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Duality Theories for p-Primary Étale Cohomology III

By Kazuya Kato and Takashi Suzuki

Abstract. This paper is Part III of the series of work by the
first named author on duality theories for p-primary étale cohomology,
whose Parts I and II were published in 1986 and 1987, respectively.
In this Part III, we study a duality for p-primary étale nearby cycles
on smooth schemes over henselian discrete valuation rings of mixed
characteristic (0, p) whose residue field is not necessarily perfect.

1. Introduction

This is Part III of the series of work [Kat86] (Part I), [Kat87] (Part

II) by the first named author. Part I gives a duality theory for p-primary

étale sheaves on smooth varieties in characteristic p > 0 with a relative

theory for proper morphisms between them, which is a relative version of

Milne’s duality theories [Mil76], [Mil86]. In that part, sheaves on a scheme

Y of characteristic p are not considered over the usual small étale site Yet,

but over a much bigger site YRP, which is the category of relatively perfect

Y -schemes endowed with the étale topology. Recall from [Kat86], [Kat87]

that a Y -scheme Y ′ is said to be relatively perfect if its relative Frobenius

morphism Y ′ → Y ′(p) over Y is an isomorphism. If the base field k satisfies

[k : kp] = pr0 for some finite r0 ≥ 0 and Y is a smooth k-scheme purely of

dimension d, then one of the results [Kat86, Theorem 4.3] in this case says

that the dlog part νn(r) = WnΩr
Y,log of the de Rham-Witt sheaf viewed as

a sheaf on YRP plays the role of a dualizing sheaf, where r = r0 + d. This

theory is generalized, in Part II [Kat86], to singular varieties Y . It instead

uses the site YFRP of flat relatively perfect Y -schemes endowed with the

étale topology and constructs a certain dualizing complex Kn,Y over YFRP.

In this paper, as Part III, we study a mixed characteristic version of

the duality theory of Part I. More precisely, let K be a henselian discrete
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valuation field of mixed characteristic (0, p) with ring of integers OK and

residue field k. Assume that [k : kp] = pr0 for some finite r0 ≥ 0. Let X be

a smooth OK-scheme of relative dimension d and

U
j
↪→ X

i←↩ Y

the inclusions of the generic fiber U and the special fiber Y . Set r = r0 + d.

We say that a Y -scheme is relatively perfectly smooth1 if it is Zariski locally

isomorphic to the relative perfection ([Kat86, Definition 1.8]) of a smooth Y -

scheme. Let YRPS be the category of relatively perfectly smooth Y -schemes.

Let XRPS be the category of X-schemes flat over OK whose special fibers

are relatively perfectly smooth over Y . Endow these categories with the

étale topology. Let UEt be the big étale site of U . The base change functors

define morphisms of sites

UEt
j→ XRPS

i← YRPS.

Our duality is about the nearby cycle functor RΨ = i∗Rj∗ in this setting.

For an integer s, denote the s-th Tate twist of the étale sheaf Λn = Z/pnZ

on U by Λn(s). In the derived category of sheaves of Λn-modules on YRPS,

the derived tensor product is denoted by ⊗L and the derived sheaf-Hom

functor by R�omYRPS
. The main theorem of this paper, which is Theorem

3.4, is the following statement.

Theorem 1.1. For any pair of integers s, t with s + t = r + 1, there

exists a canonical morphism

RΨΛn(s)[s]⊗L RΨΛn(t)[t]→ νn(r)

that is a perfect duality:

RΨΛn(s)[s]
∼→ R�omYRPS

(
RΨΛn(t)[t], νn(r)

)
.

1The terminology “perfectly smooth” without “relatively” for morphisms between
perfect schemes is introduced in [Zhu17, Definition A.25]. In [Zhu17, Footnote 20 to
Definition A.13], Zhu attributes this type of usage of “perfectly” to Brian Conrad.
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For example, if X = SpecOK and k is algebraically closed, then this

theorem, on k-valued points, gives an exact sequence

0→ Ext1kRPS
(Gn,Z/p

nZ)→ H1(K,Z/pnZ)→ Hom(µpn(K),Z/pnZ)→ 0,

where Gn = R1ΨΛn(1) is the group K×/(K×)p
n

equipped with a structure

of the perfection of a unipotent algebraic group over k and Ext1kRPS
takes

this structure into account (and µpn(K) is the finite abstract group of pn-th

roots of unity in K). This recovers the p-primary part of the mixed char-

acteristic case of Serre’s local class field theory [Ser61] for K. Hazewinkel’s

generalization [DG70, Appendice] of Serre’s theory with arbitrary perfect

residue field k is also contained in this theorem. This sheaf-theoretic for-

mulation of Serre-Hazewinkel’s theory is closely related to the formulation

using the “rational étale site” introduced in [Suz13].

For X = SpecOK and not necessarily perfect k, the theorem is a sheaf-

theoretic version of class field theory for local fields whose residue field is

of arithmetic nature, such as [Kat80], [Par84] (for k a higher local field)

and [Kat82] (for k a global function field). For general X and k, it is a p-

primary version of a special case of the duality for prime-to-p nearby cycles

by Gabber-Illusie [Ill94, Théorème 4.2].

In the proof of the theorem, we will use the computations of graded

pieces of p-primary nearby cycles by the first named author with Bloch

[BK86]. Since the calculations in [BK86] are for smooth schemes over OK ,

we limit ourselves with X smooth over OK and work with the site YRPS of

relatively perfectly smooth Y -schemes for simplicity. Of course our duality

theory should be extended to non-smooth (or at least semistable) X and

more general constructible coefficients than Λn(s), so that it fully gives a

mixed characteristic version of Part II [Kat87] of the present series of work.

We will not pursue such an extension in this paper.

The first author is partially supported by NSF grant DMS 1601861. The

second author is supported by JSPS KAKENHI Grant Number JP18J00415.

