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ABSTRACT

Building 3D shape models of interesting targets and getting their localiza-
tion are very important fundamental tasks in the fields like digital culture
heritage, robotics, mixed reality, medical application and so on.

Most commonly used sensors for 3D modeling are camera and laser
range sensor. Compared with camera, range sensor has the following ad-
vantages: 1. It can easily get direct and highly accurate 3D data. 2. Range
data is stable, whereas the 3D modeling techniques based on 2D cam-
eras are much more sensitive to illumination, shadows, scale and pose.
However, range sensor costs a relatively long time of data acquisition.
This causes data distortion and cannot be ignored especially in the case
of continuously gathering data on a moving platform.

Existing common solutions to this problem are either taking “stop-
scan-go” strategy to avoid distortion or correcting the sensor motion
using secondary sensors like GPS, inertial sensor, camera or even another
range sensor. Some other researches apply linearization, discretization
and other specified constraints to the problem to achieve compromised
results.

This thesis focuses on efficient and accurate 3D shape reconstruction
under a moving sensing system only with a single range sensor. Different
from previous solutions, the proposed system works in an efficiently
continuous manner. We don’t have to stop the platform to obtain an
stationary scan. Sensor can move under a reasonable motion mode and
simultaneously scan the target or environment. Data distortion caused
by continuous movement will be rectified. This continuous manner is
much more efficient and attractive in practical applications.

According to the different prior conditions of targets, we divide the
problem to two categories. The first one is based on the assumption that
the target shape model is known. The second one is focusing on the
unknown targets.

For the known targets, since there is no need to build 3D model for the

object, our interesting mainly focus on how to accurate localize them. We



propose a method which utilizes the prior shape model to estimate sensor
motion. Based on the estimated motion model, distorted measurements
can be rectified and accurate localization of targets can be achieved. As an
application, we build a real-time pile driver position system using laser
range finder. The detail is described is Chapter 2.

For the unknown targets, we develop a polynomial fitting method
based on corresponding points to estimate 6 DOF motion parameters of
a moving range sensor. The 3D model can be reconstructed according
to highly accurate sensor motion estimation. When using a 2D scanning
sensor instead of a 1D scanning sensor, the same region is measured
in multiple times when the sensor moves. We will show that we can
reconstruct the sensor motion and the scene from only the measured
coordinates and times of the same set of points. This reconstruction is in-
trinsic, which relies on only the intrinsic properties of the distortion, and
not relying on the extrinsic information from other sensors. Firstly, for
robust estimating sensor movement, we model the sensor motion using
polynomial with respect to time. Secondly, to build simple representation
of common motion like uniform circular motion or rectilinear motion, we
introduce twist coordinates for the representation of rigid body transfor-
mation. This method doesn’t need the secondary sensor and is not limited
with specific environment features. Without linearization of constraint
and discretization of trajectory, distorted data is accurately rectified. De-
tails are in Chapter 3.

To obtain the corresponding constraints described in chapter 3, we
propose a 3D affine invariant shape feature which is designed for the
deformed 3D data collected by moving range sensor. Firstly two Morse
function which measure the object shape under different conditions are
designed. A disconnected graph based method is proposed to extract sta-
ble affine invariant region feature in multiple scale. Applied a moment-
based affine transformation, the deformed region feature can be normal-
ized. A multiple scale Spin Image is designed to describe the normalized

region feature. The synthetic data gives robust feature detection and

i



matching results. Details are presented in Chapter 4.
Finally, we present our conclusions and summarize our possible future

works in Chapter 5.
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Chapter 1

Introduction

1.1 Motivation

Building accurate 3D models of interesting targets is a very important
fundamental task in the fields like using range finder in digital culture her-
itage, robotics, mixed reality, medical application and so on. [4] [6] [64] [44]

When investigating 3D reconstruction, it is necessary to describe the
kind of data being considered. Most commonly used sensors for 3D
modeling are camera and laser range sensor. Compared with camera,
range sensor has the following advantages: 1. It can easily get direct and
highly accurate 3D data. 2. Range data is stable, whereas the 3D modeling
techniques based on 2D cameras are much more sensitive to illumination,
shadows, scale and pose. However, it ususally takes range sensors a
relatively long time of data acquisition, e.g., Vivid 9i takes 30 seconds for
one 3D scan. This causes data distortion and cannot be ignored especially
in the case of continuously gathering data on a moving platform with
relatively fast speed.

The way of continuously obtaining range data is obviously more
efficient and practical in actual applications. This thesis challenges the

problem of 3D shape reconstruction by dynamic sensing using a range



2 Chapter 1 Introduction

Sensor.

1.2 Related Work

1.2.1 3D Reconstruction from Range data

For example, to digitize large-scale culture heritage, [5] has used laser
range sensor mounted on flying balloon to cover the whole site. The
uncontrollable movement of balloon causes distortions on the data. Uti-
lizing the overlapped areas with another range sensor fixed on the ground,
Banno and Ikeuchi adopt polynomial fitting to approximate the sensor
motion parameters, then align and rectify distorted data.

Another typical issue coming from robotics field is to build a 3D map
of complex non-flat terrain. Although range sensors can afford accurate
3D point clouds of the environment, relatively slow data acquisition rate
compared with fast vehicle speed leads to distorted data and difficulties
for alignment. Existing common solutions to this problem are either tak-
ing ”stop-scan-go” strategy [29] [50] to avoid distortion or correcting the
sensor motion using secondary sensors [26] [2] like GPS, inertial sensor,
camera or even another range sensor. To achieve more practical and ef-
ticient system, Bosse and Zlot [7] proposed a 3D scan-matching method
varied from the ICP algorithm, in which sensor trajectory is discretized
and constraint are linearized to deal with continuously collected data
from a moving vehicle.

Harrison and Newman [23] have made effort to utilize the vertical
plane feature in man-made environment to refer low amplitude roll, pitch
and yaw movements of vehicle moving on uneven ground.

Structured light range sensors with rolling shutter, like Microsoft
Kinect, have the similar data distortion problem when it is used on a
moving platform. In [48], Ringaby and Forssen proposed a scan recti-
fication method by estimating 3D camera trajectory. Taking advantages

from the NIR images and the limited range of the sensor, their problem is
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easier than the one which uses range data as the single source of data.

Another related line of work is rectification of rolling shutter video.
This problem has been studied, and solved to some extent [3, 17]. What
is different here is that in range sensor systems we have access to depth
values in all pixels, and these allow us to robustly solve for the full 3D
sensor trajectory, instead of resorting to affine motion [3], or rotation only
models [17].

1.2.2 3D Shape Features

Finding correspondence between 3D shapes is very important and
fundamental task in the field of shape analysis. A lot works have been
done on this problem. Classical rigid alignment includes methods based
on sampling and verifying candidate transformation, or by applying the
iterated closest point algorithm or its variations [69, 49]. More recent
works focus on shapes with large variations. There are some successful
works about non-rigid registration of surfaces [8, 40, 67, 18], which usually
consider the whole shape as a single feature and can not handle with
large missing of data. Several recent works also deal with matching
approximately isometric shapes [32, 62].

In the category of using shape features to find correspondence, rep-
resentative points are selected from the shapes and shape descriptors are
calculated to construct correspondence by comparing similarity between
the descriptors. 3D shape features can be categorized into global feature
and local feature based methods [58]. Global features characterize the
whole 3D shape into a single feature. Local features work from the neigh-
borhood of points on the surface and characterize each small local patch
into a feature.

Among the global shape features: Ohbuchi et al. [41] investigate
shape histograms that are discretely parameterized along the principal
axes of inertia of the model. Osada et al. [42] introduce and compare

shape distributions, which measure properties based on distance, angle,



4 Chapter 1 Introduction

area and volume measurements between random surface points. Taubin
[59] proposed Implicit Polynomial feature that first fits the shape with
implicit polynomial fitting, and then extract rotation invariant feature
from polynomial coefficients.

While global feature is both efficient in the aspects of time and storage;
and is generally used in shape retrieving, it has obviously drawbacks
that the feature cannot stay invariant on partial shape. Local feature
techniques work from the neighborhood of points on the surface and
characterize each small local shape patch into a feature. There are many
tasks and applications based on the partial shape found the range finder,
and thus, there are more local shape feature techniques than global feature
techniques.

Among the local shape feature: Gelfand et al. [19] use a small 3D
ball which centers at a given point on the shape in order to find the
intersection space that insides both the 3D ball and the 3D shape; and
then calculate the integration of the volume of the space. Johnson and
Hebert studies the Spin Image [27] that project the local shape patch on
to a spinning small image window and then characterize the small image
window. Zaharescu et al. [65] extend the popular 2D image feature 2D
DOG (Difference of Gaussian) on to 3D mesh shape. Sun et al [56] start
from thermal physics that considers the 3D shape as an heat conductor
and propose the Heat Kernel Signature which is a local shape feature
invariant to non-rigid deformations.

All the methods mentioned above are considering 3D object as rigid.
There are also many works on non-rigid invariant shape feature [45, 54,
66, 63, 67, 62, 51, 68, 56],

In the case of deformation coming from relative motion between range
sensor and objects, it has its own properties. It usually includes large
amount of missing data, due to occlusion or change of scene or view
points. The shape might be deformed significantly between scans and
the deformation doesn’t keep the geodesic distance invariant. Thus we

consider local shape feature is better choice for this problem.



