section
4.5 discusses the frictional properties of various systems in connection with the friction

23
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transition analyzed in section 4.4.

4.2 Theoretical preliminaries

4.2.1 Adiabatic potential

The adiabatic potential is defined by the total energy when two contacting solid bodies
slide against each other. This assumes that the upper body slides against a fixed lower body.
It is also assumed that the upper body has N* atoms and the lower body N! atoms, and
that the constituent atoms belonging to both bodies interact with each other. The position
coordinates of the atoms are denoted by 7; = (rz ,v{yrf) wheret = 1,2,... (N*+N'). Total
energy is a function of the position vectors 7; of all the atoms,

W(@ : {}). (4.1)

Q stands for the displacement vector of the upper body against the lower body. An r;
coordinate set satisfies the relationship

No
Q= Zr,/N" and 0= Zr,/NI (4.2)
Thus, the adiabatic potential spans a 3(N “ + N! —1)-dimensional potential surface. A set
of 7; is determined so as to minimize W(Q : {7;}) for a given G. The adiabatic potential
can then be denoted as W(Q), since 7; is a function of . In general, the configuration of
the atoms can change either continuously or dlscontlnuously as, Q varies.

Suppose Q and Q' are very close. Frictional energy W(Q Q) is defined as the energy
necessary for the configuration at Q’ to change into the one at §. Thus, frictional force
F(Q) and critical frictional force F., which are required to slide two contacting bodies
against each other, can be obtained by

F(@Q)= Iim_ V@Q.&) (4.3)
-4 Q—-Q
and . o
F, = Maximum of F(Q). (4.4)
Frictional energy W (él, ég) is lost along the path from Q; to O, and can be obtained by
W@, @) = [~ F(@), @)
path

where (&, §); stands for an inner product between vectors Z and #: this notation will be

used throughout this paper. Frictional energy depends on the path. Average frictional

force Fy,(@1,Q2) along a path from Q1 to Q, is

W(Ql, Q2) (46)
path ldQl

Equations (4.3)-(4.6) generally hold true when any two bodies slide against each other.

Fav(le QZ)
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Figure 4.1: General configuration where the primitive cell is spanned by primitive vectors:
7, and @, of the upper body and contacts a primitive cell spanned by primitive vectors: g
and §, of the lower body with misfit vector gg.

4.2.2 Model

The model involves two contacting surfaces that have some form of simple symmetry for
simplification such as fcc (face-centered cubic), bee (body-centered cubic) or hep (hexagonal
closed packed) lattices. Each atom belonging to the upper (or lower) body is denoted by a
(or b).

Vaa(r), Vas(r), and  Vi(r). (4.7)

V.4(r) (¢,d = a or b) describes the interaction between atoms ¢ and d (r: the interatomic
distance between two atoms). V,;(0) = 0 and V,,(0) = 0 are used throughout this paper.
This assumption means the exclusion of the self-energy part of the interactions between.
constituent atoms from the expressions derived below. This is equivalent to 3., where the
summation when i = j in eq.(4.8), for example, is excluded. The relative positions for
the primitive vectors of the two contact surfaces are shown in Fig. 4.1. These primitive
vectors are denoted by &}, &5, §1, and §» and @ is a misfit vector. The following section
studies frictional properties for when an upper body moves quasistatically along a certain
direction parallel to the contacting surface against a stationary lower body.

4.2.3 Expression for adiabatic potential
The adiabatic potential is obtained by

N¥ Nt 1 N* N

W(@) =2Vl = 75D + 5 2 Vaallfs = 751)- (4.8)
) 3 g
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Remember that V;(0) = 0 and V,,(0) = 0. Here, the summation of j in the first term of
the right hand side is expressed by

Nt
Vi(r) =3 Vas(IF = 751)- (4.9)

V!(r) is the interaction energy that the atoms of the upper body receive from the atoms of
the lower body. The terms Viy(|7; — 7;|) is dropped, since it has no Q-dependence. Vi(r)
has a periodicity characterized by the primitive vectors of the top layer of the lower body.
Also, an upper body with a simple symmetry can be regarded as a stacked layered crystal.
Equation (2.8) can be rewritten by making use of these facts.

A new notation 77 or (g7, z]) is introduced, where j7 stands for the components of the
positional vectors on the yth layer, which is referenced by counting v layers up from the
bottom layer of the upper body. z] stands for the z components of the positional vectors
on the 4th layer. Notation 7; = (rl ,7Y, %) is still used in section IV and positional vector

7} can be expressed by using primitive vectors g1 and g, of the lower body:

7 =(0],2]) = (27§ +y7 G + Ap7, 2]), (4.10)
Here Ap? is defined by
Ap] = Azlgi + Aylg., (0 < Azl Ay} < 1). (4.11)

z] and y] are 1ntegers that define Aj] in eq. (4.11). z7, y7, Az}, and Ay are obtained
from a given vector g as

=[X!] and 4 =[¥7], (4.12)
and
A} =X7—[X7] and Ayl =Y7—[V]) (413)
X and Y" are defined by
X7 = (ﬁ?vgl)i and Y = (/3.?75‘2){' (414)
' |41 ' |42}

where [z] is Gauss’s notation and stands for a maximum integer that is equal to or smaller
than z. Accordingly, equation (4.8) is rewritten as,

S AFPF 1, 0) V) + SIS Vel 7,

—

W(@) =1 or (4.15)
5, [ dFPy(7 81, 52) x [VI(r) + L5, Vo (17 = 7)),

P(F'gl’ ) ZP 7‘ 91)g2) (416)

P F§1,§2 Z(S -A 1) X6(Z—Z ) (4.17)

where 6(z) is a Delta function.

Frictional properties are studied for two cases; a rigid upper body and a relaxed upper
body. In the first case, the frictional properties can be easily analyzed, and the first
important result of this paper is based on this analysis. In the second, the configuration of
the atoms changes either continuously or discontinuously according to displacement Q).
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4.3 The case of unrelaxed upper body

4.3.1 Adiabatic potential

It is assumed that the atoms of the upper body do not change their position coordinates
due to sliding : friction and that the configuration of the atoms of the upper body does not
change with Q Therefore, the first term in the right hand side of eq. (4.15) is focused on,
since only Q dependence of W(Q) is of interest. The equations to be solved are

=3 [ P 2V (418)

P,(7; 1, g2) = 8(z — h’y)p'v(ﬁ)v (4'19)
P(p)=2_68(F - AR), (4.20)
Ap] = Azl + Ay . (4.21)

where 2z = h., can designate all atoms belonging to the yth layer of the upper body, since
the upper body is rigid. Equatlon (4.17) is then rewritten as eq.(4.19) and k., is determined

so as to minimize the W(Q) for a given Q.

The frictional properties appear as the Q dependence'of P.(p) throughout egs. (3.1)-
(3. 4) If, for example, P,(p) is 1ndependent on Q, a given set of h, is also mdependent
on Q, since the functional form of W(Q) for h., does not change. Accordingly, P,(p) and
W(Q) are invariant for any dlsplacement Q and the correspondmg frictional force exactly
vanishes. If P,(p) changes with §, then W(Q) depends on @, and the frictional force does

not vanish. Thus, the J-dependence of P,(7) determines the (-dependence of W(Q)

it determines whether or not the frictional force vanishes. This property is crucial in the
unrelaxed case, but not so important to the relaxed case where the configuration of the
atoms can discontinuously change with Q

4.3.2 (-dependence of P,(p)

This section examines the conditions that determine whether or not P,(p) is invariant

for Q To calculate Az] and Ay in eq.(4.21), it is necessary to specify positional vector
57. If the upper body is rigid, the positional vectors of the atoms belonging to the ~yth
layer of the upper body (see Fig. 4.1) are

Fl=u'di+id+ 8% +Q (4.22)
where ¢} is a misfit vector of the yth layer. Then,

X7 (5?15;)-‘ o (§.51)i+iy) (ylo .'Jll)i+(é‘g+é»§1)i
il = gL = 91 4.23
( 1/,? ) (p'.L,gg).' "17(.91 92)|+12 (5’2752) +(QQ+Q 92): (4 3)

N 1321
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The two-dimensional distribution, P,(5), in eq. (3.3) can be obtained according to the
Bohl-Sierpinski-Weyl equipartition theorem [57]. P () is specifically determined by pro-
jecting Az} and Ay] onto the two dimensional space spanned by vectors §; and &, due to
egs. (4.13) and (4.23). The equipartition theorem says that rational (§,,, §n)i/|gn| (m,n=1
or 2) results in a inhomogeneous P,(p), but irrational (g, , §,)i/|7x| (m,n=1 or 2) results
in a homogeneous P,(p). Thus, whether or not (7., ,):/|.| (m,n=1 or 2) is irrational
or rational determines P. 5 (P)- The possible combinations of (gm, §n)i/3n| generate 9 kinds
of P,(p), which are classified into three cases in terms of the @-dependence of P(p). The
corresponding distributions for P(j) are schematically illustrated in Fi igs.2 - 4.