2. The Relatively Perfectly Smooth Site

Let k be a field of characteristic p > 0 such that [k : kp] = pr0 for some

finite r0 ≥ 0. Let Y be a k-scheme. Recall from [Kat86, Definition 1.1] that
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a Y -scheme Y ′ is said to be relatively perfect if the diagram

Y ′ −−−→ Y ′� �
Y −−−→ Y

is cartesian, where the horizontal morphisms are the absolute Frobenius

morphisms and the vertical morphisms are the structure morphisms. This

means that the relative Frobenius morphism Y ′ → Y ′(p) over Y is an iso-

morphism. Let YRP be the relatively perfect site of Y defined in [Kat86,

§2]. It is the category of relatively perfect Y -schemes endowed with the

étale topology. Let (Sch/Y ) be the category of all Y -schemes. Assume that

Y is smooth over k. Then the inclusion functor YRP ↪→ (Sch/Y ) admits a

right adjoint (Sch/Y ) → YRP denoted by Y ′ �→ Y ′RP ([Kat86, Definition

1.8]), and Y ′RP is called the relative perfection of Y ′. Let n ≥ 1 be an

integer. Denote Λn = Z/pnZ and set Λ = Λ1 = Z/pZ. For a site S, we

denote the category of sheaves of Λn-modules on S by M(S,Λn) and its

derived category by D(S,Λn). The ring Λn viewed as a sheaf of rings on S

is denoted by (Λn)S or simply just Λn. As in [Kat86, Definition 4.2.3], we

denote by D0(YRP,Λn) the triangulated subcategory of D(YRP,Λn) gener-

ated by relative perfections of coherent sheaves on Y locally free of finite

rank regarded as complexes of Λn-modules concentrated in degree zero. As

explained in [Kat86, §4], if Y is finite-dimensional, the dlog part of the de

Rham-Witt complex νn(s) = WnΩs
Y,log for any s can be regarded as an

object of D0(YRP,Λn) such that its section Γ(Y ′, νn(s)) for any relatively

perfect Y -scheme Y ′ is given by the groupWnΩs
Y ′,log. We set ν(s) = ν1(s) =

Ωs
Y,log.

Theorem 2.1 ([Kat86, Theorem 4.3]). Assume that Y is smooth and

purely of dimension d. Set r = r0 + d. Then the object νn(r) is a dualizing

object for D0(YRP,Λn), namely the derived sheaf-Hom functor

DYRP
= R�om(Λn)YRP

( · , νn(r))

for D(YRP,Λn) gives an auto-equivalence on D0(YRP,Λn) with inverse itself.

Let Y be a smooth k-scheme. We say that a Y -scheme is relatively per-

fectly smooth if it is Zariski locally isomorphic to the relative perfection of a
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smooth Y -scheme. Let YRPS be the category of relatively perfectly smooth

Y -schemes with Y -scheme morphisms. Endow it with the étale topology.

The inclusion functor YRPS ↪→ YRP defines a morphism of topologies in the

sense of [Art62, Definition 2.4.2]. It induces an (exact) pushforward functor

α∗ from M(YRP,Λn) to M(YRPS,Λn), which has a left adjoint α∗. (Note

that α∗ is not necessarily exact since the category of smooth Y -schemes is

not closed under finite inverse limits.) Note that α∗ sends flask sheaves to

flask sheaves and induces Leray spectral sequences ([Art62, §2.4]).

Proposition 2.2. Let Y be a smooth k-scheme and F ∈ D0(YRP,Λn).

Then the natural morphism

α∗R�om(Λn)YRP
(F,G)→ R�om(Λn)YRPS

(α∗F, α∗G)

in D(YRPS,Λn) for any G ∈ D(YRP,Λn) is an isomorphism.

Proof. It is enough to show the statement for the case where F is the

relative perfection of a coherent sheaf on Y locally free of finite rank. Such

a sheaf F is representable by a relatively perfectly smooth Y -scheme.

For a relatively perfectly smooth Y -scheme Y ′, let YRPS/Y
′ be the lo-

calization of YRPS at Y ′ ([Art62, Definition 2.4.3]), i.e., the category of Y ′-
schemes relatively perfectly smooth over Y endowed with the étale topology.

Taking RΓ(Y ′
RPS, · ) for any relatively perfectly smooth Y -scheme Y ′ and

using the Leray spectral sequence, we see that it is enough to show the

invertibility of the morphism

RHom(Λn)Y ′
RP

(FY ′ , GY ′)→ RHom(Λn)YRPS/Y ′ (α∗FY ′ , α∗GY ′)(2.1)

in the derived category of Λn-modules, where FY ′ and GY ′ are the restric-

tions to Y ′. Let M(FY ′) be Mac Lane’s resolution of FY ′ ([ML57]). Its

homogeneous part at any degree is a direct summand of a direct sum of

sheaves of the form Λn[Fm
Y ′ ] for various m ≥ 0, where Λn[Fm

Y ′ ] is the sheafi-

fication of the presheaf that assigns to each relatively perfect Y ′-scheme

Y ′′ the free Λn-module generated by the set Fm
Y ′(Y ′′) = Fm(Y ′′). By as-

sumption on F , we know that both Fm
Y ′ and α∗Fm

Y ′ are representable by the

relatively perfectly smooth Y ′-scheme Fm ×Y Y
′. Hence the both sides of

(2.1) can be written in terms of cohomology complexes of Fm
Y ′ for various

m. The morphism

RΓ((Fm
Y ′)RP, GY ′)→ RΓ((Fm

Y ′)RPS, α∗GY ′)



228 Kazuya Kato and Takashi Suzuki

is an isomorphism by the Leray spectral sequence. This implies the

result. �

Let D0(YRPS,Λn) be the image of D0(YRP,Λn) under α∗. We denote the

image of each object F ∈ D0(YRPS,Λn) by the same letter F .

Corollary 2.3. Assume that Y is smooth and purely of dimension

d and set r = r0 + d. The functor α∗ gives an equivalence of categories

D0(YRP,Λn)
∼→ D0(YRPS,Λn). The derived sheaf-Hom functor

DYRPS
= R�om(Λn)YRPS

( · , νn(r))

for D(YRPS,Λn) gives an auto-equivalence on D0(YRPS,Λn) with inverse

itself.

3. Formulation of the Duality

Let k and r0 be as above. From now on, for a smooth k-scheme Y , we will

use YRPS and not YRP, so we write D(Y,Λn), DY = R�om(Λn)Y ( · , νn(r))

etc. omitting the subscripts RPS.

Let K be a henselian discrete valuation field of characteristic 0 whose

residue field is k. We denote the ring of integers ofK by OK and its maximal

ideal by pK .

Let A be a flat OK-algebra of finite type and Â its ApK-adic completion.

Write AK = A ⊗OK
K. Let R = A ⊗OK

k. For a flat relatively perfect R-

algebra R′, we denote its canonical lifting over Â by R′
Â

[Kat82, Definition

1]. It is characterized as a unique complete Â-algebra flat over OK such that

R′
Â
⊗OK

k is isomorphic to R′ over R. For any n ≥ 0, the A/ApnK-algebra

R′
Â
/R′

Â
pnK is flat and formally étale ([Kat82, Lemma 1]). For another flat

relatively perfect R-algebra R′′, we have

HomÂ(R′
Â
, R′′

Â
)

∼→ HomR(R′, R′′).