1.2. Related Work 5

Although we focus on 3D data in this research, there are plenty of
excellent works in 2D image feature which can also give us inspira-
tions [34, 37, 37, 60, 28].

e MSER detector

Maximally Stable Extremal Regions (MSER) have been proposed by
Matas [36]. A Maximally Stable Extremal Region is a connected
component of an appropriately thresholded image. The word “ex-
tremal” refers to the property that all pixels inside the MSER have
either higher (bright extremal regions) or lower (dark extremal re-
gions) intensity than all the pixels on its outer boundary. The “max-
imally stable” in MSER describes the property optimized in the
threshold selection process.

e SIFT descriptor
Scale Invariant Feature Transform (SIFT), proposed by Lowe [35],
is a gold standard for evaluation of feature descriptor. It combines
a scale-invariant region detector (DoG detector) and a descriptor
(SIFT descriptor) based on the gradient distribution in the detected
regions. SIFT descriptor can be applied alone on other kinds of
feature regions for image matching. The descriptor is represented

by a 3D histogram of gradient locations and orientations.

Before computing the feature vector, the orientation of the feature
region, which is covariant to the image rotation, should be assigned.
An orientation histogram is formed from the gradient orientations
of sample points within a region around the key point. The orien-
tation histogram has 36 bins covering the 360 degree range of ori-
entations. Each sample added to the histogram is weighted by its
gradient magnitude and by a Gaussian-weighted circular window.
The magnitude, m(x, y), and orientation, 0(x, y), are precomputed

using pixel differences:

m(x, y) = (L(x+1,y)~Llx=1, 1)’ +(Lx, y+1)~Llx,y-1)*)"* (1.1)
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0(x,y) = tan” (L(x, y+1) - Llx,y=1)/(Lix+ 1 y)-L(x=1y))) (1.2)

The several highest bins (higher than 80% of the highest bin) in
the histogram are selected as orientation, to guarantee the stability
of matching. Then the normalized feature region is rotated by the

degree of orientation.

SIFT descriptor is a 3D histogram of gradient location and orienta-
tion, where location is quantized into a 4 X 4 location grid and the
gradient angle is quantized into eight orientations. The resulting
feature vector is of dimension 128. To obtain illumination invari-
ance, the descriptor is normalized by the square root of the sum of

squared components.

1.3 Summary of Contributions

This thesis challenges the problem of 3D reconstruction under a mov-
ing sensing system only with a single range sensor. Different from ”stop-
scan-go” strategy, our system works in an efficiently continuous manner.
We don’t have to stop the platform to obtain an stationary scan. Sensor
can move under a reasonable motion mode and simultaneously scan the
target or environment. Data distortion caused by continuous movement
will be rectified. This continuous manner is much more efficient and

attractive in practical applications.

e We propose a method which utilizes the prior shape model to es-
timate sensor motion. Based on the estimated motion model, dis-
torted measurements can be rectified and accurate localization of
targets can be achieved. As an application, we build a real-time pile

driver positioning system using laser range finder.

e We propose a polynomial fitting method based on corresponding

points to estimate 6 DOF motion parameters of a moving range
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sensor. The 3D model can be reconstructed according to a highly
accurate sensor motion estimation. When using a 2D scanning sen-
sor instead of a 1D scanning sensor, the same region is measured in
multiple times when the sensor moves. We will show that we can re-
construct the sensor motion and the scene from only the measured
coordinates and times of the same set of points. This reconstruc-
tion is intrinsic, which relies on only the intrinsic properties of the
distortion, and not relying on the extrinsic information from other
sensors. Firstly, for robust estimating sensor movement, we model
the sensor motion using polynomial with respect to time. Secondly,
to estimate the parameters of sensor motion model, we utilize the 3D
corresponding points extracted from the overlapped parts between
consecutive frames. This method doesn’t need the secondary sen-
sor and is not limited with specific environment features. Without
linearization of constraint and discretization of trajectory, distorted

data is accurately rectified.

To obtain corresponding points in distorted data , we propose a
novel 3D affine invariant feature detection and matching method
which is designed for the deformed 3D data collected by moving
range sensor. Firstly a Morse function which measures the object
shape is designed. A level-set based method is proposed to extract
stable affine invariant region feature in multiple scale. Applied a
moment-based affine transformation, the deformed region feature
can be normalized. A multiple scale Spin Image is designed to

describe the normalized region feature.

1.4 Overview of the Thesis

Chapter 2 presents the first contribution of this thesis, a real-time pile

driver positioning system.

Chapter 3 presents the second contribution of this thesis, 3D shape

reconstruction using a moving range sensor based on estimation of sensor
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motion.

Chapter 4 presents the third contribution of this thesis, a 3D affine
invariant shape feature designed for distorted data from moving range
Sensor.

Chapter 5 summarizes the thesis, clarifies the contributions and dis-

cusses a few directions for future research.



Chapter 2

Dynamic Sensing with Known
Targets

— A Real-time Pile Driver Positioning System using
Laser Range Finder

2.1 Introduction

For the known targets, since there is no need to build 3D model for the
object, our interesting mainly focus on how to accurate localize them. We
propose a method which utilizes the prior shape model to estimate sensor
motion. Based on the estimated motion model, distorted measurements
can be rectified and accurate localization of targets can be achieved.

Assume targets are rigid moving objects. Assume that range sensor
is static to the absolute reference frame. Let S be a implicit function in
object coordinate system, describing the surface of the target. It means

that for any point p on the object surface, there is:
S(p)=0 (2.1)

Let G(t) be a general smooth function describing the motion of the
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target relative to the sensor. Given a set of range sensor measurement
points {x} of the target under the senor reference frame, with measuring

time t of each point, its corresponding object coordinates p satisfy:
p(t) = G(t) - x (2.2)

Since p(t) are points on the target surface, they should satisfy Eq. 2.1.
We thus can build a general cost function as the sum of square of errors

of points satisfying Eq. 2.1:

K
Y IS(GE) - x)IP (2.3)
i=1

where K is the number of points.

We can deduce the target motion G(t) by minimizing the cost function
Eq. 2.3. How to choose the parameterization of G(t) depends on the task
at hand. It could differ from the simple linear modeling to more complex
polynomial approximation or spline curves.

As an application, we build a real-time pile driver position system

using laser range finder. Details are in following sections.

2.2 Application Background

Pile driver is a mechanical device used in the construction field. It
drives piles into soil to provide foundation support for buildings or other
structures. In the process of pile driving, a marker is first placed at the
designed pile point. A hole is then dug at this marked point and a pile is
driven in to it.

The problem during this procedure is that the marker couldn’t be seen
after starting drilling the hole. The pile needs to be kept at the desired
position manually. This manual way requires well trained operators and
long operation time and may degrade the accuracy. The cost is high
and the procedure is not safe for workers. This is why a well designed

automatic positioning system is needed.
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The problem is caused by the non-real-time property of current sur-
veying equipments. In this paper, inspired by positioning techniques in
the robotic field, we propose a novel pile driver positioning system, as
shown in Fig.2.1. Instead of measuring preset marker on ground in pre-
process work, the proposed system realizes real-time accurate tracking of
pile position, which can be used for navigation of pile driver. Compared
to the manual way, the pre-process work and additional workers during
the process can be saved and it becomes easier to evaluate a construction
error.

On one hand, in modern construction field, there are two main sur-
veying equipments: total station and global satellite positioning system.
Total station is the most widely used one. It can provide extremely pre-
cise measurement of a single point as long as a direct line of sight can
be established between the point and the equipment. Its surveying pro-
cedure usually requires another worker to hold the prism reflector. The
other surveying tool, global satellite positioning system, like GPS, is not
limited to the line of sight observation, but not stable at the areas where
high buildings or mountains block the signal. It needs a relatively long
time to initialize in order to get an reliable and stable measurement.

On the other hand, in the research field of robotics, position mea-
surement of specified objects such as people or mobile robots is also an
important task. Many real-time positioning systems using distributed de-
vices including cameras [21], [55], [38], Laser Range Finders (LRF) [1], [14]
and ultrasound sensors [33], [9] have been proposed. For applications in
the construction field, LRFs can scan a plane and get multiple measure-
ments in a very short time interval, while total staion or GPS can only get
one measurement with a long operation time. LRFs have already been
used for real-time position measurement in large outdoor areas [70]. It is
considered that a position measurement system using LRFs can also be
applied to survey tasks at construction sites [31], [13], [57], [53]. Unlike ul-
trasound sensor, LRF is easy to deploy in the construction site. Compared
to camera, LRF is more stable and accurate even under poor illumination
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Figure 2.1: System Overview: LRF scans the construction workspace,
estimates the position of the pile and shows it on the display terminal to
help the worker operate the pile driver. The red points are measured data
points of the pile driver and orange circle stands for the estimated pile
position. The dark circles stand for the designed pile positions.
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condition. Camera-based positioning system achieves high accuracy only
under a small scale and well controlled industry environment, since it
suffers from the complexity of scene and change of illumination. This
makes camera-based positioning systems less reliable in an unstructured
construction site. We consider LRF as the most suitable sensor, for its ad-
vantages such as real-time, relatively high accuracy, large covering area,
low noise and simple installation [24], [25].

As shown in Fig.2.2, our proposed pile driver positioning system
consists of three parts: data acquisition from LRF, position estimation
process and visualization of results. It first gathers real-time 2D LRF data
of scene. While waiting for the next frame of data from LRE, pile position
is estimated based on the obtained data. The estimated pile position is
shown in the map together with the designed one to assist workers with
the pile driving operation. The whole procedure is completed in very
short time period, which is mainly determined by data acquisition rate of
LRF and CPU speed. For this reason, the proposed system can be used in
real-time.