A. variant P,(j) case.

Figure 4.2 shows P,(p) by lines and dots. For instance, when the values for (gm, Gn )il |7xl
(m,n=1 or 2) are all rational, P,(5) consists of dots seen in Fig. 4. 2(a), since many
atoms can occupy the same site in a two-dimensional space. The large dots represent a
relatively high density of the projected atoms. When Q varies, the dots relocate with
Q and friction force appears. The occurrence of friction stems from the fact that the
upper body moves against the lower body in the (non flat) potential surface. This is the
same as the classical picture of friction; mechanical locking[8] of surface asperities. This
potential surface, however, spans not on a large scale, but on an atomistic scale and related
mechanism is called atomistic locking, as an analogy for the mechanism for the mechanical
locking. (This situation is later referred to as the variant P,(7;§1,d,) case.)

B. invariant P,(p) case.

In Fig. 4.3, P(p) involves only domain. The domain does not change for any direction
of J. As a result, the frictional force always vanishes, since P(p) is invariant for any §.
(This situation is referred to later as the invariant P,(7; 1, G2) case.)

C. restricted invariant P,(5) case.

In Fig. 4.4, P(§) involves lines and domains. The domains do not change for any Q. The
lines, however, do relocate if § is across the lines, but do not relocate if Q is along the lines.
Thus, the frlctlon force will only vanish for a Q, which is along the lines, but otherwise
appears. (This situation is referred to later as the restricted invariant P, (7' d1, g2) case.)

4.4 A more realistic case: a relaxed upper body

Only atoms belonging to the bottom layer of the upper body can change their position
coordinates when two bodies slide against each other. This assumption is plausible, since
the relaxation of atoms in the other layers, such as the 2nd, 3rd, ..., would probably be
small compared to those of the bottom layer. Two extreme limits for V! (r) (weak and
strong) are studied to see what occurs when V,4(r) becomes stronger.
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(a) (b)
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Figure 4.2: Schematic illustrations of possible non-vanishing regions where the atoms of
the upper body are projected onto a two-dimensional space spanned by ¢; and g, when
> . : . 3 7,81)i (§.81)i (§1.2)i (§5.92)
P.(p) is variant Wlt}.l Q. ((g’lg‘;’}.) ,(g"‘l’gﬁ) , (glljﬁ) ,(gil’gﬁ- ) = (r, T, r) for (q), (r,r, z_r,.rj) or
(r,r,r,4r) for (b), (r,ir,7,7) or (ir,r,r,7) for (c), and (r,ir,r,ér) or (ar,r,r,ir) or (r,or, o7, T)
or (ir,r,ir,r) for (d), where r represents rationality and :r irrationality.
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(a) (b)

(@) | d)

Figure 4.3: Schematic illustrations of possible non-vanishing regions where the atoms of
the upper body are projected onto a two-dimensional space spanned by ¢, and g; when

= — A Ay AN PIEAY EEAR R A . i .
P,(7) is invariant with Q. ((g};?)' ) (gfglﬁ)' ) (g’lg’.‘ZT)', (glng)') = (¢r, 27, tr,17), where 2r represents

irrationality.



4.4. A MORE REALISTIC CASE: A RELAXED UPPER BODY 31

Figure 4.4: Schematic illustrations of possible non-vanishing regions where the atoms of
the upper body are projected onto a two-dimensional space spanned by g1 and g; when
PA,(.[J') -in\{ariance': with Q is restrict(.ed.. ((gll‘g"fll)"l, (gT;'ﬁ)' ’ (gﬁii)' a.(gf_f-}ﬁ)') = (r, T i, zr) for (a),
(r,ir, ir,ir) or (ir,r,ir,ir) for (b), (ir,ér,r,7) for (¢), and (ar,4r,ar,7) or (ir,ir,r,ir) for (d),
where r represents rationality and ir irrationality.

4.4.1 Weak limit

The three-dimensional distribution, Py(7: §i,§2), in eq. (4.17) is studied instead of P,(p)
in eq. (4.20). The adiabatic potential consists of the following three interactions; Vi(r),
V*(r) and U, which the atoms in the bottom layer receive. V!(r) is interaction from the
atoms of the lower body. V*(r) is interaction from the atoms of the 2nd, 3rd, ... layers of
the upper body. U is the mutual interaction that occurs between atoms belonging to the
bottom layer of the upper body;

W)=Y V() + 3 VH(r) + U, (4.24)
where

Nl
Vir) =3 Va7 = 750), (4.25)

j
Vi(r) = Z Vaa(|F — f‘]|), (4.26)

Iv#FL :
U= éz V(17 = 751)- (4.27)
24

Since Vyu(r), i.e., Vi(r) is weak, r;"* (a = z,y, or 2) is expected to be very close to the
position coordinate obtained by assuming a rigid upper body. Putting rp® = rib“ + Arf
(or 7} = 7o + AF) into egs. (4.2):(4.4), and then expanding by a small Ar® (or A7), we
have
1 l a‘/l(r},o) o ]_ lo ﬁ o ﬁ
Z Vir) = Z Virio) + Z — . X Ard + 3 Z Vo7 x Arg Ary, (4.28)
% 1 1,00 7,0

T'" i’o‘rﬁ



32 _ CHAPTER 4. ATOMISTIC LOCKING AND FRICTION

V¥ (r!
DVEr) =3 Vi(rig) + 3 7(120—) X Ard + -;- 3T VRSP x ArgAr?, (4.29)

z',a 1,0 i,a,,@

i —] ]' o o
U =2 Vaallfio = o) + 3 .Zﬂ Ul x ArgArf, (4.30)
3J 1Oy
where
vies _ PVi(rio)

1251 - 1, 1,8°
a"i,o T;0

(4.31)

YA PATH I
vyes = S 8] (432
31',-’0 ari,o

82Va¢(r§-‘o) . . :
s T for ¢ # j,
U = PSaven(rl ) o (4.33)
X sTate fori=j,

Ti5,09Ti3,0
where ri§ = g — rie. Uff satisfies the relationship Uf’,ﬁ + Vi) Ui"?ﬁ =0 for a,8 =
z,y, or z. This is equivalent to a condition where interaction U has translational invari-
ance, that is, U is invariant for the uniform displacements 7; — 7;+@ (&@: arbitrary constant
displacement vector) of all the atoms.
When one chooses r;¢ so as to minimize ¥°; V*%(r;) + U, the adiabatic potential can be

obtained by minimizing

W(@: {Are}) = TV ek + VA (rko) + 3 Va7 — )

ovi(r}
> (17'20) x Arf
i OTip
1 o U, o o
+ 3 _Zﬁ[e,-,,-{vgf; P+ VEOY + U x Argard, (4.34)
with respect to Ar{, where ¢;; = 1 for ¢ = j and ¢;; = 0 otherwise. The atoms in

the bottom layer feel a stronger potential from the atoms in the upper layers (2nd, 3rd,
...) than from those in the same bottom layer for a first approximation. The interaction
from the bottom layer is actually 1/10 to 1/2 that from the upper layers of the fcc and
bee lattices. Mutual interaction term Ui‘:’;ﬁ is neglected for the first approximation. The
derivation of the position coordinates for the atoms of the upper body can be obtained from
Appendix by taking Ugf into account. Then it is set that Vy"" = w, > 0, V;3*"¥ = w, > 0,
Vi =w, >0 and Ufy’;ﬁ = 0 in eq. (4.34) for surfaces such as the (001) planes of the bcc
lattices which have a square symmetry. For other crystal planes, the results are slightly
modified. Displacement Arf, as obtained from eq. (4.34), is

Ape _aVl(ri,o)/BT‘ffo _ _BVI(T,-‘O)/BTE’,‘O.