Write R′
ÂK

= R′
Â
⊗OK

K. We have a commutative diagram with cocartesian
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squares

K −−−→ AK −−−→ ÂK −−−→ R′
ÂK� � � �

OK −−−→ A −−−→ Â −−−→ R′
Â� � � �

k −−−→ R R −−−→ R′.

Corollary 3.1. Under the above setting, let A′ be an A-algebra flat

over OK such that A′ ⊗OK
k is flat relatively perfect over R. Then the

A′pK-adic completion Â′ of A′ gives the canonical lifting of A′ ⊗OK
k over

Â. The maps

HomA(A′, R′
Â
)→ HomÂ(Â′, R′

Â
)→ HomR(A′ ⊗OK

k,R′)

are both bijective. In particular, a right adjoint of A′ �→ A′ ⊗OK
k is given

by R′ �→ R′
Â
.

Proof. This follows from the above characterization of canonical lift-

ings. �

Let X be a smooth OK-scheme. Let U and Y be its generic and special

fibers, respectively. Denote the natural inclusion morphisms by

U
j
↪→ X

i←↩ Y.

IfX = SpecA is affine and Y = SpecR, then for an affine relatively perfectly

smooth Y -scheme Y ′ = SpecR′, we denote Y ′
X̂

= SpecR′
Â

and Y ′
Û

= Y ′
X̂
×OK

K = SpecR′
ÂK

. For a general smooth X, let XRPS be the category of

X-schemes X ′ flat over OK whose special fibers X ′ ×X Y are relatively

perfectly smooth over Y . Morphisms are X-scheme morphisms. Endow

XRPS with the étale topology. Let X̃RPS be the category of sheaves of

sets on XRPS and ỸRPS similarly. The reduction functor XRPS → YRPS,

X ′ �→ X ′×X Y , defines a morphism of topologies. It induces a pushforward

functor i∗ : ỸRPS → X̃RPS, which has a left adjoint i∗ : X̃RPS → ỸRPS.
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Proposition 3.2. The functor i∗ is exact. If X is affine, then i∗F for

a sheaf F on XRPS is given by the sheafification of the presheaf

Y ′ �→ Γ(Y ′
X̂
, F ), where Y ′ runs over affine relatively perfectly smooth Y -

schemes.

Proof. The second statement follows from Corollary 3.1. This de-

scription of i∗ shows that i∗ is exact when X is affine. The general case

follows. �

The above proposition shows that the morphism i : Y ↪→ X induces a

morphism of sites YRPS → XRPS. Let UEt be the category of U -schemes

endowed with the étale topology. Denote D(X,Λn) = D(XRPS,Λn) and

D(U,Λn) = D(UEt,Λn). Then we have morphisms of sites

UEt
j→ XRPS

i← YRPS.(3.1)

We consider the functor

RΨ = i∗Rj∗ : D(U,Λn)→ D(Y,Λn).

We denote RmΨ = i∗Rmj∗ for m ≥ 0.

Corollary 3.3. The functor RΨ is the right derived functor of R0Ψ.

If X is affine, then RmΨF for F ∈ M(UEt,Λ) and m ≥ 0 is given by the

sheafification of the presheaf Y ′ �→ Hm(Y ′
Û
, F ), where Y ′ runs over affine

relatively perfectly smooth Y -schemes.

Proof. This follows from the previous proposition. �

We have canonical morphisms Rj∗F ⊗L Rj∗G → Rj∗(F ⊗L G) in

D(X,Λn) and hence

RΨF ⊗L RΨG→ RΨ(F ⊗L G)

in D(Y,Λn) functorial in F,G ∈ D(U,Λn). Hence if we have a morphism

F ⊗L G→ H in D(U,Λn), then we have a canonical morphism

RΨF ⊗L RΨG→ RΨH.
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For any integer s, we denote the s-th Tate twist of Λn over U by Λn(s). The

following is the main theorem of this paper.

Theorem 3.4. Let X be a smooth OK-scheme of relative dimension

d. Let U and Y be its generic and special fibers, respectively. Set r = r0 +d.

Let s, t be integers with s+ t = r + 1.

(1) There exists a canonical trace morphism

Tr: Rr+1ΨΛn(r + 1)→ νn(r)

of sheaves on YRPS.

(2) The object RΨΛn(s) is in D0(Y,Λn) and concentrated in degrees [0, r+

1].

(3) The composite morphism

RΨΛn(s)⊗L RΨΛn(t)→ RΨΛn(r + 1)
Tr→ νn(r)[−r − 1]

induces a perfect duality between RΨΛn(s) and RΨΛn(t) in D0(Y,Λn)

via the dualizing functor DY [−r − 1].

Theorem 1.1 is a consequence of this theorem. We prove this theorem

in the rest of the paper.

4. Ind-Smooth Approximations of Canonical Liftings

We continue working with the situation (3.1). By Corollary 3.3, to de-

scribe the functor RΨ, we need to know the étale cohomology of

the canonical liftings Y ′
Û
. For this, we use the following approximation

method.

Proposition 4.1. Assume that X = SpecA is affine and Y = SpecR

has a p-base. Let q ⊂ R be a prime ideal and p ⊂ A its inverse image. Let

R′ be the local (resp. henselian local, resp. strict henselian local) ring of a

relatively perfectly smooth R-algebra at some prime ideal containing q.

Then there exists a local (resp. henselian local, resp. strict henselian

local) Ap-algebra A
′ that can be written as a filtered direct limit of smooth
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A-algebras such that A′ ⊗OK
k ∼= R′ as R-algebras and the pair (A′, A′pK)

is henselian. The A′pK-adic completion of A′ is isomorphic to R′
Â

as an

A-algebra.

Proof. All the relative perfections below are taken over R. By as-

sumption, there exists a smooth R-algebra R1 and a prime ideal q1 ⊂ RRP
1

such that R′ is the local (resp. henselian local, resp. strict henselian local)

ring of RRP
1 at q1. Taking SpecR1 smaller if necessary, we may assume that

R1 is étale over a polynomial ring R2 = R[x1, . . . , xm]. Then RRP
1 is étale

over RRP
2 .