In the position estimation process, target detection is a very important
step. As shown in Fig.2.1, in the typical application scene, besides cylin-
drical pile, there may also be other shaped objects near to the target in
the observation range of the LRF. An effective target detection algorithm
is required to identify the pile from other objects. LRF data of pile should
be part of a circle since the data scanned from the LRF is the contour
of object. Inspired by RANSAC and Hough Transform, we propose an
algorithm of circle detection for positioning system.

After extracting the contour of cylindrical targets from raw data, we
use the Maximum Likelihood Estimation (MLE) to fit the arc shaped
contour to a circle with a given radius to estimate the circle center. The
orientation-invariant property of the circle guarantees that from any view
direction, the arc-shaped contour obtained from LRF always stands for
the same center point of the reference target.

We give a description of the system configuration in Section ??. The
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Figure 2.2: Process flow graph

detailed algorithms of position estimation are in Section ??. Section ??
are experiments on both simulation data and real data, followed by the

conclusion in Section ??.

2.3 Configuration of A Real-time Pile Position-
ing System

The configuration of the proposed system is shown in Fig.2.3. In the
system, an LRF is set at a position higher than human height by using a
tripod stand and kept horizontal by using a leveling system. The LRF is
mounted on a pan unit (as shown in Fig.2.4), which is used to improve
the angular resolution of the LRFE. The data acquired from the LRF are
sent to a processing computer in which the center positions of cylindrical
piles are estimated. Then, the estimated center positions are sent to mobile
display devices through a wireless network. Workers can easily get access
to visualized information about the current measured positions and the
designed positions.

In the data acquisition module, for the purpose of getting more data
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Figure 2.3: System configuration

Table 2.1: Specification of UTM-30LX

Model Number UTM-30LX

Light source Laser diode A = 870[nm]

Measurable area 0.1[m] ~ 30[m], 270[deg]
0.1[m] ~ 10[m]: £+ 30[mm]

Measurement accuracy
10[m] ~ 30[m]: + 50[mm]

Angular resolution 0.25[deg]

Scan time 25[msec]/scan
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Pan Uni

Figure 2.4: A combination of LRF and pan unit

points of the object to decrease the affect of noise, a pan unit is combined
with the LRF to improve the angular resolution. As shown in Fig.2.4,
LRF is rotated by a small angle after each scan. The relatively low an-
gular resolution of LRF is improved to the same as pan unit with higher
resolution. In our system, we use the type of UTM-30LX LRF with its
specification described in Table 2.1. Its original angular resolution is 0.25
degrees. Here we mount the LRF on a SPU-01 pan unit which has a higher
angular resolution of 0.015 degrees. We can get much denser data since
the resolution can be improved 17 fold at most. The system works in a
data acquisition frequency between 2Hz — 40Hz. The working speed of
pile driver is between 0 — 2 X 10%mm/s. The speed in the final stage of the
piling procedure, which especially needs high positioning precision, is
around 0 —50mm/s. For this slow movement, the system data acquisition
frequency is satisfied for the real-time requirement of the application of

assistance of pile driver.
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2.4 Position Estimation Based on Target Shape
Model

There are four main steps in the process of position estimation after
obtaining raw data from LRF. The background of the scene is assumed
to be static. Firstly moving parts of data are extracted as foreground ob-
jects using a background subtraction algorithm. Then all the foreground
data points are clustered using a neighborhood verification method. The
resulted data set is denoted as S. Section 2.4.1 describes how to detect
circle target from S using the proposed algorithm, which is inspired by
RANSAC and Hough transform. Section 2.4.2 is about how to estimated

the circle center with a MLE algorithm using detected arc data.

2.4.1 Pile Detection

RANSAC [16] is the abbreviation of “random sample consensus”. Its
basic idea is that there should be a good subset which is composed of
only inliers. The procedure of RANSAC is that a subset is randomly
sampled from the data, a hypothesis of the model is established from the
subset, the hypothesis is tested on all the data, and the number of data
acceptable to the model within the predetermined threshold is counted.
After iterations of this procedure, the model that fits to the maximum
number of data is determined as the answer. The disadvantage is that
it requires thresholds predetermined depending on the problem. In our
application, because of the presence of large noise and objects with similar
shape to target, RANSAC breaks down.

Hough transform [12] is an algorithm which makes a vote on all
possible set of parameters for each data point and count the parameter
set with the most votes as “winner”. According to the requirement of
estimation accuracy, it usually needs a huge number of accumulator units
and is computational expensive. Its voting procedure helps to find the

most possible result.
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Inspired by RANSAC and the voting procedure of Hough transform,
we propose the following circle detection algorithm, utilizing the prior
knowledge of the circle radius. Fig.2.5 shows the flow chart of the algo-
rithm.

We assume that the pile is perpendicular, and the cross section is
modeled by a circle:

(x—a)*+ (y - b)?* =1~ (2.4)

The proposed algorithm works using the following steps:

Step 1. In a data cluster S, a random subset of data is chosen to
calculate position a4, b and radius r in Eq.2.4. Because there are three
unknowns in Eq.2.4, three non-colinear points, can determine one set of
parameters of a circle. So the number of points contained in the randomly
chosen subset of data is determined to be three.

Step 2. As the radius of the pile R is given in advance, a threshold
T, is used to eliminate any invalid model. The current hypothesis will be

rejected, if this inequality is not satisfied:
IR—7 <T. (2.5)

The reference target used in this positioning systemis cylinder, so from
the viewpoint of LRF, the shape of the contour of target is convex, which
means the center of object can not be observed by sensor. Utilizing this
assumption, another constraint to get rid of false model can be described
as Eq.2.6:

(ki - xprr + ti = Yire) (ki - Xnew + ti = Ynew) <0, (2.6)

where Iy = ki -x +t;,i = 1,2,3 are lines determined by two points
from the current subset of data. (xrr, yirr) is the position of LRF and
Prew = (Xpew, Ynew) is the currently calculated center position (a, b). Equation
2.6 means that the LRF and center of target should be on a different side
of the line determined by points from the data subset. This constraint can
ensure the obtained model is convex.

If constraints Eq.2.5 and 2.6 are satisfied at the same time, then the cur-

rently calculated center position P, is considered as a center candidate,
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Figure 2.5: Flow chart of the proposed positioning algorithm based on
circle detection and fitting .
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otherwise we just ignore this model and go back to Step 1.
Step 3. Add the new position candidate into candidates cluster by

using the rule described below:
”Pnew - Pij” < Tc, (27)

where P;; is arbitrary element of the i" cluster, j is the index of the element
in the " cluster, and T. is the threshold to determine whether a position
candidate belongs to a cluster or not.

If any element of the i'" cluster can satisfy Eq.2.7, then P, is classified
into the i candidate cluster.

Step 4. Each center candidate is considered as a vote to the candidate
cluster. If the number of votes of current added cluster, N, has exceeded
the threshold T, then this cluster is chosen to be a hypothetical model, as
shown in Eq.2.8

N, > T,. (2.8)

Here we define Cj, the center of the hypothetical model, by the average

value of all centers in this cluster
1 n
Cn=— Z Py,
n &
j=1

where 7 is the total number of votes in i cluster.

Step 5. All other points in this data set are tested by the hypothet-
ical model determined by C, and the given radius R. If a point fits the
model well enough, which means Eq.2.9 is satisfied, it is considered as a
hypothetical inlier.

IC = Pl = R| < Ta, P; €5. (2.9)

If N;, the number of points evaluated as inliers, is larger than the given
threshold T}, as described in Eq.2.10

N; > T, (2.10)

then this model is used as an initial model of the circle fitting by MLE

algorithm, otherwise go back to step 1.
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Step 6. All hypothetical inliers are used to re-estimate the model by
MLE algorithm.

Step 7. After obtaining the estimated center position from MLE al-
gorithm, the refined result C, is compared to previous one C, by using
Eq.2.11

IC, — Gl < T (2.11)

If distance between C, and C, is less than a given threshold T;, then
the whole algorithm is finished, otherwise the refined center position by
MLE is used as a new center hypothesis C;, and go back to step 6.

2.4.2 Refinement for Accurate Position Estimation

An algorithm of circle fitting based on MLE is designed, after extract-
ing the data points of circle from the total data set,.

The MLE for a circle is a method for deciding the parameters a, b,
and r so that the observed data can most easily be obtained from the
assumed noise model [30]. In other words, the MLE is a method for
estimating the parameters which can maximize the likelihood of each data
point (x;, y;),i = 1,...,K. In this paper, we assume that each data point
obtained from the LRF has an independent error described by a Gaussian
distribution with mean 0 and standard deviation o. The likelihood of

each data point (x;, y;),i = 1,...,K can be expressed as

p(x1,...,xx, yl, -, YK)
~ K exp — (x; — %,)* /207 ] exp [ —(yi - y‘i)Z/ZUZ]
B [1[ V2no? . 2no?
exp [ - Lia [(Xz' — %)+ (yi — y'i)z]/ZOZ]
= , 2.12)

where (¥;, ;) is the true position of (x;, ;). To maximize this likelihood

p(x1,..., Xk, Y1,--.,Yx), we minimize —log[p(xi,...,xx, y1,...,yx)]. We
first take a logarithm of both sides of Eq.2.12 and then remove a con-

stant term which does not contribute to minimization.
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Here we have to fulfill Eq.2.4 as a constraint of x; and y;. We remove
the restraint condition by using Lagrange’s method of undetermined mul-
tipliers. Finally the MLE for a circle is equal to estimate parameters a, b,

and r which will minimize Jy;; expressed as Eq.2.13:

(2.13)

2
K (xlz +y7 — 2ax; — 2by; + a* + b* - r2)

Jme =

=

X7 + y? — 2ax; — 2by; + a* + b?

i

In our system, parameters which should be estimated are only a2 and
b, since the radius of the reference target is given in advance. In this
case, however, the MLE becomes a non-linear problem. To solve this
non-linear equation, we apply the Newton-Raphson method since it is
known to have a faster convergence rate than other Gradient methods,
such as Conjugate gradient or Levenberg-Marquardst, if its initial value is
close to the true value of a2 and b [57]. Here we use the detected center
position from the previous detection result as the initial value of the

Newton-Raphson method.