D) U0 -
V;,',t' Wy

(4.35)
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This expression tells us that Ar# continuously changes if OV!(r2)/8r2 is a continuous
function of rZ. In the case of a rigid upper body, P(; §i,§>) is obtained as Pi(7;§1,5) =
8(z—hq) x ¥ 6(5— Apt) = 8(z — hy) x P1(p). Where Pi(F; g1, §2) consists of non-vanishing
régions that involve the lines, dots, or domains shown in Figs.2-4. For the weak V'(r),
each point in the regions slightly shifts in accordance with eq. (4.35), even though the
lines, dots, or domains do not change their topology when shifts occur due to a weak V(r).
Thus, the frictional properties for a weak V!(r) are essentially the same as those in the
rigid upper body case, provided the first derivative of V!(r) is a continuous function of 7.

As seen in eq. (4.35), the density of P;(7;§1,g2) generally decreases as one approaches
the ridge lines of V!(r). The direction along the ridge line is defined as V*(r)/dr = 0 and
9?V!(r)/dr? < 0 as the direction perpendicular to it. These ridge lines play a crucial role
in deciding whether or not the frictional force vanishes and they will be discussed later.

4.4.2 Strong limit

Atoms in the bottom layer of the upper body position themselves at the lowest minima of
potential V!(r) that is the nearest to each atom. These lowest minima positions are denoted
by vectors i;g; + 2392 + T (21, 72=any integer), where m denotes only one minimum when
there are several lowest minima in the primitive cell of the lower body. For the (001) planes
of simple crystals, such as _bcc lattices, m = 1. Integers ¢; and ¢, in i g1 + t2§2 + T, nearest
to p; = 11§; + 1595 + go + @ are determined so as to minimize the distance

diy iy = {0y + ian + T} — {5 = 4G, + 643, + @+ G}|  for a certainm.  (4.13)

P1(7, g1, §2) 1s invariant for any Q, since the atoms definitely occupy the positions of the
lowest minima of V(r).

Let us consider the frictional system shown in Fig. 4.5. A small displacement of Q
changes a few i; (or ¢;) into ¢; £ 1 (or ¢, & 1). A few corresponding atoms then jump from
site 41G1 + t22 + T to the nearest neighboring site. Frictional energy is necessary for the
atoms to change beyond the potential barrier between site ;g7 + 22g> + 7, and its nearest
neighboring site. Frictional force then appears, identifying another origin of friction. The
atoms discontinuously change. The appearance of the discontinuity is ascribed to the failure
of the adiabatic potential description. This origin, therefore, cannot be described within
the framework of the adiabatic potential. The origin can be described only by taking the
dynamic movements of the atoms into account. Accordingly, this origin of friction force is
referred to as dynamic locking. Py(7; g1, §2) is still invariant in this displacement. Dynamic
locking occurs for an any arbitrarily small displacement Q friction force is, therefore, a

complicated function of Q

In the variant P\(7;§,d2) case, dynamic locking occurs infrequently. When a certain 9]
is given, many of the atoms throughout the entire system cooperatively jump beyond the
potential barrier, since (g),,dx)i/|gn| (m,n=1 or 2) is rational. In the restricted invariant
Py (7§41, G2) case, dynamic locking frequently occurs only in a direction along the lines in

Py(75 1, 92)-
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critical atom

Figure 4.5: Two contacting surfaces where P,(7; gy, ;) of the frictional system is invariant
for any @ . The upper body surface, shown by broken lines, contacts the lower body surface,
shown by solid lines. Atoms initially positioned at symbols (o) move symbols (), which
correspond to the lowest minimum of V!(r). The critical atom near the boundary line of a
primitive cell of the lower body is the one most likely to jump beyond the potential barrier
when Q is given. '
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- - :> - -
connected disconnected

(a)

connected disconnected

(b)

Figure 4.6: Disconnectedness of a pattern made by tiling P;(7 g1, §2) periodically. (a) is
the variant P, (7; 1, d2) case, and (b) is the invariant Py(; g1, §2) case.

4.4.3 Intermediate regime: friction transition

In the variant P;(7; g1, ) case, the non-vanishing regions of (7 gl, G2). consist of many
dots or lines (see Fig. 4.2) for an arbitrary strength of V!(r). Pi(7;d1,d,) varies for any
Q and any V'(r). When O varies, the atoms in the upper body continuously change
their positions. This leads to atomistic locking, resulting in non-vanishing friction force.
The .corresponding adiabatic potential and friction force is calculated by specifying the
functional form of interaction Vy(r). As V!(r) becomes stronger, the vanishing region
(where atoms can not stay) broadens in Py(7; g1, §2) for any Q. Further increases in V!(r)
disconnect the pattern where Pl(r J1, g2) is tiled periodically, as shown in Fig. 4.6(a),
depending on the direction of Q When Q in the disconnected direction is given, the atoms
only move by non-adiabatic jumping over the vanishing regions in Py(7 g1, G2). This leads
to dynamic locking.

In the invariant Py(7;,4J2) case, the non-vanishing region in Py(; g1, §») consists of
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only the domain (see Fig. 4.3) for a weak V'(r). P,(7;d, g2) is invariant for any Cj and
for a small V!(r), resulting in vanishing frictional force. Atomistic locking never occurs
under these circumstances. As V'(r) becomes stronger, the vanishing region appears in
Py(7; §1, §2)- Further increases in V() eventually disconnect the pattern where P (7} g1, g2)
is periodically tiled, shown in Fig. 4.6(b), depending on the direction of §. This results
in dynarnic locking due to a strong V'(r) interaction. It can thus be concluded that the
transition where frictional force changes from vanishing to finite occurs due to an increased
V!(r). This transition is called friction transition.

In the restricted invariant Py(7;gy,d,) case, the non-vanishing regions consist of lines
and -dots (see Fig. 4.4) if V!(r) is weak. Pi(7§,,) is invariant for a § along the lines
in P,(7} 41, §2) and for a weak V'(r), which results in the occurrence of vanishing frictional
force only along those lines. Increases in V'(r) will cause the pattern for P(F;gy,ds) to
disconnect, depending on the direction of @ After this disconnectedness, dynamic locking
occurs.

There are two atomistic origins for solid sliding friction; atomistic locking and dynamic
locking. One locking concept stems from the fact that all the atoms of a contact surface
will cooperatively move as seen in the variant and the restricted invariant Pi(7;g), )
cases. The other stems from the fact that atoms independently jump beyond the nearest
neighboring potential barrier due to non-adiabatic effects, as seen in all cases with a strong
V!(r). It was then found that both the §-dependence of P, (7 §1,d2) and the changes in
the topological properties of the patterns made by P,(7;§,§.) determine the frictional
properties in both the unrelaxed and relaxed upper body cases. A summarized diagram of
this is shown in Fig. 4.7 and forms the central results of this paper.

Friction transition is same as the transition of analyticity-breaking, often called Aubry
transition [58]. Aubry studied the Frenkel-Kontrowa model which is an one-dimensional
system to describe the movement of defects or dislocations. Analyticity-breaking corre-
sponds to the discontinuous change of the relaxed particle positions. For restricted invari-
ant and invariant P;(7; g1, g2), the relaxed particle positions discontinuously change as Q
varies. The friction transition demonstrates the Aubry transition for the two dimensional
system.

4.4.4 Friction transition: criterion for its occurrence

A condition needs to be derived to decide whether or not friction transition occurs. Three
interactions are considered for this condition; V(r), V¥(r) and U = (1/2) ¥; ; Voo (|7 — 5 ]).
The first two can be regarded as the external local fields that act on each atom belonging to
the bottom layer of the upper body. The last is the mutual interaction term for the atoms
belonging to the bottom layer of the upper body. The (approximated) criterion is obtained
for a case where interaction V'(r) is sufficiently strong (cf. discussion in subsection (IV.A))
and the derived criterion for a general case is shown in the Appendix.

A simple case involving a one-dimensional system is first studied, in which only V*(r) and
V*(r) operate (see Fig. 4.8). The results of that case are extended to the two-dimensional
system. When V!(r)=0, the atoms occupy positions that correspond to the lowest minima
of V¥(r). For a weak V!(r) limit, the atoms slightly change their positions towards the
minimum positions of V!(r). For a strong V!(r) limit, the atoms occupy positions that
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Figure 4.7: Schematic phase diagram representing whether or not friction force is finite or
vanishing. Here, the invariant P,(7; 1, §2) case is denoted as Inv-P, the restricted invariant
P\ (7; 1, §,) case as R-Inv-P, and the variant P;(7;dy,4,) case as V-P. Atomistic locking is
denoted as (A), and dynamic locking as (D).
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~

Figure 4.8: A one-dimensional frictional system. V!(r) and V*(r) have their periodicities
characterized by lengths g and ¢’. The atoms sit on the lowest minima () of V*(r), when
V!(r) = 0. When V*(r) becomes to a strong limit, the atoms occupy the positions for the
lowest minima (o) of V!(r).

correspond to the lowest minima of V'(r). When distribution P(r) is periodically arranged
in a one-dimensional space, the non-vanishing regions in P(r) connect with each other for
a weak V!(r), but disconnect for a strong V!(r). The friction transition that then occurs
is similar to the two-dimensional case just previously mentioned and a criterion for it can
be derived.