We show that there is a filtered direct limit of smooth A-algebras whose

reduction ( · ) ⊗A R is RRP
2 . The relative perfection SpecRRP

2 is given

by the inverse limit of Gn(SpecR2) for n ≥ 0, where G is the Weil re-

striction functor for the absolute Frobenius morphism SpecR → SpecR

([Kat86, 1.6-1.8]). In particular, we only need to treat the case m = 1, so

R2 = R[x]. Let t1, . . . , tr be a p-base of R. Then G(SpecR2) is the affine

pr-space over R with coordinates xi(1)···i(r), 0 ≤ i(1), . . . , i(r) ≤ p − 1, and

the R-morphism G(SpecR2) = Apr

R → SpecR2 = A1
R maps (xi(1)···i(r))

to
∑
xpi(1)···i(r)t

i(1)
1 · · · ti(r)r . In terms of rings, this is the R-algebra ho-

momorphism R[x] → R[xi(1)···i(r) | 0 ≤ i(1), . . . , i(r) ≤ p − 1] sending x

to
∑
xpi(1)···i(r)t

i(1)
1 · · · ti(r)r . We take a lifting of this morphism to A by

Apr

A → A1
A mapping (xi(1)···i(r)) to

∑
xpi(1)···i(r)t

i(1)
1 · · · ti(r)r . Iterating, we can

take a lifting of Gn+1(SpecR2) → Gn(SpecR2) to A by Ap(n+1)r

A → Apnr

A

defined similarly. The inverse limit of these liftings for n ≥ 0 gives a desired

lifting of SpecRRP
2 .

Let A2 be such a lifting of RRP
2 . Since RRP

1 is étale over RRP
2 , we can take

an étale A2-algebra A1 whose reduction is RRP
1 . Let p1 ⊂ A1 be the inverse

image of q1 ⊂ RRP
1 . Consider the local (resp. henselian local, resp. strict

henselian local) ring A′
1 of A1 at p1. The henselization of the pair (A′

1, A
′
1pK)

gives a desired local Ap-algebra A′. We have Â′ ∼= R′
Â

by Corollary 3.1. �

We call the A-algebra A′ appearing in this proposition an ind-smooth

lifting of R′ over A. It is neither unique nor noetherian.

Proposition 4.2. In the situation of Proposition 4.1, for any torsion
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étale sheaf F on Uet (pulled back to UEt), we have

RΓ(A′
K , F )

∼→ RΓ(R′
ÂK
, F ).

In the case of strictly henselian R′, the isomorphic groups Hq(A′
K , F ) ∼=

Hq(R′
ÂK
, F ) for any q give the stalk of RqΨF at the residue field of R′ (if

F is a sheaf of Λn-modules).

Proof. The first assertion follows from Fujiwara-Gabber’s formal base

change theorem ([ILO14, Exposé XX, §4.4], [BM18, Corollary 1.18 (2)]).

The second follows from Corollary 3.3. �

Since A′ is ind-smooth over A and hence over OK , the study of

RΓ(A′
K , F ) basically reduces to Bloch-Kato’s study of p-primary nearby

cycles [BK86].

5. Symbol Maps and Trace Morphisms

Let the notation be as in Theorem 3.4. We fix a prime element π of K.

In this section, we will prove Theorem 3.4 (1). Slightly more generally, we

will construct a certain morphism

RqΨΛn(q)→ νn(q)⊕ νn(q − 1)(5.1)

of sheaves on YRPS such that its composite with the projection onto the

factor νn(q − 1) does not depend on π.

We need symbol maps adapted to our setting. The connecting morphism

for the Kummer exact sequence 0 → Λn(1) → Gm → Gm → 0 of sheaves

on UEt gives a morphism i∗j∗Gm → R1ΨΛn(1) of sheaves on YRPS. By cup

product, we define a morphism

(i∗j∗Gm)⊗q → RqΨΛn(q), x1 ⊗ . . .⊗ xq �→ {x1, . . . , xq},(5.2)

where ⊗q means the q-th tensor power and the xi are local sections of

i∗j∗Gm (i.e. invertible elements of R′
ÂK

for some relatively perfectly smooth

R-algebra R′, where SpecA is an affine open of X and R = A⊗OK
k), which

we call the symbol map. By composing it with the inclusion Gm ↪→ j∗Gm,

we have a morphism from (i∗Gm)⊗q to RqΨΛn(q). The construction of the

morphism (5.1) is given by the following, which proves Theorem 3.4 (1).
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Proposition 5.1. The morphism

(i∗Gm)⊗q ⊕ (i∗Gm)⊗q−1 → RqΨΛn(q),

(x1 ⊗ . . .⊗ xq, y1 ⊗ . . .⊗ yq−1) �→ {x1, . . . , xq}+ {y1, . . . , yq−1, π}

is surjective. (Note that the last component of the second symbol is π ∈
Γ(Y, i∗j∗Gm), which is not in Γ(Y, i∗Gm).) The composite of the reduction

map and the dlog map

(i∗Gm)⊗q ⊕ (i∗Gm)⊗q−1 → G⊗q
m ⊕G⊗q−1

m → νn(q)⊕ νn(q − 1)

factors through the quotient RqΨΛn(q). The obtained morphism

RqΨΛn(q)→ νn(q)⊕ νn(q − 1)

followed by the projection onto the factor νn(q − 1) does not depend on π.

In this proposition, when X = SpecOK , k is separably closed and q =

1, the global section of the above morphism i∗Gm ⊕ Z → R1ΨΛn(1) is

Ô×
K ⊕ Z→ K̂×/(K̂×)p

n
given by (x, n) �→ xπn. This is indeed surjective.

Proof. It is enough to check the statements for stalks. Hence we may

assume that X = SpecA is affine and Y = SpecR has a p-base. Let R′

be the strict henselian local ring of a relatively perfectly smooth R-algebra

at some prime ideal. Let A′ be an ind-smooth lifting of R′ over A as in

the previous section. By Proposition 4.2, we are reduced to proving the

following: the homomorphism

(A′×)⊗q ⊕ (A′×)⊗q−1 → Hq(A′
K ,Λn(q))

(x1 ⊗ . . .⊗ xq, y1 ⊗ . . .⊗ yq−1) �→ {x1, . . . , xq}+ {y1, . . . , yq−1, π}

is surjective; the composite of the reduction map and the dlog map

(A′×)⊗q ⊕ (A′×)⊗q−1 → (R′×)⊗q ⊕ (R′×)⊗q−1

→ Γ(R′, νn(q))⊕ Γ(R′, νn(q − 1))

factors through the quotient Hq(A′
K ,Λn(q)); and the obtained homomor-

phism

Hq(A′
K ,Λn(q))→ Γ(R′, νn(q))⊕ Γ(R′, νn(q − 1))
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followed by the projection onto the factor Γ(R′, νn(q− 1)) does not depend

on π. Since A′ is ind-smooth over A and hence over OK , these claims are

reduced to [BK86, Theorem (1.4) (i)]. �

For m ≤ n, the endomorphisms of Λn and νn(q) given by multiplication

by pn−m factor as “pn−m”: Λm ↪→ Λn and “pn−m”: νm(q) ↪→ νn(q), so that

we have an exact sequence 0 → νm(q) → νn(q) → νn−m(q) → 0 ([Kat86,

(4.1.8)]). Later we will use the following.