2.5 Experimental Results

To verify our proposed circle detection and fitting algorithm, we first
test it by simulation experiments. Before the experiment at actual con-
struction site, we conduct an indoor experiment with a small scale model
of pile driver to test the proposed positioning system. At last, an outdoor

experiment at actual construction site is performed.

2,51 Simulation experiment
Simulation setting

There are two basic simulated object shapes: circle and line. Consid-
erable scenarios can be simulated by combining these two types. Here we

assume that with the cylindrical reference target there are other objects
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Figure 2.6: Simulation result. The blue lines stand for the actual contour
of the objects. Red crosses stand for the simulated scanned data from
LRF. Green circles stand for points which are recognized as circle by the
proposed algorithm. The purple triangle stands for the estimated center

of the detected reference target.
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with cross-sections shaped like rectangle and trapezoid in the scenario
whose contour is similar to arc especially with large sensor noise, as
shown in Fig. 2.6.

In this simulation, we try to simulate the scene and devices of previous
experiment at an actual construction site [22]. The noise of LRF data is
assumed to be independent Gaussian noise with the standard deviation
o = 50mm in the range of distance d,;,, = 30X 103mm. The angle resolution
of LRF is set to be 0., = 0.05°. The radius of cylindrical reference target
is set to be R = 1350mm. The distance from LRF to the center of cylinder is
set to be d = 9000mm. Values of parameters T,, T. and T, are empirically
determined as 0. T; is empirically determined as 0.3¢.

To find out the optimal number of votes, we test the algorithm by
changing the parameter T, from 1 to 10. 1000 times simulations are tested
for each setting of parameters. All results are average value of 1000 times
simulations. To make the system work in real time and always process
the latest data, the maximum number of iterations of random sampling
is set to be 10,000. If the algorithm cannot establish an acceptable model
until maximum iteration time, it will abort and be considered as a failed
detection.

Evaluation of the circle detection algorithm

The simulation result is shown in Fig.2.6. To evaluate the algorithm,
detection rate, false detection rate, iteration times of random sampling
and error of estimated center are used here.

There are three possible outcomes in the simulation result: (a) correct
detection. (b) false detection, which is a wrong result but not rejected by
detection algorithm. Here we define that a wrong resultis E > 0. (c) failed

detection, which is no result established in maximum iteration time.
M,

M/
as: %, Where M is the total number of simulation, M, is the number of

Detection rate is defined as: and false detection rate is defined

correct detection and M, is the number of false detection.
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Values of detection rate and false detection rate with parameter T,
changing from 1 to 10 are shown in Fig.2.7 and Fig.2.8. When parameter
T, is set to be small, the figures show that false positive rate is almost zero
if the needed votes T, is set larger than one.

Results with T, = 0.1N and T,, = 0.6N are compared in figures, where

N is the roughly estimated number of inliers as shown in:

2 R
N = 0 - (arctan 5),

where D is the distance from LRS to the center of the data cluster and 6,.,
is the angular resolution of the positioning system. Parameter T, is the
number of data points required to claim that the hypothetical model can
be accepted. It means that the voting procedure makes the proposed al-
gorithm still work well even when occlusion or significant noise degrades
the data. Here T,, = 0.6N and T,, = 0.1N are experimentally verified upper
and lower bound.

Fig.2.7 shows that when votes are 2 and 3 the detection rate is almost
100%. But the value decreases when more votes are required. The main
reason is the maximum iteration time limits the performance.

The average iteration times of random sampling increase while the
number of votes becomes larger, as shown in Fig.2.9. The parameter T,
almost has no effect on the iteration time when T, > 1. Fig.2.9 shows that

choosing a small T,, would not increase the computation cost.

Position estimation precision

We evaluate estimation errors of the aforementioned two methods:
the non-linear MLE and the proposed detection algorithm with known

radius. Estimation error E is defined as:

E= (X, —a)+ (Y, - b,

where (a,b) is the estimated center position of the cylindrical reference

bar and (X;, Y1) is a position where we put the cylindrical reference bar.
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Figure 2.11: Indoor experiment scene

Fig.2.10 gives us the error of estimated center position using MLE
and the error of detected center position, which is the result of Step 5. It
shows that the number of votes T,, doesn’t have a significant effect on the
estimation result while the number of iterations increases dramatically
with more votes. So a small T, would be a good trade off between
estimation accuracy and computation cost.

Considering detection rate, iteration time of random sampling, error
of estimated center position and the flexibility of algorithm, T, = 2 is the

best choice of votes under the given conditions.
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2.5.2 Indoor experiment
Indoor experiment setup

To verify the feasibility and estimation error of our proposed system,
before implementing it in the actual construction field, we made the in-
door experiment. As shown in Fig.2.11, the mesh on ground with the
size of 500mm x 500mm, is used as prior given world coordinates. A
cylinder with radius of 250mm is used as the reference bar. Two card-
board boxes, one with the rectangle shaped cross-section and one triangle
shaped cross-section, are used to simulate the pile driver in the applica-
tion scene. Fig.2.12 shows an example of the scanned data from LRF of
the experiment scene.

To verify the feasibility of proposed circle detection algorithm, we
firstly put the reference bar at a known position and estimate the center
position only using MLE method. Then while keeping the cylinder at the
same place, we put the other shaped objects near to it and estimate the
position of cylinder again with the proposed positioning algorithm based
on circle detection and fitting, to see if we can achieve the same estimation
accuracy or not. Experiment with this set up is repeated at every 500mm
from the distance 1000mm to 7500mm.

Indoor experiment result

The experiment result proved that our proposed circle detection al-
gorithm can effectively extract data points of circle from the scene with
other shaped objects. The two curves of estimation error are almost the
same, with the maximum difference of 3.4mm, as shown in Fig.2.13.

To find out the most appropriate number of needed votes, we vary the
parameter T, from 1 to 10 to see the effect on detection rate. When votes are
T, > 3, as Fig.2.14 shows, the detection rate exceeds 90% even with small
value of T),. If there is no voting procedure, meaning T, = 1, the detection
rate is barely acceptable. This low detection rate is caused by the junction

of triangle and rectangle boxes, whose contour is similar to an arc. This
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Figure 2.12: An example of measuring the center position of the cylindri-
cal reference bar. The units of x and y are in [mm], and an LRF is set at
the origin indicated by the green point. Red points represent background
data, black represents the contour of foreground objects, orange repre-
sents the estimated circle, and blue cross represents the measured center

position.
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result proves the feasibility of the proposed circle detection algorithm and
shows the possibility that it can still work well with occlusion or large

noise present.

2.5.3 Experiment in the construction field

We tested the proposed system in an actual construction field. Our
purpose is to measure the position of the pile which is being put into
the drill hole. Tracking the position of pile can help to position it at the
expected place, which requires an accuracy of 100mm.

The laser range finder is assembled with a pan unit, which is used to
improve the angle resolution of LRF, as shown in Fig.2.4. LRF and pan
unit are placed on the tripod which can be adjusted to keep the scan plane
of LRF horizontal. The height of tripod also helps to keep other moving
objects, like humans, from the scan range. The object to be measured
is the pile shown in Fig.2.15, with a radius of 200mm. Limited by the
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arrangement of construction field, the distance between the measured
object and LRF is about 15 x 10%mm.

Calibration of LRF

To calibrate the LRF, a thin metal stick (cross section: 30mm X 1mm)
which has a highly reflectable surface is used. We first use total station
to position several points with a precision around 2mm/km. We then
put the calibration stick at those points and obtain the scan data of stick
from LRE. We use an average value of scan data of stick to estimate its
position. Transformation matrix between the world coordinate and the

LRF coordinate can be calculated using least square estimation method.

Procedure of pile driving

As shown in Fig.2.15, the pile was lifted by the pile driver and being
slowly put down into the hole. Currently in most construction fields, the
pile is kept to the expected position by manual work. It needs three well
trained workers using sticks to measure whether the pile is at the right
place or not.