The potential energy is V'(r) + V¥(r), when r is close to the position of the extreme
maxima of V!(r) and to that of the lowest minima of V¥(r). If r = r,.; + Ar and
T = Tmin+ Ar', and V’(r)+V“(r) is expanded by a small Ar and Ar/, then V!(r)+V¥(r) =
V(T maz)+ V(T min) + Ar? x d2V? (Tmaz)/dri .+ Ar? xsz”(rmm)/drmm Atoms are unable
to occupy vanishing regions in P(r). The potential is a concave function at these positions.
Since Ar is a function of Ar’: Ar = r;;, — Pmes + Ar’, and the condition under which Ar
or Ar’ becomes unstable is

szl(rmw) dzvu(rmin)
e + i < 0. (4.36)
When d*V!(re)/dri .. + @VE(rmin)/drt;, > (or <)0, friction force vanishes (or ap-

pears).

Let us extend this criterion to a two-dimensional system. First, consider the case where
U=0. Tp,qs of V!(r) corresponds to a point satisfying 8V'(r)/8r = 0 and 8*V'(r)/dr? < 0
along lines that are perpendicular to the ridge lines of V!(r). For basal planes such as the
(001) planes of b.c.c. lattices, the ridge lines are obtained by connecting four points of a
square spanned by the two primitive vectors §; and g,. The position on the ridge lines is
denoted as 7, (or (r%,1Y)). rpi of V¥(r) corresponds to the lowest minima of V*(r). The
potential energy expanded by a small Ar® and Ar¥, and Ar'® and Ar" are

Viry) + V¥(rmin) + Z 0.5(Ts) X Ar*Arf 4+ Z 2 5(Pmin) X AP AP (4.37)



4.5. FRICTIONAL PROPERTIES FOR VARIOUS SYSTEMS 39

If the relationship between (Ar®,Ar?) and (Ar®,Ar'¥) is given as

= ZTCY,')’AT’Y’ (4.38)
v
then equation (4.37) becomes
V (rs) =+ Vu r'm.m + Z[ a,B 'rs -+ Z —y T'm,n)T,y aT’y ﬁ] X AT'GAT (439)
v

The condition that the potential energy is a concave function of r for a one-dimensional
system is equivalent to the condition that the potential energy is a concave function in a
direction that is perpendicular to the ridge lines for a two-dimensional system. Denoting
this direction perpendicular to the ridge lines as vector § = (s¢,$y), the corresponding
condition is

ViwSE 4+ 2Va 828y + Vyusa <0, (4.40)
where V, g is defined by
Va,ﬂ a ﬁ T‘s + Z vy T‘mm)T.y aT'y 8 + Z Ua B |S — b ml) (441)
¥y

The effects introduced by mutual interaction U are taken in account by adding the last
term in the right hand side of eq. (4.41)

4.5 Frictional properties for various systems

4.5.1 Quasistatic friction of a-iron

In this section, realistic calculations are demonstrated that relate to the quasistatic
sliding friction of an a-iron. The adiabatic potentials, calculated as a function of the
sliding distance, give the minimum energy necessary for sliding friction to occur. Two
types of frictional systems are examined, characterized by the rationality of (,,§x):/|dx|
(m,n=1 or 2), where §,, and g, are primitive vectors of the upper and lower bodies.
Case (a) The (001) plane of an a-iron (bcc lattice) is placed against another (001) plane,
as shown in Fig. 4.9(a). The upper body is then slid against the lower one in direction
z. The bec lattices that have a unit vector of T = (a,a,a) ( a: a lattice constant of the
bce lattice) for the upper body are placed on the same bcec lattices of the lower body This
contact genelates the \arlant Py (7,1, §2) case (see Fig. 4.2(a)), since both (g}, 1) )i/ g1l
and (g3, 92)i/|92 (§3,1)i/161] = 0, and (§},2)i/|g2| = 0. The upper body
lattice is then commensurate w1th the lower body lattice both in its sliding direction z and
vertical direction y.

Case (b) The (110) plane of an a-iron is placed against a (001) plane, as shown in Fig.
4.9(b). The upper body is slid against the lower one in direction x. The fct (face-centered
tetragonal) lattices that have a unit vector of T (a,V/2a,a) for the upper body are placed
on the bec lattices that have a unit vector of T = (a,@a,a) for the lower body. This contact
generates the restricted invariant Pi(7;d1,d») case (see Fig. 4.4(c)), since (g3, §1)i/|d1| is

o A=

rational, (J}, g2)i/|d2| is irrational, (§,1)i/|§1| = 0, and (g}, §2)i/32| = 0. The upper body
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Figure 4.9: Atomic arrangements at the contact interfaces. The upper body with atoms
(o) is slid over a stationary lower body with atoms (+) in the z direction. Pi(7; 4y, §2)
15 variant with @) in any direction for (a). Pi(7;gy,§,) is invariant only with Q in the y

direction for (b).
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lattice is then commensurate with the lower body lattice in sliding direction z, while being
incommensurate in vertical direction y.

Several kinds of interatomic potentials [59, 60, 61, 62] have been proposed for the a-iron.
The Johnson potential was chosen from among them since it has been successfully used
to calculate such atomic displacements as the tensile deformations of amorphous iron [63].
This potential is expressed as three third-order polynomials

—2.195976(r — 3.097910)> + 2.704060r — 7.436448 eV for 194 < r <244

é(r) = { —0.639230(r — 3.115829)% + 0.477871r — 1.581570 eV for 24A <r <3.04
—1.115035(r — 3.066403)3 + 0.466892r — 1.547967 eV for 3.04 < r < 3.44.4
(4.42)

The a-iron lattice constant is taken as 2.86 A. The model potential can yield reasonable
surface energies for the a-iron: 1.31 J/m? for the (001) plane and 1.21 J/m? for the (110)
plane. These values are comparable to a measured surface energy of 2.2 J/m? [64]. The
frictional properties of the rigid upper body case are compared with those of the relaxed
upper body case. To do this comparison, the system used is assumed to be of a sufficiently
large, but finite size. The size of the adopted system is (20 x 20 x 2) bec unit cells (2123
atoms) for the upper body and (24 x 24 x 2) bce unit cells (3027 atoms) for the lower body
in case (a), and (20 x 20 x 2) fct unit cells (4203 atoms) for the upper body and (24 x 32 x 2)
bee unit cells (4011 atoms) for the lower body in case (b).

Figure 4.10 shows adiabatic potentials normalized by contact area A as a function of
sliding distance @, in cases (2) and (b). Potential barrier E, can be observed in both
cases. E, changes only slightly after relaxation in case (a), but it noticeably increases
after relaxation in case (b). Potential barrier Fj in case (b) is smaller than that in case
(a), so less friction force appears in case (b) where Pi(7;1,42) is a restricted invariant.
Calculation shows that E,=1.1 J/m? in case (a), and F;,=0.53 J/m? in case (b). The
average frictional forces calculated by eq. (4.6) are Fav(él, @2):7.6 GPa in case (a), and
Fav(él, @;)=3.7 GPa in case (b). Unfortunately, directly comparable experimental data
is not available. Current experiments [13, 30] have showed highly-resolved frictional force
distributions with a sensitivity ranging from 1 x 1077 to 1 x 107® N by scanning very
sharp 0.1 to 5 pm radius tips of diamond or Tungsten over a sputtered carbon film or
a highly oriented polycrystalline graphite. The frictional forces measured are normalized
by the apparent elastically contacting area and range from about 0.1 GPa to a few GPa.
This suggests that the friction force resulting from atomistic locking is comparable to the
friction force that will be measured in future experiments.