Proposition 5.2. We have a commutative diagram

RqΨΛm(q) −−−→ νm(q)⊕ νm(q − 1)�“pn−m” “pn−m”

�
RqΨΛn(q) −−−→ νn(q)⊕ νn(q − 1),

where the horizontal morphisms are given by (5.1) for m and n.

Proof. Consider the following diagram (commutativity to be dis-

cussed soon):

(i∗Gm)⊗q ⊕ (i∗Gm)⊗q−1 −−−→ RqΨΛn(q) −−−→ νn(q)⊕ νn(q − 1)∥∥∥ �can can

�
(i∗Gm)⊗q ⊕ (i∗Gm)⊗q−1 −−−→ RqΨΛm(q) −−−→ νm(q)⊕ νm(q − 1).�pn−m

�“pn−m” “pn−m”

�
(i∗Gm)⊗q ⊕ (i∗Gm)⊗q−1 −−−→ RqΨΛn(q) −−−→ νn(q)⊕ νn(q − 1).

The left three horizontal morphisms (the symbol maps) are all surjective by

Proposition 5.1. The left two squares are commutative by the construction

of the symbol map. The total (or outer) square omitting the central term

RqΨΛm(q) is commutative since “pn−m” ◦ can = pn−m. From these, the

commutativity of the right lower square follows by a diagram chase. �

6. Mod p Case I: Filtrations and Duality for gr0

Let the notation be as in Theorem 3.4. Within this and the next sections,

we will prove Theorem 3.4 for the case n = 1. We fix a prime element π of
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K. Let q ≥ 0. Recall our notation Λ = Z/pZ. As in [BK86, (1.2)], we define

a filtration on the sheaf RqΨΛ(q) using the symbol map (5.2) as follows. For

m ≥ 1, define UmRqΨΛ(q) to be the subsheaf of RqΨΛ(q) generated by local

sections of the form {x1, . . . , xq} such that x1 − 1 ∈ πmi∗Ga. Let

grmRqΨΛ(q) =

{
RqΨΛ(q)/U1RqΨΛ(q) if m = 0,

UmRqΨΛ(q)/Um+1RqΨΛ(q) if m ≥ 1.

For m ≥ 1, define a morphism ρm from the direct sum of i∗Ga ⊗ i∗G⊗q−1
m

and i∗Ga ⊗ i∗G⊗q−2
m to UmRqΨΛ(q) by

x⊗ y1 ⊗ . . .⊗ yq−1 �→ {1 + xπm, y1, . . . , yq−1}

and

x⊗ y1 ⊗ . . .⊗ yq−2 �→ {1 + xπm, y1, . . . , yq−2, π}.

The reduction map and the dlog map define surjections

i∗Ga ⊗ i∗G⊗q−1
m � Ga ⊗G⊗q−1

m � Ωq−1
Y

and similar surjections with q − 1 replaced by q − 2. Let e be the absolute

ramification index of K and set e′ = pe/(p− 1).

Proposition 6.1.

(0) For m ≥ 1, the morphism ρm factor through

Ωq−1
Y ⊕ Ωq−2

Y → grmRqΨΛ(q).

(1) The morphism (5.1) for n = 1 is surjective and induces an isomor-

phism

gr0RqΨΛ(q) ∼= ν(q)⊕ ν(q − 1).

(2) If 1 ≤ m < e′ and p � m, then the morphism in (0) induces an

isomorphism

grmRqΨΛ(q) ∼= Ωq−1
Y .
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(3) If 1 ≤ m < e′ and p | m, then the morphism in (0) and the differential

d induce an isomorphism

grmRqΨΛ(q) ∼= dΩq−1
Y ⊕ dΩq−2

Y .

(4) If m ≥ e′, then

UmRqΨΛ(q) = 0.

Proof. This reduces to [BK86, Corollary (1.4.1)] by the same method

as the proof of Proposition 5.1. �

Proposition 6.2. The statement of Theorem 3.4 (2) is true for n = 1.

Proof. We may assume that K contains a primitive p-th root of unity

ζp since [K(ζp) : K] is prime to p. Then the result follows from Proposition

6.1. �

Thus we have the morphism

RΨΛ(s)⊗L RΨΛ(t)→ RΨΛ(r + 1)
Tr→ ν(r)[−r − 1]

stated in Theorem 3.4 (3) in the case n = 1, where s, t are integers with

s + t = r + 1. We want to prove that it induces a perfect duality. In the

rest of this section, we work with Λ = Z/pZ-coefficients. As above, we may

assume that ζp ∈ K. With the choice of ζp, we may identify all the Tate

twists Λ(q) with Λ in a compatible way. Let E = RΨΛ (∼= RΨΛ(q) for any

q). The above morphism may be written as

E ⊗L E → ν(r)[−r − 1],(6.1)

which is independent of the integers s, t. We have the above filtrations

UmHqE and graded pieces grmHqE for any q. For any s, define τ ′≥sE to be

the canonical mapping cone of the natural morphism U1HsE [−s] → τ≥sE
and τ ′≤sE to be the canonical mapping fiber of the natural morphism τ≤sE →
gr0HsE [−s]. We have distinguished triangles

U1HsE [−s]→ τ≥sE → τ ′≥sE ,
τ ′≤sE → τ≤sE → gr0HsE [−s],

gr0HsE [−s]→ τ ′≥sE → τ≥s+1E ,
τ≤s−1E → τ ′≤sE → U1HsE [−s],
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where the latter two are truncation triangles.