Result of the construction field experiment

The procedure of pile driving was recorded by the LRF. It started
when the pile was moved near to the expected position about 1m. After
arriving the top of the hole, the pile was kept going down at a position
with error around 50mm. The placement of pile was adjusted to be more
accurate at the final 10sec. The position adjustment by workers can be
seen in Fig.2.16. Here error at X" is defined as (X, — ) and error at Y* as
(Yr — b), where (a, ) is the designed position of pile. The errors between
the estimated center position and the expected design position of pile are
shown in Fig.2.17. The final position error given by proposed system is
around 25mm.
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Figure 2.15: Scene of position measurement of pile driver
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Figure 2.16: Measured pile position (X", Y*) relative to the destination
(a,b) of construction field experiment
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Figure 2.17: Distance to the pile destination
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Currently there is no other direct way to measure the center position
of pile while it moves. The accuracy of the traditional surveying system
is 10mm. In addition, from this experiment, it is certain that the pile was
driven within the allowable range. We can estimate that the construction
error is within the range of 15-35mm. Considering the manual adjustment
process, the result of our system is considered reasonable. The proposed
system can measure the pile driving position in real-time which has not

been possible by conventional surveying instruments.

2.6 Summary

In this chapter, based on circle detection and fitting, we propose an
novel real-time pile driver positioning system using laser range finder.
Taking advantages of LRF, such as high accuracy, fast data acquisition and
large covering area, and utilizing the orientation-invariant property of the
cylindrical target, a new surveying technique is presented. To extract the
pile target from pile driver, we propose a circle detection algorithm. Then
the MLE method is adopted to fit circle from extracted arc data. A pan
unit is applied in the system to improve the angular resolution of LRF.

The simulation and indoor experiment prove the reliability and flexi-
bility of the proposed circle detection algorithm. The experiment on the
actual construction field shows that the proposed system can keep track-
ing the pile position in real-time while the pile driver works, which is
impossible for the conventional surveying methods.

For the purpose of verifying the feasibility of proposed system, we
only use data from a single LRF currently. Since multiple sensors could
increase the amount of information and enlarge the positioning range,
multiple sensor system will be investigated and implemented. In the
current implementation, the number of needed votes is empirically de-

termined. The robustness of this parameter should be investigated.



37

Chapter 3

3D Shape Reconstruction of
Unknown Targets by Dynamic
Sensing

This chapter describes how to rectify the distorted data of unknown

targets from a moving range sensor.

3.1 Basicldea

Since raw range data only have sensor-oriented coordinates, data
from different view points are described in different coordinate system.
In the continuously data gathering mode, each point has a individual
coordinate system. To correctly align those points, we need to apply
unique transformation to each point to make them described in the unified
coordinate system. When there are some overlapped areas between two
data sets, we apply transformations to make them coincide.

Those transformations can be derived from the sensor motion. We
build a proper model to describe the sensor motion. Utilizing the corre-

spondence of feature points in overlapped areas, we can construct a cost
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Figure 3.1: Coordinate system of moving range sensor and targets

function to evaluate the motion model. Sensor motion is estimated by
minimizing the cost function. Finally the distorted data can be rectified

based on the transformation derived from estimated sensor motion.

3.2 Sensor Motion Model

3.21 Common Representation of Rigid Body Motion

¢ Homogeneous Coordinates
The pose of range sensor relative to object frame can be expressed as
a rigid body transformation in R® using homogeneous coordinates
as:
ri a2 ti o dy

To1 T 723 dy

gt =G-qo,withG = (3.1)

r3 I T3z d,
O 0 0 1

go=[x yo z 1 ]" is the initial pose of range sensor in the object
frame,q; = [ x; y; z 11" is the pose of range sensor at time t in

the object frame.
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Figure 3.2: Definition of twist

The arbitrary 3D translation[ d, d, d. ]” has 3 degrees of freedom.

It looks like there are 9 unknowns in rotation matrix:

i1 T2 T3
R=|rn rn 3 (3.2)

Y31 132 133

But constrained by the orthonormality property of rotation matrix, it
actually has only 3 degrees of freedom. Therefore the transformation

G has 6 degrees of freedom.

e Twist Coordinates
According to Chasles” Theorem [39], every rigid body motion can
be realized by a rotation about an axis combined with a translation
parallel to that axis. As shown in Fig. 3.2, w stands for the rotation
axis. 0 is the rotated angle about w. d is the translation parallel

to the axis. It can be represented using exponential of twist &, as



40Chapter3 3D Shape Reconstruction of Unknown Targets by Dynamic Sensing

shown in following equation:

G=¢ _I+£+%+%+-- (3.3)
T
() 0 —w3 wry
where & = vs &= @s 0 -on v (3.4)
w1 —wy; Wi 0 v
) 0 0 0 O
L w3 A

where the rotated angel 0 is the norm of w. v describes the translation
parallel to the axis w.

e Euler angles
One method of describing the orientation of a coordinate frame B
relative to another coordinate frame A is as follows: start with frame
B coincident with frame A. First, rotate the B frame about the z-axis
of frame B (at this time coincident with frame A) by an angle «,
then rotate about the (new) y-axis of frame B by an angle S, and
then rotate about the (once again, new) z-axis of frame B by an angle
y . This yields a net orientation Ry (e, f,7) and the triple of angles
(a,B,7) is used to represent the rotation. The angles (a,f,)) are
called the ZYZ Euler angles. Since all rotations are performed about
the principal axes of the moving frame, we define the following

elementary rotations about the x-, y-, and z-axes:

[1 0 0

Rx(¢)= 0 cos¢p —sing
| 0 sing  cos¢p

[ cosp 0 sinf
R,B)= 0 1 0
| —sinff 0 cosp
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cosae —sina 0
R, (o) =| sina cosa 0
0 0 1

The final orientation of frame B, can be derived from the product of

sequence of rotations of frame A, considering the B frame as fixed.
Rpa = Ro(=7)Ry(=B)R«(~a) (3.5)

Quaternion

Quaternions generalize complex numbers and can be used to rep-
resent rotations in much the same way as complex numbers on the
unit circle can be used to represent planar rotations. Unlike Euler
angles, quaternions give a global parameterization of SO(3), at the

cost of using four numbers instead of three to represent a rotation.

Formally, a quaternion is a vector quantity of the form
Q=qo+qi+qj+qk, q€R,i=0,---,3

where g is the scalar component of Q and g = (41, 42, q3) is the vector

component.

In this thesis, we use twist coordinate to represent sensor motion.

There are two main advantages to using twists for describing rigid body

kinematics. The first is that they allow a global description of rigid

body motion which does not suffer from singularities due to the use

of local coordinates. Such singularities are inevitable when one chooses

to represent rotation via Euler angles, for example. The second advantage

is that screw theory provides a very geometric description of rigid motion

which greatly simplifies the analysis of mechanisms. [39] In the case of

quaternion, an extra number of variable is needed. So we choose twist to

describe sensor model.



42Chapter3 3D Shape Reconstruction of Unknown Targets by Dynamic Sensing

3.2.2 Approximation of Sensor Motion

For convenience without loss of generality, we have made an as-
sumption that the motion of sensor is smooth, which is appropriate in
most practical applications. This means that the sensor motion can be
represented by a smooth function whose continuity is higher than C°.
Such a smooth function can be represented by a sum of smooth basis

functions, and the most simple case is the polynomial representation.

e Polynomial Representation
While the sensor moves, the transformation changes in accordance
with time ¢, and the twist coordinate is represented by functions of
time t as &(t)

EB) =&+ & t+& P& P+ (3.6)

which we call polynomial motion. Without loss of generality, we
can assume that, initially at t = 0, the sensor and object coordinate
systems are identical, and hence &, = 0. We denote the coefficients
of polynomial motion of N-th order by &(t)n, where &5, &y, -+, &y are
6 x 1 twist vectors. Here we assume that all parameters are constant

in the whole sensor motion sequence of a time duration T..

Therefore the trajectory of range sensor in the object frame g(t) can
be represented as:
q(t) = G(t) - 9(0) = ¢*® (3.7)

Given the motion model of sensor G(t), a point of the object mea-
sured at time t with local range sensor coordinate p,, can be trans-

formed to the object frame:
g0 = G(t) - pr (3.8)

Here we give some examples to show that the use of polynomial ap-
proximation of sensor motion in twist coordinate system is suitable

for common motions.



3.2. Sensor Motion Model 43

Figure 3.3: Pure rotation

— Pure Rotation
In the case of pure rotation motion with a uniform angle veloc-

ity a rotating about y axis, it can be expressed as

0
0
3 v(t) 0] .
E(t)_[a)(t)}_ 0 =&t (3.9)
a-t
0

— Uniform Accelerated Rectilinear Motion
In the case of uniform accelerated rectilinear motion along x

axis, it can be described as

—al-t+a2-t2<
0
@ | 0 e )
é(t)_{a)(t)]_ 0 =& t+ &t (3.10)
o-t
0
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Figure 3.4: Uniform rectilinear motion

— Uniform Circle Motion
In the case of uniform circle motion with a constant angle ve-

locity 8 in x — z plane, it can be written as

F,B-t~
0
3 v(t) 3 0 e
E(t)—[w(t)]— 0 =& -t (3.11)
a-t
0

e Cubic Spline Representation
While the polynomial fitting of curve has the advantage of simplic-
ity, it may become unstable when the order of polynomial is higher
than 7. The actual trajectory of sensor could be very complex with re-
spect to different applications. It may require high order polynomial
representation which leads to unstable result. A more sophisticated
way is to use spline curve. Here we assume that sensor trajectory
is a combination of a set of common motions defined before. Since
the order of polynomial representation of those common motions is

lower than 3, cubic spline is enough for our applications.
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BN

Figure 3.5: Uniform circle motion

Given N + 1 control points [t;, y;], the function £(t) can be re-written

in the form of cubic spline as

&) = ai(t — 1)’ + bt — 1)* + ci(t — ;) + d;
fort € [ty tia],i=0,1,--- N -1 (3.12)

Since there are N intervals and four coefficients for each we require
a total of 4N parameters to define the spline &(#).