Another finding is that the amount of adhesion force has no relation to the friction
force amount. Frictional force has often been ascribed to adhesion, i.e., chemical bonding
between the actual contact surfaces in phenomenological studies [11]. In those studies,
adhesion occurs at the actual contact area where the external load is concentrated. This
concentrated load removes surface contaminants from the contact area, thus possibly caus-
ing the formation of adhered junctions. Accordingly, shearing force has to be applied to
rupture the adhered junctions during subsequent sliding friction. friction force can, there-
fore, depend on shear strength and on the actual contact area where the adhered junctions
are formed. When plastic deformations are introduced into the adhered junctions, the
junction growth can be actually observed' [12, 65]. The results, however, did not show a
relationship between adhesion force and friction force.
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Figure 4.10: Calculated adiabatic potentials normalized by the contact area. The (001)
plane of an a-iron is slid over the same (001) plane for (a), and a (110) plane over a (001)
plane for (b). Broken lines represent the unrelaxed case and solid lines the relaxed one.
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4.5.2 Validity of the criterion for friction transition

The criterion for friction transition states that friction transition occurs when second
order derivative V, g, in a direction perpendicular to a V!(r) ridge line, is negative. If
distribution Pi(7; g1, §2) is considered just before the friction transition occurs, the pattern
is still connected by one atom (this atom is hereafter called the critical atom.) on the ridge
line. The occurrence of friction transition can, therefore, be decided by judging whether or
not V, 5 in eq. (4.41) is negative at the critical atom position.

The model verifies this consists of two contacting bodies, the (001) plane of an a-iron
(upper body) that faces against the (110) plane of an a-iron (lower body) at a thirty degrees
angle as shown in Fig. 4.11. The upper body is placed against the lower body so that the
critical atom is positioned at the midpoint on the boundary line of the two-dimensional
primitive cell of the lower body, where the critical atom feels the local minimum of the
potential from the upper body, V*(rmis), and the local maximum from'the lower body,
V!Y(rmaz). The upper body is taken to have (20 x 20 x 2) bec unit cells (4203 atoms) with
a unit vector of T' = (a,a ,a), and the lower body (24 x 32 x 2) fct unit cells (4011 atoms)
with a unit vector of T' = (v2a,a,/2a). At the beginning of the calculation, the rigid
upper body is placed so as to minimize the total crystal energy by adjusting the interfacial
separation. Next, the atoms in the upper body, excluding the critical atom, are relaxed
three-dimensionally, while all of the atoms in the lower body are fixed. Two kinds of
potentials are used, Morse potential and Johnson potential, as the interatomic potentials
operating in the system. The Morse potential expressed as V(1) = D(e~2e(r~70) —g¢=a(r=ro))
(D, a,re: potential parameter), and is selectively applied to the atoms on the contact
interface. The Johnson potential is used for the other atoms.

As seen in subsection (IV.D), the critical atom is assumed to sit on the local minimum
of V*(Tpmir). This assumption was confirmed by actual calculation. The calculated second-
order derivatives of potential V, g in eq. (4.41) are shown as a function of Morse potential
parameter D in Fig. 4.12. V, s decreases as D increases, since negative contribution
V! (Fmaz) from the lower body increases. The friction transition actually occurs when D is
approximately 35. Figure 4.13 shows distribution P;(7; &, d2) before relaxation and after
relaxation when D=10, 20 and 60. The atoms initially move from the region around the
corner of Py(7;d1,3,) (Fig. 4.13(d)), and gather toward the center of Py(7}4i,4:), where
the lowest minima of potential V'(r) exists. These movements result in the cross-shaped
pattern seen in Fig. 4.13(c). Just before friction transition the pattern is connected by
several atoms on the boundary line in Py(75§1,G2). After friction transition, the pattern
made by P,(7; 1, §2) is completely disconnected, as shown in Fig. 4.13(d) (cf. Fig. 4.6),
thus confirming the validity of the friction transition criterion.

4.5.3 Friction transition for cubic metals

The main concern here is whether or not friction transition occurs in realistic frictional
systems of several fcc and bce metals. The Morse potentials determined by Girifalco and
Weitzer [62] are used as the interatomic potentials of frictional systems. The friction
transition calculation follows the same procedures as in the previous section. It is assumed
that only the atoms of the upper body are allowed to change their positions while the
atoms of the lower body remain fixed. To satisfy this assumption the closest packed crystal
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Figure 4.11: Model for friction transition. (o) symbols are upper body atoms, and (+)
symbols are lower body atoms. The () symbol is the critical atom.
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Figure 4.12: Calculated V, g as a function of Morse potential parameter D.
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planes (hardest planes), such as the (111) planes for fcc lattices and the (110) planes for
bec lattices, are taken as the contact surfaces of the lower bodies. For fecc metals, planar
atomic density increases with the (110) < (001) < (111) planes. The (110) and (001)
planes are then faced against the closest packed plane (111), as shown in Figs. 4.14(a)
and (b). For the (110)-(111) contact, the upper body is composed of (18 x 12 x 2) bct
(body-centered tetragonal) unit cells (1173 atoms) with unit vector T = (a/V?2,a,a/V2)
and the lower body is composed of (29 x 28 x 2) monoclinic unit cells (5858 atoms) with unit
vector T' = (a/v/2,a/v/2,a/+/3). For the (001)-(111) contact, the upper body is composed
of (11 x 11 x 2) fcc unit cells (1323 atoms) with unit vector T = (a,a,a), and the lower
body is composed of the same monoclinic unit cells. For bce metals, planar atomic density
increases with the (111) < (001) < (110) planes. The (001) and (111) planes are then faced
against the closest packed plane (110), as shown in Figs.14(c) and (d). For the (111)-(110)
contact, the upper body is composed of (18 x 12 x 2) monoclinic unit cells (1605 atoms)
with unit vector T = (v/2a, v2a,a/2+/3), and the lower body is composed of (25 x 25 x 2)
fct unit cells (6503 atoms) with unit vector T = (v/2a,a,/2a). For the (001)-(110) contact,
the upper body is composed of (18 x 12 x 2) bcc unit cells (1173 atoms) with unit vector
T = (a,a,a), and the lower body is composed of (17 x 23 x 2) fct unit cells (4113 atoms)
with unit vector T = (v/2a,a,v/2a). The critical atom for each contact is placed at the
point satisfying dV!(r)/0r = 0 and 8V'(r)/8r* < 0 along lines perpendicular to the ridge
lines of V!(r), where the local minimum of potential V*(ryn) from the upper body and
the local maximum of potential V!(rmaz) from the lower body exists. In the calculation,
the atoms of the upper body, excluding the critical atoms, are three-dimensionally relaxed.
After relaxation second order derivative V, g is calculated for the direction perpendicular
to the ridge line of each critical atom.

Figure 4.15 shows the calculated V, s as a function of Morse potential parameter D.
The calculated V, 5 values are positive for all of the examined metals. This shows that
friction transition does not occur in these frictional systems. The V, s sign is actually
determined by competition between a positive V*(rmin) contribution from the upper body
and a negative V!(maz) contribution from the lower body as seen in eq. (4.39). A positive
V¥ (Pmin) always defeats a negative V!(rmaz) in these frictional systems. Examining the
value of V, 5 shows how much the frictional system is stable against friction transition.
An increase in D increases the positive V¥(rpn) contribution far more than the negative
V!(Fmin) contribution, thus giving a more positive V, 4 for the bee metals than for the fcc
ones.

It is also shown in Fig. 4.15 that V, s is dependent on the contact crystal plane. In
bce metals, for example, V,, g for a (111)-(110) contact is larger than that for a (001)-(110)
contact. How much V, 5 is dependent on the contacting crystal planes mainly depends on
the differences between the positive V*(rpmi,) contributions of each contact. By separating
mutual contribution U (see eq. (4.27)), the atoms obtained from the bottom layer of the
upper body for the total positive V*(rmis) contribution, the partial contribution of U and
its reminder in V¥(rmin) can be selectively examined. Since the (111) plane in the bcc
metals has less atomic density than the (001) plane, total V, g for the (111)-(110) contact
is less than for the (001)-(110) contact before relaxation. However, the final V; g for the
(111)-(110) contact is inversely larger than for the (001)-(110) contact after relaxation,
resulting in a large increase in the positive contributions from the upper layers (2nd, 3rd,
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Figure 4.14: Model for friction transition in realistic systems of cubic metals. For the
fcc metals, a (110)-(111) contact (a) and a (001)-(111) contact (b) are examined. For the
bcec metals, a (001)-(110) contact (¢) and a (111)-(110) contact (d) are examined. The
(o) symbols are upper body atoms, and the (+) symbols are lower body atoms. The (e)
symbol is the critical atom.
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...) of the upper body by relaxation in the (111)-(110) contact. This is due to the fact that
the atoms of the upper layers (2nd, 3rd, ...) move toward the local lowest minima more
easily in the (111)-(110) contact, since the (111) plane has less density. These situations
also hold true for the fcc metals in the same way.