Proposition 6.3. Let us abbreviate R�omY as [ · , · ]. There exists

a unique set of morphisms

τ≥s+1E ⊗L τ ′≤tE → ν(r)[−r − 1],

τ ′≥sE ⊗L τ≤tE → ν(r)[−r − 1],

U1HsE ⊗L U1Ht+1E → ν(r)[1],

gr0HsE ⊗L gr0HtE → ν(r)

for integers s, t with s + t = r + 1 that reduce to (6.1) for s < 0 and give

morphisms of distinguished triangles from

U1HsE [−s]→ τ≥sE → τ ′≥sE(6.2)

to the shift [−r − 1] of

[
U1Ht+1E [−t− 1], ν(r)

]
→ [τ ′≤t+1E , ν(r)]→ [τ≤tE , ν(r)](6.3)

and from

gr0HsE [−s]→ τ ′≥sE → τ≥s+1E(6.4)

to the shift [−r − 1] of

[
gr0HtE [−t], ν(r)

]
→ [τ≤tE , ν(r)]→ [τ ′≤tE , ν(r)].(6.5)

Proof. First we show that

Hom
(
U1HsE [−s], [τ≤tE , ν(r)][−r − 1]

)
= Hom

(
U1HsE [−s], [τ≤tE , ν(r)][−r − 2]

)
= 0.

(6.6)

Since [τ≤tE , ν(r)] is concentrated in degrees ≥ −t = s − r − 1, the second

term is zero simply by a degree reason. By the same reasoning, the first

term is equal to

Hom
(
U1HsE ,�om(HtE , ν(r))

)
= Hom

(
HtE ,�om(U1HsE , ν(r))

)
.
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The sheaf U1HsE is a finite successive extension of locally free OY -modules

of finite rank by Proposition 6.1. Hence �om(U1HsE , ν(r)) = 0 by [Kat86,

Theorem 3.2 (ii)]. This proves (6.6).

Next we show that

Hom
(
gr0HsE [−s], [τ ′≤tE , ν(r)][−r − 1]

)
= Hom

(
gr0HsE [−s], [τ ′≤tE , ν(r)][−r − 2]

)
= 0.

(6.7)

The same reasoning as above shows that the second term is zero and the

first term is equal to

Hom
(
gr0HsE ,�om(U1HtE , ν(r))

)
since Ht(τ ′≤tE) = U1HtE . We have �om(U1HtE , ν(r)) = 0 by [Kat86,

Theorem 3.2 (ii)] since U1HtE is a finite successive extension of locally free

OY -modules of finite rank by Proposition 6.1. This proves (6.7).

Now we prove the proposition by induction on s. There is nothing to do

for s < 0. Fix integers s0, t0 with s0 + t0 = r+1. Assume that there exists a

unique set of morphisms as stated for s, t with s+ t = r+1 and s ≤ s0. We

want to prove the same for s = s0+1 and t = t0−1. By assumption, we have

a morphism from τ≥s0+1E to the shift [−r − 1] of [τ ′≤t0
E , ν(r)]. This gives

a morphism from the middle term of (6.2) to the middle term of the shift

[−r − 1] of (6.3) for s = s0 + 1. By (6.6), this morphism uniquely extends

to a morphism of distinguished triangles from (6.2) to the shift [−r − 1] of

(6.3) for s = s0 + 1. In particular, we have a morphism from τ ′≥s0+1E to

the shift [−r− 1] of [τ≤t0−1E , ν(r)]. This gives a morphism from the middle

term of (6.4) to the middle term of the shift [−r− 1] of (6.5) for s = s0 +1.

By (6.7), this morphism uniquely extends to a morphism of distinguished

triangles from (6.4) to the shift [−r− 1] of (6.5) for s = s0 + 1. This proves

the induction step, and hence the proposition itself. �

Proposition 6.4. The morphism gr0HsE⊗Lgr0HtE → ν(r) in Propo-

sition 6.3 gives a perfect duality.

Proof. The stated morphism factors through gr0HsE ⊗ gr0HtE . We

have gr0HsE ∼= ν(s)⊕ ν(s− 1) and gr0HtE ∼= ν(t)⊕ ν(t− 1) by Proposition

6.1. Hence the stated morphism gives rise to a pairing

ν(s)⊕ ν(s− 1)× ν(t)⊕ ν(t− 1)→ ν(r).
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By [Kat86, Theorem 3.2 (i)], it is enough to show that this pairing is given

by (
(ω, ω′), (τ, τ ′)

)
�→ ±ω ∧ τ ′ ± ω′ ∧ τ.(6.8)

We may assume that X = SpecA is affine and Y = SpecR has a p-base.

The composite of the natural surjection HsE⊗HtE � gr0HsE⊗gr0HtE and

the morphism gr0HsE ⊗gr0HtE → ν(r) is the morphism HsE ⊗HtE → ν(r)

induced by (6.1). Let R′ be the strict henselian local ring of a relatively

perfectly smooth R-algebra at a prime ideal. We want to describe our

pairing on R′-points. The map on R′-points of the morphism HsE ⊗HtE →
ν(r) is of the form

Hs(R′
ÂK
,Λ(s))⊗Ht(R′

ÂK
,Λ(t))→ Hr+1(R′

ÂK
,Λ(r + 1))→ Γ(R′, ν(r)).

Let A′ be an ind-smooth lifting of R′ over A. By Proposition 4.2, the above

map can be written as

Hs(A′
K ,Λ(s))⊗Ht(A′

K ,Λ(t))→ Hr+1(A′
K ,Λ(r + 1))→ Γ(R′, ν(r)).

The groups in the first term are generated by symbols by [BK86, Theorem

(1.4)]. The first map is given by concatenation of symbols and the second

described by the paragraph after [BK86, Corollary (1.4.1)]. By an easy

computation of symbols and dlog forms, we see that our pairing is indeed

given the formula (6.8). This proves the proposition. �

7. Mod p Case II: Duality for U1

We keep the notation from the last section. In particular, we fix a prime

element π of K and a primitive p-th root of unity ζp ∈ K, and we work

with Λ-coefficients. To treat the part U1HsE ⊗L U1Ht+1E → ν(r)[1] of

Proposition 6.3, it is convenient to use the Zariski topology in addition to

the étale topology.