1. &i(t) = yi, wherei=0,1,--- ,N -1

2. &i(tiv1) = Yiz1, wherei=0,1,--- ,N -1

3. & (t) = &(ti), wherei=1,2,--- N -1

4. & (t) = &/ (t), wherei=1,2,--- N -1
These conditions result in 4N — 2 constraints. So we need two more

conditions to completely fix the spline. According to different initial

motion status of the sensor, we can add two conditions: &{(to) and

&g (fo)-
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Figure 3.6: Overlapped areas between sequent range images.

3.3 Motion Model Estimation

3.3.1 Corresponding Constraints in Overlapped Areas

When we use a 3-D continuously scanning range sensor, there are
overlap regions in sequent range images, through which we assume that
the sensor motion is represented by a unique sensor motion model. If
a point with its object coordinate p, is measured in two range images
indexed by 1 and 2, the sensor coordinates are related to the world coor-

dinates by:

Po = G(tl) “Pn
Po = G(tZ) *Pr2

Where p,; and p,, are the sensor coordinates and t; and ¢, are the measured
time of point p, in two range images successively. By eliminating the object
coordinate p,, the constraint equation describing the correspondence of

feature points can be written as:

G(tl) P — G(tZ) P2 = 0 (313)
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3.3.2 Cost Function

Each pair of corresponding points can give a constraint equation.
Theoretically, when the number of equations is more than the number of
unknown variables in G(t), we can have a solution of sensor motion. In
the actual case, we usually have redundant equations. To find an optimal
solution from those constraints, we construct a cost function.

Given K points py,---,px with measurements (p,1, t1,i, Prai, t2,), 1 <
i < K, when the motion parameter of twist ¢ is represented by N-th order
polynomial, the optional solution is given by minimizing the cost function

defined by the sum of squared errors:
K
E(¢) = Z G(t1,:) - pri — G(t2,0) - pr2,i”2 (3.14)
i=1

with G(f) = e® where E(f) = &1 - £+ & - 2+ -+ &y - V.

In this cost function, there are 6N unknowns. Since each pair of feature
points can give 3 constraint equations, theoretically, as long as 3K > 6N,
there would be a solution for the problem.

We minimize the cost function to find the optimal solution. Here we

adopted Levenberg-Marquardt algorithm to solve it.

3.4 Simulation Experiments and Discussions

To verify and evaluate our proposed algorithm, we test it with simu-
lated data which can afford ground truth. To show the robustness under
different conditions, like the complexity of sensor motion and the shape of
objects, we build a data set which contains the regular motion modes and
typical targets in applications such as digitalization of culture heritages,

autonomous vehicle.
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Table 3.1: Virtual sensor specification

Vertical range 30°

Horizontal range 90°

Angular resolution | 1/16°
tps 0.5

Scanning order Raster

3.4.1 Setting up

The characteristic of virtual range sensor is set up as Table 3.1. We
generate the range data by simulating the process that a straight line hits
on the object surface in raster order with a given time sequence and given
angular resolution. Thus we can obtain measured data, scanning time
and corresponding ground truth.

We don’t consider the feature detection procedure here and just make
an assumption that the correspondence of feature points in different
frames is known and established by methods like manual operation or
feature matching. Another assumption is that all feature points are taken
from static rigid objects. In our experiments, we generate feature points
in a manual way, randomly choosing points from the overlapped areas of

two successive frames.

3.4.2 Evaluation Methods

To evaluate the rectification performance, we compute the point dis-
tances between the rectified points {R}Il\’ to ground truth {S}Il\] . Here we

define the absolute rectification error as:
ei = |IR; = Sil| (3.15)

The absolute error is affected by point resolution, which is related to
sensor specifications and distances between sensors and observed objects.

In order to evaluate the algorithm despite of those factors, we define the
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Is

Figure 3.7: Point-wise distance.

normalized rectification error as:

E =— (3.16)

where d, = %Zﬁl d; is the mean point-wise distance of the object, as
shown in Fig.3.7.

3.4.3 Tests on Common Motion Modes

To evaluate our algorithm in different types of sensor motions, we
test it under 5 general motion modes as shown in Fig.3.8. As shown in
the first column of Fig.3.9, measurements are distorted by sensor motion.
The second column of Fig.3.9 shows our rectified results. Table 3.2 shows

the parameters of simulated motion modes in the data set.
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Table 3.2: Regular motion modes

Motion description

1.Constant velocity

2.Constant acceleration

3.Pure rotation
4.Combination of 2 and 3

5.Uniform circular motion

y
v A X
1
Case 5
v
Case 3
Casel >
Case 2 >

Cased > >

Figure 3.8: Simulated motion modes

3.4.4 Tests on Different Target Sets

We verify the proposed algorithm with different targets, as shown in
Fig.3.10. As Fig.3.10 shows, as long as enough corresponding point are
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Figure 3.9: Simulation experiment on Stanford bunny model under 5
common motion modes. The first column: distorted data and correspon-
dence between consecutive range image. The second column: rectified

data using our method. The third column: rectification error.
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Figure 3.10: Simulation experiment with other objects under constant
velocity motion. The first column: distorted data and correspondence
between consecutive range image. The second column: rectified data

using our method. The third column: rectification error.

sampled, the proposed algorithm works on different targets.

3.4.5 Robustness to Correspondence Noise

To verify the robustness of the proposed algorithm, we add noise
to the correspondence constraints. The unit of noise is mesh resolution.
As shown in Fig.3.12, the rectification error has a linear relation with

correspondence noise.

3.4.6 Discussion on Optimization

In the experiment, we notice that for a given polynomial motion G(t)y,
the initial guess of the parameters in the Levenberg-Marquardt optimiza-
tion algorithm has large effect on the result and iteration time. Empirically,

we found that use the estimation result of low order polynomial motion
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Figure 3.11: Rectification error with correspondence noise

G(t)i-1 as the initial guess of G(t); can give better result than directly es-
timating G(t);. In most cases we can achieve an acceptable solution by

starting this iterative procedure from G(t); with the initial guess &; = 0.

3.5 Application in 3D Reconstruction of Indoor

Environment

The problem of fast 3D modeling of indoor environment attacks a lot
of attention because of its wide applications to intelligent building, since
3D models can provide richer information about the environment. The
state-of-the-art technologies of 3D modeling usually involve devices like
camera, laser scanner, GPS with mobile platform. Laser scanner based
systems have better accuracy than camera-based systems. Since high
accurate localization device like GPS cannot receive satellite signals in
indoor environment, information fusion with other devices like camera,
IMU and encoder is a common solution.

Here we apply our proposed algorithm to build 3D model of an office
environment, as shown in Fig.3.13. The purpose of this experiment is to

verify that our algorithm can collect and self-calibrate data with moving
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Figure 3.12: Rectification error with respect to correspondence noise.

platform using a single 3D laser range scanner. Such system has lower

cost and works more efficiently.

3.5.1 Setting up

As shown in Fig.3.14, the laser range scanner is mounted on a cart. In
order to cover more upper space, we set the scanning central axis a small
upward angle with the horizontal plane. Details of sensor specification is
in Table 3.3.

In the experiment, we mannually move the platform in the office
to scan it in one round. Examples of data distortion caused by sensor

movement are shown in Fig.3.15.
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Figure 3.13: Scene of the indoor experiment.
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Figure 3.14: Setting up of range sensor in the indoor experiment.
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Figure 3.15: Distorted data of the indoor scene.
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Table 3.3: Specification of IHI 3D laser range sensor

Model Number THI

Light source JIS C 6802 Classl
Vertical field of view 60°

Horizontal field of view 90°

Measurable distance 0.1[m] ~ 200[m]
vertical angular resolution 0.01°
horizontal angular resolution | 0.15°

Frame rate 0.3 ~10Hz

3.5.2 Results and Discussion

In order to evaluate our algorithm without the effect of performance
of corresponding extraction step, we manually pick a set of corresponding
points, as the green lines shown in Fig.3.16. Fig.3.17 shows the compari-
son between distorted data and rectified data by our algorithm.

One way to evaluate the data rectification is to check how well the
point clouds can be aligned with ground truth, which is the point clouds
{S})/ obtained by static range sensor. To align two point clouds, we
adopt iterative closest point (ICP) method [69] to find the best alignment
transformation, yeilding aligned point clouds {X}}' for raw distorted data,

and (Y} for rectified data.
M
t

Now we can compute closest point distances for all points in {X}{" to
(SI:
- Ny — mi _
dy = d(X,, (SIY) = min X, — S, (3.17)

Similarly, we can calculate closest point distance for point in rectified data

set to the ground truth:
— Ny _ i —
di = d(Yy, {Sh) = min [[Yi =S, (3.18)

d,, and dj are mapped as colors in Fig.3.18. Point distances increase from
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Figure 3.16: Manual correspondence of distorted data from the indoor

scene.

blue to red. Using these distances, we can obtain two probability density
error curves based on kernel density estimation (KDE) [61]. As shown in
Fig.3.19, p(d) of rectified data has more data with small error.