4.6 Discussion and Conclusion: atomistic locking

Frictional properties were characterized by both the Q-dependence of P, (73 §1,G2) and
changes in the topological property of Pi(7;gi,4d2) that occurred due to the strength of
interatomic potentials. The topological property of Pi(7§;,§2) is revealed in a pattern
made by tiling P (7;¢1,§2) in a two-dimensional space. Frictional force vanishes when
Py(7; g1, §2) is invariant with Q and its pattern is connected, but frictional force appears
when P (7 g1, §2) is variant with @ or the pattern is disconnected.

There are two atomistic origins for solid sliding friction; atomistic locking and dynamic
locking. In atomistic locking, all the constituent atoms move continuously. Atomistic
locking can occur for an arbitrary strength of potential V'(r). In the classical mechanical
locking model, the (non flat) potential surface that the upper body feels from the lower
body spans on a large scale. In atomistic locking, the (non flat) potential surface spans
on a atomistic scale. On the other hand, in dynamic locking, the atoms discontinuously
change their positions due to dynamic movements of the atoms. In contrast to atomistic
locking; in dynamic locking the atoms non-adiabatically jump beyond potential barriers
between neighboring sites. This origin cannot be described within the framework of the
-adiabatic potential. Dynamic locking follows disconnectedness of the connected pattern of
a tiled P;(7;§1,§.) as V!(r) increases.

The criterion for the occurrence of friction transition was obtained. From studying the
frictional properties of various systems, it can be concluded that friction transition may
not appear for realistic systems, which suggests that atomistic locking is responsible for
the solid sliding friction in these systems. friction force due to atomistic locking was
calculated for an a-iron. Average friction force, as normalized by the contact area for a
(001)-(001) contact of an o-iron, is estimated to be 7.6 GPa. This frictional force will be
comparable to the frictional force that is measured in future. Another important conclusion
is that a frictionless system is apparently possible if clean solid surfaces are prepared. The
performance of the experiments to confirm this possibility will be a highly desirable goal
for the future.

A mechanism for solid friction similar to mine was proposed by Tomlinson [66]. He
explained that the origin of solid sliding friction stems from dissipation of the elastic energy
introduced by the relative sliding motion of two contacting solid bodies. This elastic
energy is stored by an atom and is transformed into vibrational (or kinetic) energy, then
is subsequently dissipated through the surrounding atoms. The sum of the independently
lost elastic enérgy stored by each atom is ascribed to the energy required to slide two
contacting surfaces. His idea is different from mine, however, since he does not consider
possible cooperative movements by the constituent atoms.

Further investigations on the dynamical properties of friction and frictional systems
having non-crystalline surfaces, which has been experimentally observed for metals and
ceramics, will be presented in future.



Chapter 5

Dynamics of Friction: Superlubric
state

5.1 Introduction

The (dynamic) friction force is the drag against sliding, appearing when two solid surfaces
move relatively [11]. Then, the energy is dissipated during sliding. The friction is a problem
of how the energy can be dissipated. The data of friction forces usually measured contains
many unknown factors: surface roughness, fractures, plastic deformations, poisoning by
contaminants such as Oy, H, and oil, etc. It is difficult, therefore, to study the origin of
friction force from the experimental data available at present. More recent experimental
studies [13] try to exclude many of the unknown factors by preparing well-defined surfaces.

This chapter theoretically considers the dynamic properties in friction by assuming two
clean solid surfaces, which is generated by intrinsic factors, such as molecular interactions
between constituent atoms, not by extrinsic factors such as surface asperities or surface
contaminants. Friction is formulated as a problem of whether or not given (sliding) kinetic
energy for the translational motion dissipates into the kinetic energies for the internal
motions during sliding. We shall study the dynamics in friction by using the Frenkel-
Kontorova model with kinetic energy terms.

5.2 Preliminaries: nonadiabatic motion of atoms

Tomlinson [66] has first pointed out an importance of nonadiabatic motion of atoms.
Let us describe an essence of his idea. Suppose the friction system consisting of two atoms
numbered by 1 and 2, as seen in fig. 5.1. Two atoms are assumed to interact with each
other. The atom 1 forms a part of the upper solid surface, which interacts with other
atoms of the upper solid surface simply by the spring, while the atoms 2 form a part of the
lower solid surface, which is assumed to be fixed. We shall concentrate the behavior of the
atom 1 when the upper surface slowly slides against the lower surface. When the atom 1
is in the left side of the atom 2, the spring does not bend. As the atom 1 moves towards
the right direction, the spring begins to bend. When the sliding displacement is small,
this is a process of storing the elastic energy in the spring. When the atom 1 goes beyond
the certain distance, he assumes that the atom 1 non-adiabatically (abruptly) changes its

51
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Figure 5.1: Nonadiabatic motion of atom.

position. The non-adiabaticity leads to transforming the elastic energy of the spring into
the vibrational or kinetic energy of the atom 1. The vibrational energy of the atom 1
may be considered to dissipate into the vibrational energies of other atoms, i.e., into the
thermal energy. Mori et al. proposes the same idea [67, 42]. If the atom 1 is assumed only
to change its position slowly, the atom 1 may not take an excess kinetic energy, which can
be concluded from the adiabatic theorem.

On the other hand, similar nonadiabatic motion occurs also for the systems of many
atoms such as the low dimensional systems such as the one-dimensional Frenkel-Kontorova
model, the discrete model of the charge density wave, and so on. The occurrence of such
nonadiabatic motion is one of the phenomena of the Aubry transition [58]. The atoms can
move by changing their equilibrium positions discontinuously during sliding [39, 23, 42].

We, however, concluded [23] that the nonadiabatic motion of atoms does not occur in the
realistic (three dimensional) friction systems by deriving the condition for the occurrence
of such nonadiabaticity and examining it in the various friction systems. This was made
by assuming a quasistatic sliding where atoms take the most stable configuration. Here,
it is studied the dynamic property in friction in which the atoms do not take the stable
configuration.

5.3 Friction model

5.3.1 Equations of motion
Let us consider the following friction system given by
N 1 N

N 2 .
H({p} {a)) =5+ 3245 2 wile —a) +vala)}, (5.1)

i i)
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where N (3> 1) denotes the number of the atoms of the upper solid surface. The first,
the second, and the third term of the right hand side stand for the kinetic energy of the
sth atom, the mutual interactions between the atoms of the upper solid surface, and the
adhesion energy given by va(g) = ¥;va(g — ;) (va(g — ¢;): the interaction energy from
the jth atom of the lower surface), respectively. The lower solid surface is assumed to
be rigid, and so the relevant degrees of freedom is dropped from the considerations in
eq.(5.1). In the friction process, it is convenient to distinguish the translational degree of
freedom, i.e., the center of mass, of the upper surface from the other degrees of freedom
concerning with the internal motions. The notations (P = YN pi/N,Q = ¥V ¢/N) and
(pi =pi— PG = ¢ — Q) (: = 1,2,.,3(N — 1)), where P and @ are, respectively, the
momentum and the coordinate of the center of mass, specifying the translational motion,
and p; and §; are, respectively, the momentum and the position coordinate of the 21th atom,
specifying the internal motions, are introduced. In other words, P corresponds to the
sliding velocity of the upper surface. The quantities which are interested in are P and @,
which specify sliding of the upper surface. By using these notations, the friction system
can be rewritten by

H({p:},{a}; P,Q) = Ni; + Z'vz((ii + Q)+ Ho({p:}, {@:}), (5.2)

N-1g2 N
Ho({p:}, {@}) = Z 513 ; vi(@ — ;) (5.3)
i i#]
Ho({pi},{@}) involves only degrees of freedom for the internal motions, and the transla-
tional motion (P, Q) is connected with the internal motions (f;, §) by the second term, i.e.,
the adhesion term in the right hand side of eq.(5.2). The motion of equation for the center
of mass of the upper surface is given from eq.(5.3):

dP 1
— = ylat)
and 0
i P, (5.4)
where Fy(t) is a friction force, defined by
ov q;(t) + t
The equations for the internal motions are written from eq.(5.2),
dpi Ovi(@(t) — g;(t) _ . -
7 zj: 97, = fil@(t) + Q1))
and da
g _
dt - p27 (5'6)

where f;(gi(t) + Q(t)) is a driven force acting on the internal motions, defined by fi(g +
Q(t)) = —0vy(g: + Q(t))/04:.
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5.3.2 Friction diagram

Let us study the friction system in eq.(5.1), given by

H(p) {ad) = 32+ 3Gl —a— 0+ ein(ara), (5.7

where k; stands for the strength of the adhesion interaction. This is one dimensional
Frenkel-Kontorova model [68, 69] with kinetic energy terms. The £ is the mean distance
between two adjacent atoms. (Note that the periodicity length of the sinusoidal potential
in eq.(5.7) is taken as a unit.) The Frenkel-Kontorova model has been studied by many
workers. It is known that this model shows nonadiabatic motion of atoms, as mentioned
in section 2, near at ky ~ 0.14, which is often called the Aubry transition point [58]. We
shall study the dynamics in friction by adding the kinetic energy terms to the model.