Let YRPSZ be the category of relatively perfectly smooth Y -schemes en-

dowed with the Zariski topology. Let ε : YRPS → YRPSZ be the morphism

defined by the identity functor. Recall from [Kat86, (3.1.4), (3.1.5)] that

there are exact sequences

0→ ν(r)→ Ωr
Y,d=0

C−1−→ Ωr
Y → 0,

0→ ν(r)→ Ωr
Y

C−1−1−→ Ωr
Y /dΩ

r−1
Y → 0
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in YRPS, where C is the Cartier operator. Since r = r0 + d is the number of

elements in local p-bases of Y , we have Ωr+1
Y = 0, so Ωr

Y,d=0 = Ωr
Y and C is

an endomorphism of Ωr
Y . We can view ν(r) as a sheaf on YRPSZ, which is

the kernel of the endomorphism C − 1 on Ωr
Y . Define a sheaf ξ(r) on YRPSZ

to be the cokernel of the endomorphism C−1 on Ωr
Y over YRPSZ. The exact

sequence 0 → ν(r) → Ωr
Y

C−1→ Ωr
Y → 0 over YRPS shows that Rnε∗ν(r) = 0

for n ≥ 2 and R1ε∗ν(r) = ξ(r), and defines a morphism

Rε∗ν(r)→ ξ(r)[−1]

in D(YRPSZ,Λ). For anyM ∈ D0(YRPS,Λ), the isomorphism ε∗Rε∗M ∼= M ,

the sheafified derived adjunction and the above morphism define a morphism

Rε∗R�omYRPS
(M,ν(r)) ∼= R�omYRPSZ

(Rε∗M,Rε∗ν(r))

→ R�omYRPSZ
(Rε∗M, ξ(r))[−1]

in D(YRPSZ,Λ).

Proposition 7.1. The above morphism is an isomorphism.

Proof. We need to show that R�omYRPSZ
(Rε∗M,ν(r)) = 0. We may

assume that Y is affine with a p-base andM = Ga, and it is enough to show

that RHomYRPSZ/Y ′(Ga, ν(r)) is zero for any relatively perfectly smooth

affine Y -scheme Y ′. By [Blo86, Theorem (2.1)] and [GL00, Theorem 8.3], we

know that Zariski cohomology with coefficients in ν(r) is homotopy invari-

ant. Hence the natural morphism from RΓ(Y ′
zar, ν(r)) to RΓ((Am

Y ′)zar, ν(r))

is invertible for any m ≥ 1. This implies that the natural morphism from

RΓ(Y ′
zar, ν(r)) to RΓ((Am

Y ′)RP
zar , ν(r)) (the Zariski cohomology of the relative

perfection of Am
Y ′) is invertible for any m ≥ 1 since (Am

Y ′)RP is an inverse

limit of affine spaces over Y ′. Hence, by using Mac Lane’s resolution of

Ga as in the proof of Proposition 2.2, we know that the morphism from

RHomYRPSZ/Y ′(0, ν(r)) (which is zero) to RHomYRPSZ/Y ′(Ga, ν(r)) induced

by Ga → 0 is invertible. The result then follows. �

Proposition 7.2. Let M ∈ M(YRPS,Λ) be a sheaf admitting a finite

filtration whose graded pieces are isomorphic to relative perfections of co-

herent sheaves on Y locally free of finite rank. Note that Rε∗M = ε∗M .
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View M also as a sheaf on YRPSZ. Then

R�omYRPS
(M,ν(r)), Rε∗R�omYRPS

(M,ν(r)),

R�omYRPSZ
(M, ξ(r))[−1]

are all concentrated in degree 1.

Proof. This follows from [Kat86, Theorem 3.2 (ii)] and Proposition

7.1. �

Let E ′ = Rε∗E ; cf. the paragraph before [BK86, Theorem (6.7)].

Proposition 7.3. Assume that X = SpecA is affine and Y = SpecR

has a p-base. Let R′ be the local ring of a relatively perfectly smooth R-

algebra at a prime ideal. Then for any q, the stalk of the Zariski sheaf HqE ′
at the closed point of SpecR′ is given by Hq(R′

ÂK
,Λ(q)) (cohomology in the

étale topology).

Proof. The stalk is given by Hq(R′
et, i

∗Rj∗Λ(q)). Since the pair

(R′
Â
, R′

Â
pK) is henselian, this group is isomorphic to Hq(R′

Â
, Rj∗Λ(q)) by

Gabber’s affine analog of proper base change [Gab94, Theorem 1]. This

final group is isomorphic to Hq(R′
ÂK
,Λ(q)). �

Define a filtration on HqE ′ in the same way as in the case of HqE . As

in Proposition 6.1, we have the following.

Proposition 7.4.

(1) We have

gr0HqE ′ ∼= ν(q)⊕ ν(q − 1).

(2) If 1 ≤ m < e′ and p � m, then

grmHqE ′ ∼= Ωq−1
Y .

(3) If 1 ≤ m < e′ and p | m, then

grmHqE ′ ∼= dΩq−1
Y ⊕ dΩq−2

Y .
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(4) We have

U e′HqE ′ ∼= Ωq−1
Y /(1 + aC)Ωq−1

Y,d=0 ⊕ Ωq−2
Y /(1 + aC)Ωq−1

Y,d=0,

where a ∈ k is the residue class of pπ−e.

(5) If m > e′, then

UmHqE ′ = 0.

Proof. Apply Rε∗ to Proposition 6.1, use Proposition 7.3 instead of

4.2 and argue as in [BK86, Theorem (6.7)]. �

For the proof of Theorem 3.4, we may assume that the element a above

has a (p − 1)-st root in k. Then 1 + aC in the statement may be replaced

by C − 1.

Applying Rε∗ to (6.1), we have morphisms

E ′ ⊗L E ′ → E ′ → Rε∗ν(r)[−r − 1]→ ξ(r)[−r − 2].

The morphism E ′ → ξ(r)[−r − 2] from the second term to the fourth term

is also given by

E ′ → Hr+2E ′[−r − 2] = gre
′
Hr+2E ′[−r − 2]→ ξ(r)[−r − 2]

using Proposition 7.4. For integers s, t with s + t = r + 2, we thus have a

pairing

HsE ′ ×HtE ′ → Hr+2E ′ → ξ(r).(7.1)

Proposition 7.5. The pairing (7.1) restricted to U lHsE ′ × UmHtE ′
is zero if l+m > e′ and hence induces a pairing grlHsE ′× grmHtE ′ → ξ(r)

for l +m = e′. The induced morphism

grlHsE ′ → R�omYRPSZ
(grmHtE ′, ξ(r))

is an isomorphism if l,m > 0.
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Proof. The morphismHsE ′×HtE ′ → Hr+2E ′ takes U lHsE ′×UmHtE ′
to U l+mHr+2E ′ by Proposition 4.2 and [BK86, Lemma (4.1)]. The first

assertion follows. For the second, consider the pairing between Ωs−1
Y and

Ωt−1
Y with values in Ωr

Y /dΩ
r−1
Y given by the wedge product if p � m and the

pairing between dΩs−1
Y ⊕dΩs−2

Y and dΩt−1
Y ⊕dΩt−2

Y with values in Ωr
Y /dΩ

r−1
Y

given by (dω, dω′) × (dτ, dτ ′) �→ ω ∧ dτ ′ + ω′ ∧ dτ if p | m. Consider the

composite of them with the natural surjection Ωr/dΩr−1
Y � ξ(r). With the

isomorphisms in Proposition 7.4, we have a pairing grlHsE ′ × grmHtE ′ →
ξ(r) for l +m = e′. This pairing agrees with the stated pairing up to an

F×
p -multiple if l,m > 0 by the same argument as [BK86, Lemma (5.2)].