Another way to evaluate the point cloud rectification, is utilizing prior
knowledge of indoor environment, that angles between walls, floor and
ceiling should be 90 degree, as shown in Fig.3.20. We estimate plane
normals of the subset of point clouds which only contain the wall,floor
and ceiling parts using RANSAC. We then calculate the angle between
two normals:

0;; = arccosi; - 1, (3.19)

where #; and 71; are normals for the two planes.
As shown in Table 3.4, the angles after rectification are much closer to
the ground truth.
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Distorted data Rectified data

Frame 3: 3~6s

Figure 3.17: Rectification result of the indoor scene.
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Figure 3.18: Rectification error of the indoor scene.
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Figure 3.19: Comparison of error distribution curves between distorted

data and rectified data of the indoor scene.

3.6 Application in Large Scale Culture Heritage
Digitization
3.6.1 Bayon Project

One of the most important and comprehensive applications of 3D
technologies is modeling cultural heritage objects. It has great signifi-
cance in many aspects. Modeling technologies can provide digital archive
of object shapes of culture heritage. Digital data enables us to restore the
original shapes of the heritage objects, even if some unfortunate dis-
asters destroy them, like natural weathering, fire, or wars. Moreover,
researchers can do further analysis on digital data applying modern com-

puter vision and graphics technologies. In addition, normal people can
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Figure 3.20: Comparison of plane angles between distorted data and
rectified data of the indoor scene.

get access to digital culture heritages through the Internet from any corner
around the world.

In order to preserve and study one important UNESCO World Her-
itage, the Bayon temple, which is located in the center of Angkor Thom
in Cambodia, the Bayon Digital Archive Project [43] is started.
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Table 3.4: Evaluation based on plane angles.

6120 | 013 | 023
Distorted data | 87.0° | 78.4° | 52.2°
Rectified data | 86.1° | 84.4° | 87.3°
Static data 88.9° | 89.9° | 88.8°

63

Figure 3.21: The FLRS and the Bayon Temple

3.6.2 Flying Laser Range Sensor

Several novel sensors are developed to observe this huge (160m x

140m x 45m) and complex structure. One of them is flying laser range

sensor (FLRS), as shown in Fig.3.21. Using a balloon platform instead of

previous helicopter platform, FLRS is safer and more flexible to measure

large culture heritages in outdoor condition.
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3.6.3 Results and Discussion

This system is certainly free from high frequency vibration such as that
of ahelicopter engine. However, the obtained range data are still distorted
because the sensor itself is moving during the scanning processes, as
shown in Fig.3.22.

We apply our method to the distorted FLRS data. Rectified data is
shown in Fig.3.23.

3.7 Summary

In this chapter, we have presented a method to rectify distorted 3D
data acquiring from moving range sensor based on approximating con-
tinuous sensor motion function using polynomial fitting of the twist
representation of transformation. To verify and evaluate the proposed
algorithm, we conducted experiments on simulated models which can
provide ground truth. We test the algorithm with 5 basic motion modes:
constant velocity, constant acceleration, pure constant rotation about fixed
axis, uniform circle motion and combination of case 2 and 3. The results
show that the distorted data is rectified properly only from the intrin-
sic property of the data itself. We also apply the proposed algorithm
to actual data. One application is 3D reconstruction of indoor environ-
ment. Another application is 3D digitization of large scale world culture
heritage.
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Figure 3.22: Distorted data of Bayon temple gathered by flying laser range

Sensor.
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Distorted data Rectified data

Figure 3.23: Rectified data of Bayon temple.

Twist coordinates w.r.t time

Sensor Trajectory

Figure 3.24: Estimated trajectory of flying laser range sensor.
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Figure 3.25: Test on a Buddha face.
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Chapter 4

3D Correspondence Based on An
Affine Invariant Shape Feature

4.1 Introduction

Finding meaningful correspondences between shapes is an important
and fundamental task in shape analysis. It can also be referred to as
alignment, registration, or matching under different contexts.

The definition of meaningful correspondences depends on the task
you have. It could differ from identifying geometrically similar parts
between shapes, to the problem of connecting elements which have the
same function on the shapes.

In our case, the purpose of correspondence extraction is to offer geo-
metrical constraints for the space-time reconstruction, especially for the
3D shapes distorted by sensor motion. Deformation coming from relative
motion between range sensor and objects, has its own properties. It usu-
ally includes large amount of missing data, due to occlusion or change of
scene or view points. The shape might be deformed significantly between
scans and the deformation doesn’t keep the geodesic distance invariant.

Thus we consider local shape feature is better choice for this problem.
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In this chapter, we propose a novel algorithm of extraction of 3D
shape correspondences. The basic idea is utilizing Morse theory to ex-
tract topological information from information about critical points of a
function. We design two types of Morse function for different condi-
tions. We then find the maximal stable energy basins from the extracted
topological tree by introducing energy landscape and disconnected graph
here. To describe the features, we apply an affine invariant regularization
to the extracted regions. We then attach a multiple-scale description to
each critical point since there are multiple extracted regions supporting
the point. To increase the identification of feature, we design a critical
net structure to construct more descriptive features. To apply this algo-
rithm to our problem that 3D shape reconstruction from data distorted
by sensor motion, we assume that local data deformation satisfies affine

transformations. Details will be described in latter sections.

4.2 Feature Detection

4.2.1 Morse Theory

In this sub-section, we give a brief review of basic definitions and
concepts of Morse theory we will use here.

Definition of critical point: given a manifold M, suppose f : M — R
is a smooth function. Then xy € M is critical point of f if and only if
dfly, € Ty M. The value of f(xo) is called critical value.

A critical point is called nondegenerate if its Hessian is nondegenerate.

Definition of Morse function: a smooth function f is called a Morse
function if its all critical points are nongenerate.

Morse Lemma: If p, is nondegenerate critical point of index A of a
smooth function f : M — R, then there exist local coordinates (X;)1<i<m

near po such that xi(po) = 0, Vi, and in these coordinates we have the
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equality
A m
f=fpo) =Y P+ Y () (4.1)
i=1 j=A+1
where m is dim(M).

It can be deduced from Morse Lemma that for a Morse function f :
M — R with a critical point xy, one can perturb f by composing with
an isotopy of the manifold M, that the new function has the same critical
point xy.

We assume that the deformation caused by sensor motion satisfies the
perturbation mentioned above. In other words, we assume that critical
points of Morse function on 3D mesh are kept after the distortion by sensor
motion. Based on this assumption, we design a algorithm slicing the 3D
mesh by critical values to extract feature regions which are invariant to
the deformation.

In the case of 3D data scanned by moving range sensor, the coordinates
of objects always change with the movement of sensor. Thus we need
to choose appropriate Morse functions which are not affected by the

definition of reference frame.

4.2.2 Implicit Polynomial Morse Function

One choice is to utilize implicit polynomial (IP) which fits the object
surfaces.
Given a 3D data set, the 3D IP of degree n is defined as:
fa(x) = Z aijkxiyjzk (4.2)
0<i jkii+j+ksn
where x = (x, y, z) is one point in the data set.
An IP fitting of 3D surface is to find an IP whose zero set {x|f,(x = 0)}
can represent the given 3D data set best.
Ideally, it means:

fu(x) = Z aipx'y'z =0 (4.3)

0<i,jk;i+j+k<n
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0.005

-0.005

Figure 4.1: Stanford bunny colored by IP values. (a) Original model. (b)
The one distorted by an affine transformation. (c) Original model colored
by its IP values. (d) Distorted model colored by its IP values.

Technically, it can be considered as the IP which minimizes the square

error:
Y (F0) (4.4)

The degree n can be adaptively determined by adopting a fast adap-
tive fitting method developed by Zheng [71]. It achieves O(Nk) com-

plexity where N is the number of data points and k is the number of

polynomial coefficients. Denote the found IP as f,(-):

2 (00 = min } " (£i00)° (45)

According to [71], the value of IP fitting won’t be affected by the
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change of coordinate system. Another advantage is that IP is invariant to
affine transformation. As shown in Fig. 4.1, left top figure is the original
Stanford bunny model and the left bottom one is the model colored by
the value of its IP function £,(x). The right top figure is the one distorted
by an affine transformation and the right bottom is the one colored by
its IP value. We can see that the corresponding parts on the two models
share the same color distributions.

IP is a global fitting method where all points are involved in the
calculation. It works well on the data sets which contain the same parts
of objects. But in the case of large change of the observed targets, like

view point change or occlusion, it will be affected a lot by the data change.

4.2.3 Beta-stable Laplacian Morse Function

To overcome the problem of IP in the case of data change, we design
another Morse function based on Laplacian smoothing.
Laplacian is a differential operator defined as:

n 82
Aszzf:Za—x]; (4.6)
i=1 i

Laplacian smoothing is one of the common methods of mesh smooth-
ing. The basic idea is moving the vertices of mesh incrementally in the
direction of the Laplacian. It can be written as a weighted sum of the one-
ring neighbors of a vertex, which is actually a discrete approximation of
Laplacian [10]:

L(x;) = Z wij(xj — x;) (4.7)
jEN1()

One of the advantages of selecting Laplacian smoothing for our Morse
function is that it uses relative positions of neighborhood vertices, which
don’t change with the reference frame. Another advantage is that the
computational complexity of Laplacian smoothing is linear in time and

space which is more practical on large meshes.
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Different from the conventional Laplacian smoothing, we use the

difference of the vertex and the one after smoothing as the Morse function:
I = ILis1 (x) = Lie()ll - sign(nn - (L (x) = Li(x))) (4.8)

where k is the iteration times of Laplacian, 7 is the surface normal at point
X.