To examine the friction property, we shall study the dynamics after the upper solid
surface at the ground state is pushed with initial sliding velocity P(0) (p;(0) = 0 for any
7), that is, the Hamiltonian dynamics conserving the energy. The dynamics is studied
by by examining quantities such as P(t), Q(¢), @(t), p:(t) and the sliding distance I,(t)
defined as the distance over which the upper solid surface slides during time ¢. These
quantities are obtained by solving eqs.(5.4)-(5.7). The £ is assumed to be equal to the
golden mean number (/5 + 1)/2. Two regimes appear in the diagram shown in fig.2; In
the superlubricity regime, the superlubric state appears, i.e., two contacting solid surfaces
slide without any resistance. The recurrence phenomenon occurs persistently; this regime
repeats increasing and decreasing the translational kinetic energy with time. The friction
force Fy(t) averaged over the recurrence time exactly vanishes. The sliding distance [;(t)
increases linearly with time: ;(t) = ¢[P(0)]¢t. The c[P(0)] is a averaged velocity satisfying
c[P(0)} < P(0), and depends on P(0). On the other hand, in the friction regime, the energy
dissipation occurs; The translational kinetic energy is transferred into the kinetic energy
of the internal motions. The upper surface slides but finally ceases to slide: [,(t) < oo
for sufficiently large ¢. The friction occurs in this regime. As P(0) becomes smaller, the
sliding distance decreases for the region k; > 0.14. The point at k; ~ 0.14 and P(0) =0
is the Aubry transition point: in the regime k; > 0.14, the atoms change their equilibrium
positions discontinuously. This was described in §2. In the regime k; < 0.14 and P(0) =0,
the atoms can slide by changing their equilibrium positions continuously, and the system
can slide without any resistance. Nevertheless, the friction regime spreads on the region
0.06 < ky < 0.14 with finite P(0). This is different from the result for the pure Frenkel-
Kontorova model without any kinetic energy terms, and is due to a dynamic effect of the
system ! . In particular, the distance, I;(c0), over which the upper solid surface runs till
it ceases to slide is {;{(c0) ~ 1 as the parameters k; (>0.14) and P(0) approach near the
horizontal axis, while [;(¢) tends to stretch with time ¢ as one approaches the border line
separating the friction regime from the superlubricity regime. In the friction regime, the
temporal behavior of the friction force Fy(t) depends on P(0) and k; in a complex manner.
As the parameter k; means the strength of the adhesion between the upper and the lower

! The simulations presented here show that the potential energy v(Q) =}, va(g: + Q) in eq.(5.2) for
the center of mass takes a multivalued function of @, implying that there are the different timescales for
the internal relative motions and for the translational motion.
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Figure 5.2: Friction diagram for the one dimensional Frenkel-Kontorova model with kinetic
energy terms.

solid surfaces, ky < kyq, 58y Ky, ~ 0.1, corresponds to the weak adhesion. (Note that the
strength of interaction between atoms of the upper solid surface is set equal to unity.) The
diagram in Fig. 5.2 shows that the superlubric state appears only for two cases of the weak
adhesion and of the high sliding velocity. The property that the superlubricity appears
only for the weak adhesion is peculiar for the one-dimensional system. This point will be
discussed later, concerning with the dimensionality of the system.

5.4 Frictional property

5.4.1 Superlubricity

In the superlubricity regime, two contacting solid surfaces can slide with no resistance.
A generic consideration of eqgs.(5.4) and (5.5) concludes that the superlubric state appears
when the system satisfies either of two following conditions: (I) - v,(;(1)+Q(t)) in eq.(5.5),
hereafter denoted by v(Q(t)), has no @-dependence, and (II) the persistent recurrence
phenomenon occurs. (1) is concluded from eqs.(5.4) and (5.5), and (II) was described in
the previous subsection 5.3.2. The second condition may be a special case of (I) if v(Q(t))
is regarded as the quantity averaged over the recurrence time.

. Then, there arises a problem of how to construct the friction systems showing the su-
perlubricity. One among them, for examples, is to prepare the friction system consisting
of two clean flat solid surfaces, as studied in previous sections. The condition (I) has been
discussed as the condition for the phason mode to exist, and can be replaced by another
two conditions: (I-1) the quasistatic sliding: the sliding velocity is so slow that the atoms
follow their equilibrium positions adiabatically and (I-2) two solid surfaces contact incom-
mensurately [23]. The nonadiabatic motion of atoms seen in section 5.2 do not occur if
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these are both satisfied. On the other hand, the condition (II) is first pointed out here,
which is a result of the dynamic effect of the system.

5.4.2 High dimensionality

This section aims to emphasize an importance of high dimensionality in the friction sys-
tem, which makes the superlubricity appear much easily. By the term ’dimensionality’,
we mean the number of the spatial directions towards which the atoms can move or re-
lax during sliding. The importance of high dimensionality is demonstrated by using two
dimensional Frenkel-Kontorova model analogous to that in eq.(5.7), given by

H({pi,j } {qi,j b

LA 2
= Zi(?fz +pii°)

N
1 X T
K 2{5[(%’“0' — a5 = O + (i1 — ¢4 — 0]
2]

k
+ ?lcos{w[qf';j (cosf + sinf) + ¢f ;(cos# — sind)]}
x cos{m[q;;(cosf — sinf) + ¢! ;(-cosb + sinh)]}, (5.8)

where atoms arrange on the square lattice points specified by two index numbers 7 and j.
The position and momentum of the (z, j)th atom are, respectively, denoted by ¢; ;=(¢7;, ¢/;)
and p; j=(pf;,p!;)- The 0 is a lattice misfit angle between the upper and lower solid surfaces
with square lattice symmetry. The calculations are made similar to those in section (3.B).
The upper solid surface is pushed with initial sliding velocity P(0)=0.02 along z-direction,
or equivalently, along the §-direction against the lower surface. The dynamic property for
the case 8 = 0° or 90° becomes identical to that of the one-dimensional Frenkel-Kontorova
model, as easily seen from eq.(4.1). The case § = 45° gives the largest critical value k,
(=~ 0.25), which is about 4 times of k. (=~ 0.06) of the one-dimensional case, which is seen
from the diagram in Fig. 4.7. For the parameter k; < k., the superlubric state appears.
Why does the critical value k. arise for the two dimensional Frenkel-Kontorova model?
This is explained as follows; Suppose two dimensional friction system where the lower solid
surface is assumed to have a square lattice symmetry, as shown in fig. 5.3. The region where
each atom of the upper solid surface can move without occurring the nonadiabatic motion
described in section 5.2 is shown by shade part, while the region where the nonadiabatic
motion occurs by empty part. Two dimensions allow the atoms to move by changing its
position flexibly in the shaded region. Therefore, the atom can slide avoiding the region
where the nonadiabatic motion occurs, as shown by arrow. The appearance of nonadiabatic
region does not mean that the superlubric state breaks down. This should be compared
with the case of one-dimensional systems. When the dimensionality arises further, the
atoms can move more flexibly. For the three dimensional friction systems, it as shown that
the critical value k. becomes much larger than that calculated for the realistic systems: the
superlubric state appear for any combinations of metals with clean and flat surfaces. (The
metals were simulated by using the Morse type potentials determined empirically.) The
possibility for the superlubric state to appear has been discussed by other workers [39, 42].
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Figure 5.3: Sketch of the region where the atom can move by changing its position flexibly,
which is shown by shaded part.

They was based on the result for the case of the one-dimensional systems with P(0) =0,
and concluded that it appears only for the case of the weak adhesion. The above analysis
shows that the superlubricity is a generic phenomenon, and appears for a wide class of the
(strong or weak) adhesion including the metallic bonding and the Van der Waals interaction
[23]. High dimensionality is a key to understand the physics of superlubricity.