With this description and [Kat86, Theorem 3.2 (ii)], we see that the stated

induced morphism is an isomorphism. �

Corollary 7.6. Let s+ t = r+2. The pairing (7.1) induces a pairing

between U1HsE ′/U e′HsE ′ and U1HtE ′/U e′HtE ′ with values in ξ(r). The

induced morphism

U1HsE ′/U e′HsE ′ → R�omYRPSZ

(
U1HtE ′/U e′HtE ′, ξ(r)

)
is an isomorphism.

Proposition 7.7. Let s+ t = r + 2. The morphism

U1HsE ⊗L U1HtE → ν(r)[1]

in D(YRPS,Λ) defined in Proposition 6.3 gives a perfect duality.

Proof. Let M = U1HsE ′/U e′HsE ′ and N = U1HtE ′/U e′HtE ′. We

have ε∗U e′HsE ′ = 0 and ε∗UmHsE ′ = UmHsE for any m. Hence ε∗M =

UmHsE and ε∗N = UmHtE . SinceM and N are finite successive extensions

of locally free sheaves on Y of finite rank by Proposition 7.4, we have M
∼→

Rε∗ε∗M and N
∼→ Rε∗ε∗N . The morphism ε∗M ⊗L ε∗N → ν(r)[1] in

question induces a morphism M ⊗L N → Rε∗ν(r)[1]→ ξ(r) by adjunction,

which agrees with the pairing in Corollary 7.6. Hence the diagram

Rε∗ε∗M −−−→ Rε∗R�omYRPS
(ε∗N, ν(r))[1]∥∥∥ ∥∥∥

M −−−→ R�omYRPSZ
(N, ξ(r))
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is commutative, where the right vertical isomorphism is from Proposition

7.1. The lower horizontal morphism is an isomorphism by Corollary 7.6.

Hence the upper horizontal morphism is also an isomorphism. Its pullback

ε∗M → R�omYRPS
(ε∗N, ν(r))[1] is thus an isomorphism. This gives the

result. �

Proposition 7.8. The statement of Theorem 3.4 (3) is true for n = 1.

Proof. This follows from Propositions 6.3, 6.4 and 7.7. �

8. General Case

Let n ≥ 1 and s, t with s+ t = r + 1.

Proposition 8.1. The statement of Theorem 3.4 (2) is true.

Proof. The distinguished triangle RΨΛn−1(s) → RΨΛn(s) →
RΨΛ1(s) and induction reduce the statement to the case n = 1 already

proven in Proposition 6.2. �

Hence we have a canonical morphism RΨΛn(s) ⊗L RΨΛn(t) →
νn(r)[−r−1] as explained in Theorem 3.4. We want to prove that it induces

a perfect duality as stated.

Denote R�om(Λn)YRPS
by [ · , · ]n. For m ≤ n, the exact inclu-

sion M(Y,Λm) ↪→ M(Y,Λn) induces a triangulated functor D(Y,Λm) →
D(Y,Λn). We denote it by θ, but it is frequently omitted from the nota-

tion, and the image of an object M by θ is simply denoted by just M . Set

Esn = RΨΛn(s)[s]. Denote the morphism Tr: Er+1
n → νn(r) by Trn. Hence

we have canonical morphisms

Esn ⊗L E tn → Er+1
n

Trn→ νn(r).

Proposition 8.2. For m ≤ n, consider the composite of the mor-

phisms

Esm → [E tm, Er+1
m ]m

θ→ [E tm, Er+1
m ]n

“pn−m”→ [E tm, Er+1
n ]n

Trn→ [E tm, νn(r)]n
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and the composite of the morphisms

Esm → [E tm, Er+1
m ]m

Trm→ [E tm, νm(r)]m
θ→ [E tm, νm(r)]n

“pn−m”→ [E tm, νn(r)]n.

They are equal. If the statement of Theorem 3.4 (3) is true for m, then

they are isomorphisms.

Proof. That they are equal follows from Proposition 5.2. The com-

posite

[E tm, νm(r)]m
θ→ [E tm, νm(r)]n

“pn−m”→ [E tm, νn(r)]n

is an isomorphism by [Kat86, (4.2.4)]. Hence the second statement fol-

lows. �

Proposition 8.3. The diagram

Es1 −−−−→
“pn−1”

Esn −−−→ Esn−1� � �
[E t1, νn(r)]n −−−→ [E tn, νn(r)]n

“p”−−−→ [E tn−1, νn(r)]n

is a morphism of distinguished triangles, where the vertical morphisms are

the morphisms of Proposition 8.2 for m = 1, n, n − 1 from the left to the

right.

Proof. Applying RΨ[s] to the morphism of distinguished triangles

Λ1(s) −−−−→
“pn−1”

Λn(s) −−−−→ Λn−1(s)� � �
[Λ1(t),Λn(r + 1)]n −−−−→ [Λn(t),Λn(r + 1)]n

“p”−−−−→ [Λn−1(t),Λn(r + 1)]n,

we have a morphism of distinguished triangles

Es1 −−−−→
“pn−1”

Esn −−−−→ Esn−1� � �
[Et1, Er+1

n ]n −−−−→ [Etn, Er+1
n ]n

“p”−−−−→ [Etn−1, Er+1
n ]n.
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The morphism Trn gives a morphism of distinguished triangles from the

lower triangle of this diagram to the lower triangle of the stated diagram. �

Proposition 8.4. The statement of Theorem 3.4 (3) is true.

Proof. This follows from Propositions 7.8, 8.2 and 8.3 by induction. �
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[Ill94] Illusie, L., Autour du théorème de monodromie locale, Astérisque 223
(1994), 9–57. Périodes p-adiques (Bures-sur-Yvette, 1988).

[ILO14] Illusie, L., Laszlo, Y. and F. Orgogozo, editors, Travaux de Gabber
sur l’uniformisation locale et la cohomologie étale des schémas quasi-
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