5.5 Discussion

It has been studied the dynamic property in friction from an atomistic point of view.
Let us compare the results with those obtained [23] by assuming the (quasistaically sliding)
case where the upper surfaces slides with very low velocity. From the study of Frenkel-
Kontorova model with kinetic energy terms, it was found that superlubricity appears even
for the case with finite sliding velocity as well as for the quasistaically sliding case. Su-
perlubricity occurs due to the persistent recurrence phenomenon where the translational
kinetic energy repeatedly increases and decreases with time. It has been emphasized that
for high dimensional systems, superlubricity is a generic phenomenon, appearing for a wide
class of (strong or weak) adhesion such as metallic bond and van der Waals interaction.

The superlubricity phenomenon is interesting from both theoretical and applicable points
of view. To confirm an existence of superlubric state, The experiment[20] was done by
using two contacting muscovite mica. The experiments confirmed that the friction forces
become smaller as the experimental conditions approach being those for the appearance
of the superlubric state. Although it was not mentioned in subsection 5.4.2, the high
dimensionality yields another remarkable property in the friction. The friction becomes
anisotropic with respect to the lattice misfit angle § between the upper and the lower
solid surfaces: for examples, for the case of two dimensional Frenkel-Kontorova model with
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ky = 0.2 and the sliding velocity P(0) = 0.02, the friction appears for the misfit angle
6 = 0° and vanishes for @ = 45°. In fact, we have also observed the anisotropy of friction in
the above experiment [20]. For the applicable viewpoint, the anisotropy implies a feasibility
for controlling friction and designirg friction systems by taking the lattice misfit angle as
a controlling parameter. »



Chapter 6
Concluding Remarks

Frictional properties were studied from an atomistic point of view. In the first part
of this thesis, it was observed that friction forces of clean surfaces greatly depend on
the lattice misfit between contacting surfaces. In the first experiment, in Chapter 2, the
friction forces of single crystal muscovite mica were measured as a function of the lattice
misfit between the two contacting cleavage surfaces, and it was found that the friction
forces are anisotropic with respect to the lattice misfit angle, i.e., they increase (decrease)
when the surfaces contact without (with) lattice misfit along sliding direction. It was
concluded that the observed frictional anisotropy stems from the change in the lattice
misfit between contacting lattices as predicted by the theory presented in Chapter 4. In
the second experiment, in Chapter 3, it was also observed the frictional anisotropy in
atomically clean surfaces by using atomically clean and well-defined surfaces [21, 22]. The
friction forces of the atomically clean surfaces of Si(001) and W(011) are measured as a
function of the lattice misfit along the sliding direction between the clean surfaces under
ultra-high vacuum by scanning tunneling microscopy. Friction was not observed when
the surfaces contact with lattice misfit along sliding direction in measurements capable of
resolving a friction force of 3x10~° N, whereas friction with a magnitude of 8x10~8 N,
which is comparable to theoretical values, was observed when the surfaces contact without
lattice misfit along the sliding direction. It was concluded that the observed dependence
of friction force on the lattice misfit of the contacting surfaces agrees with the theoretical
predictions made in Chapter 4.

The latter half of thesis theoretically studied the atomistic origin of the friction force
intrinsically generated by the molecular interactions between the constituent atoms of solids
[23, 24]. In Chapter 4, it was shown that there are two origins: atomistic locking and
dynamic locking [23]. Atomistic locking occurs when the configuration of atoms on a
contact surface continuously changes with the sliding distance and when the interatomic
potentials have an arbitrary strength. Dynamic locking occurs when the configuration
changes discontinuously due to the dynamic process and if the interatomic potential is
stronger than a specific given value. It was concluded that dynamic locking is unlikely
to occur in realistic systems from studying various systems. Based on that conclusion,
the theory predicted that “superlubricity”, in which friction force completely vanishes in
infinite systems at the limit of zero sliding speed, does appear in realistic systems. In
chapter 5, it was studied that the dynamic property in friction from an atomistic point of
view. From the study of the Frenkel-Kontorova model with kinetic energy terms, it was

59
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found that superlubricity appears even for the case with finite sliding velocity as well as for
the quasistatic sliding discussed in Chapter 4. Superlubricity occurs due to the persistent
recurrence phenomenon where the translational kinetic energy repeatedly increases and
decreases with time. It was emphasized that for high-dimensional systems, superlubricity
1s a generic phenomenon, appearing for a wide class of (strong or weak) adhesion such as
metallic bond and van der Waals interaction.

Friction research based on atomistic theory has created a new stage for friction research.
On that new stage, the theoretical origins of friction and the state of superlubricity are
clearly displayed, and the appropriateness of conclusions regarding them is being deter-
mined by experiments that have identified the factors involved in friction phenomena. On
the theoretical front, Matsukawa and Fukuyama are investigating the atomistic-theoretical
laws of friction [44]. On the experimental front, a group at Ecole Centrale de Lyon has
begun experiments to verify superlubricity using MoS; [49]. The concept of superlubricity
also provides a new perspective on methods for controlling friction and for understanding
friction in biological systems. : .

One application of superlubricity is to control friction, which can be done by making
use of the anisotropy of friction. Let’s look again at the anisotropy of friction in Fig.
2.4 from the viewpoint of application. Experiments with mica have demonstrated that
the friction force varies with the degree of lattice misfit between the two surfaces, which
supports theoretical predictions of anisotropy in friction. Therefore, the force of friction
can be controlled by determining the lattice misfit, in which case the degree of lattice misfit
becomes the control variable. For mica, the controllable range of the coefficient of friction
is from 0.16 to 0.63.

The concept of superlubricity provides a new perspective on friction and movement in
biological systems, such as flagellar [70] and muscle tissue [71]. The salmonella bacterium,
which is about 1 pm in size, moves by means of flagellar that rotate at high speed (several
tens of thousands of revolutions per minute). That high-speed rotation, however, does
not destroy the bearing at the base of the flagellum. The friction in this sort of micro-
scale bearing is thought to be small because of the energy recursion phenomenon, which
appears in micro-scale systems such as molecular-level mechanisms in biological systems
or micro-machines. In the contraction of muscle tissue, the two proteins actin and myosin
slide one-dimensionally in a particular direction with high work efficiency (80% for turtle
muscle), powered by the hydrolysis of ATP. Anisotropy in which the friction between actin
and myosin is low in one direction and high in the opposite direction is considered to play
a role in the mechanism for this one-dimensional sliding motion in a particular direction. If
this kind of anisotropy exists, then the sliding motion will occur more easily in the direction
of lower friction, even if the driving force for the motion is non-directional, thus resulting
in the one-dimensional sliding motion.

It might be thought that atomistic friction is idealized, and that it is widely different from
the friction dealt with in tribology. I believe, however, that research on friction requires an
approach that goes beyond such common-sense thinking. Indeed, research on extraordinary
phenomena such as superconductivity and nuclear fusion have greatly broadened the realm
of science and technology. That is to say, the paradoxes of common-sense thinking are
the stimuli for scientific advancement. We must go on to create a new stage for friction
research.
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Appendix

The frictional properties are considered by taking mutual interaction U into account.
Adiabatic potential is expressed with an approximation that neglects the higher order

terms rather than the second order term of Arf:

W(Q) = Z Vl(rz}o) + Z Vu(rg,o) + Z ‘/;za“’:;'l,o - Fgl',o )
1t 1 l,]

b R0 s ar S e (S 4 V) UL x Argars.
i,CX 110
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By using orthogonal transformation
Arf = Zci;E,AqE,M
k

where
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R
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which diagonalizes the last term in the right hand side, giving
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where 7; , is defined by

(A5)

(A.6)
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All eigenvalues w; , must be positive. When V!(r)=0, displacement g;,=0 from eq.
(A6). So, from eq. (A.2), Ar® = 0 for all i and @. For a non-vanishing V!(r), the
displacement is

Ve
EA — _Ma X (A7)
WEA I

or
C.» 71".
a _ ik, T\
Arg = -y 2B
Fa kA

¢,z 0V {(r)/0r¥,c* »
_ ‘Z R (r)/ 3,0 Gk (A.8)

- (7354
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Below, the result in eq. (4.12) is derived for a weak mutual interaction /. When V*(r) >>
U, the dispersion of wy , is negligible. If w; \=wq for all k in (A.8), we have

. @ ox
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by using the condition of normalization for ¢ ¢ , in (A4.2) — (A.3),

1 - oV(r)

-2y, 50,

(A.10)

This completes the proof of eq. (4.12). »
Next the criterion for the friction transition is derived. The ridge lines of V!(r) correspond
to the lines satisfying Ar® = 0, or equivalently

0=-3" € A0V (r5)[Orioc ¢

- wr
3k RA

A (A.11)

The criterion for the occurrence of friction transition is to see if the pattern obtained by
tiling P, (7} g1, §2) is connected or disconnected along the ridge lines.
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