Geometrically, this Morse function describes the local shape of objects.
It emphasizes the parts where the shape changes fast. The more iterations
of Laplacian done, the flatter the function would be, and more small
changes on the shape are filtered. To determine an appropriate number
of k, inspired by the concept of feature’s stability in [20], we define a

Beta-stable Laplacian Morse function.

Let Ni be the norm of I;:
Ni =l = ) ke () = Lo (49)
The variation speed 0y of the Morse function at k is:

Ok = N1 — Ny (4.10)

When 6 is far away from zero, we say that the Morse function is
not stable. A small change of k will lead to a significant change of Nj.
From the point of view of geometric shape, it means a small hump on
the surface also has large Morse function value, which is undesired. In
contrast, when 6, = 0, we say that I, is stable.

I is B-stable if k is the smallest integer for which 6. = 0 for all € €
[k, k + B].

Fig. 4.2 shows the value of Laplacian Morse function changing with
the iteration times k. Fig. 4.3 shows the variation speed 6, versus k. It can
be seen that the Morse function gets stable when k > 15. Fig. 4.4 shows

the final Morse function value with k = 15 on the original 3D mesh.

4.2.4 Maximal Stable Energy Basin

According to Morse theory, the topology of a smooth manifold is very

closely related to the critical points of the Morse function defined on the
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k=17 20

Figure 4.2: Difference of Laplacian on Stanford bunny model
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Figure 4.3: Shows the speed §, versus the iteration times k of Laplacian.

manifold. Given a smooth manifold M, sublevel set M! is defined as:
M ={xeM; f(x) <t} (4.11)

The changes in the topology of M’ is an indicator of the presence of a
critical point.

Our main interest in using this property is to slice the the manifold
based on critical points.

3D mesh can be considered as a graph G = (V, &), where V denotes
the vertices and & is referring to the undirected edges connecting the
vertices.

First we define a connected component C in 3D mesh as a subgraph
of G, in which any two vertices are connected to each other by paths, and
which is connected to no additional vertices in G.

Assume the boundary of the given Morse function f(x) is [a, b]. When
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Figure 4.4: Laplacian Morse function with k = 15 iterations.

the value t gradually changes from a to b, the connectivities between local
minimas in the sublevel set M’ change at critical values. As shown in Fig.
4.5, P, and P; is not connected until t = f(p4) and P; is not connected to
P, and P; until t = f(ps).

We thus can determine the set of critical values { f*} for key point P by
checking the change of connectivities of local minimas in M’, like f(Py)
and f(Ps) in Fig. 4.5.

We use local minimas as key points. The support regions of local
minima P, denoted as SRp, is defined as the connected components con-
taining P in the set of M. As shownin Fig. 4.5, the support regions of P,
are the green and blue parts, and the support regions of P; are the pink
and blue parts.

The change of connectivities between local minimas can be visualized
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S ()

S(ps)
S(p)}

Figure 4.5: Extract support regions from Morse function based on critical

points.

using a disconnectivity graph [11]. This idea is from the field of physics
used for visualizing potential energy. As shown in Fig. 4.6, all local
minimas are leaves nodes represented by blue circles. The critical values
fP where connectivities change are branch nodes represented by yellow
triangles. Actually the critical values f* of key point P are all branch
nodes on the path from leaf P to the root.

We adopt the depth first search algorithm to calculate the connected
components in M. The detection of local minima can also be done at the
same step. We only need to find the point with the minimal value in the
newly appeared connected components while t changes.

The detail of how to extract the feature on 3D mesh is described in
Algorithm 4.1. Geometrically the extracted regions look like basins with
the bottom at key points. So we name it energy basin extraction algorithm.
We only mentioned the support regions around local minimas when we
describe the algorithm. Similarly, it only need to take the minus value of

Morse function f to get the support regions around local maximas.
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S ()

Figure 4.6: Construct a disconnected graph from Morse function based

on critical points.

Algorithm 4.1: Energy Basin Extraction
Data: G = (V,&); f(V) € [a, ]
Result: a set of key points {P;} with corresponding multi-scale

support regions SRp,
1 for t=a—bdo
2 Get the sublevel set G;
3 | Check connectivity of G' and give component label C to V;
4 | Update the component label C for each key point P;;
5 | Update the list of key points {P;};
6 if Connectivities between {P;} change then
Record t as a parent node for connected P;;
Update the disconnected graph (DG);

9 end

10 end

11 fori=1—|P|do

12 Get the path {tj.} from P; to the root of DG;
13 forj=1—- |t do

14 Get support region SR{)i: the connected component

.. . £
containing P; in sublevel G7;
15 end

16 end
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Figure 4.7: Example of multi-scale feature. The key point is the one on
the eye denoted by a blue arrow. (a) Support regions extracted from data
scanned by static sensor. (b) Support regions extracted from data scanned

by moving sensor. Different colors stand for the different scales.

Fig. 4.7 shows an example of the multi-scale feature. The different
colors stand for the support regions in different scales. Although they are
not all the same in the two data sets because of the change of data, still
they share the same region in the small scales. Thus we can find their

similarity in different scales.

4.3 Feature Description

By far, we have extracted the multi-scale energy regions cut by critical
points. The next step is to find an appropriate way to describe them.

Here we assume that the local deformations between the correspond-
ing regions in range data from moving sensor approximately satisfy affine
transformation, which is appropriate in normal moving vehicle. We thus
apply an affine normalization to the extracted regions. Since there are
multiple regions in different scales for each key point, we construct a
multi-scale descriptor made by a set of a basic descriptor. Here we adopt
the spin image to be the basic descriptor.
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4.3.1 Affine Normalization

We use the shape normalization method based on the inertia matrix
normalization presented by Cohignac [15].

The algorithm described in [15] is for 2D image data. Here we analo-
gously expand it to 3D case.

Denote I as the indicator function of a solid shape ¥, assuming that
¥ is previously translated so that its barycenter is at the origin of the 3D

space. The moment of order (p, g, k) (p, ¢ and k are natural integers) of ¥

is defined by:
Hpak(F) = f Xy (v, y, 2)dxdydz (4.12)
R3
The discrete form for 3D mesh M can be rewritten as:
Hp.a (M) = Z iz (4.13)
]R3

where (x,y,z) € M
Let S# be the following 3 X 3 positive-definite, symmetric matrix:

1 2,00 U110 H1,01

S¢ = Hi10 Ho20 Hoia (4.14)
Ho,0,0

Hi01 Hoi1 Hoo2

where p;;x = u;jx(M). According to the uniqueness of Cholesky factor-
ization, the decomposition of S¢: S¢ = Bch;. may be unique, where B#
is a lower-triangular real matrix with positive diagonal entries.

Let Abe anon-singular 3x3 matrix. The normalized shape associated
to F is the shape 7 = B (). It can be proved that the normalized shape
¥ is invariant to affine transformation A, up to a rotation Q. (See details
in [15])

4.3.2 Multi-scale Description

Since our normalized shapes have rotation change varying with the

coordinate system, invariance to rotation should be a desired property of
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the feature descriptor. Spin image is chosen as the basic descriptor for
its rotation invariance and fast computation. We propose an variation
algorithm of spin image.

First we simply review the original spin image algorithm proposed
by Andrew E. Johnson [27]. A spin image is created for an oriented
vertex on 3D mesh surface. First a partial, object-centered coordinate
system is defined with respect to an oriented point: the radial coordinate
a, defined as the distance to the surface normal at the point, and the
elevation coordinate f3, defined as the signed distance to the tangent plane
at the point. A 2-D accumulator indexed by & and f is incremented in the
surface mesh which is within the support region of this vertex.

To use spin image in our algorithm, for each support region SR{)
belonging to the key point P, a spin image is calculated. Since the size of
each support region SR{D is different, the coordinates range of a and g of
the spin image is set as the maximal distance along each coordinate axis
from the key point to the furthest point in the region. The resolution of
bins in the accumulator is set the same for all regions.

Given the spin image SI; for each support region SR{,, We construct

our descriptor of the key point P as:
D(P) = {Slll SIZ/ Tty SIN} (415)

where N = |SRp| is the cardinality of the set {SRp}.
The similarity of two key points P and Q is defined as the minimal

pairwise distance of spin images between their supporters:

d(P,Q) = srl-e{D(g}l,gz}e{D(Q)} ISI; — SI]] (4.16)

This descriptor compares features in different scales and is more ro-

bust to occlusions and the change of view points.

4.4 Matching Criteria and Evaluation

Consider two 3D meshes M, N to be matched. Let KM and K¥ be the
detected key points set of M and N respectively. As described in Eq. 4.16,
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let d(p, q) be the similarity of two key points p and g.
We say key point p € KM is matched to g;:
1 = arg Zﬁ%‘ d(p, q) (4.17)

d(p, 92)
d(p,q1)

if > 1.5, where g, = arg min d(p,q)
q

GKN\ql

It means if the best match is at least 50% better than the second best
match for p, then p has a matched key point.

To evaluate the performance of the proposed algorithm, we use accu-
racy and repeatability [52]:

correct matches found in M and NV

Accuracy = total matches found in M and N (4.18)

Absolute Repeatability = repeatable key points (4.19)
, o repeatable key points

Relative Repeatability = (4.20)

min{[KM], KN}
A key point p € KM is said to be repeatable if the distance from its
nearest neighbor, a key point g € KV, after transformed according to the

ground truth transformation matrix Gr, is less than a threshold e:

lp — Grgll < € (4.21)

4.5 Experiment and Discussion

To verify and evaluate the proposed 3D corresponding extraction al-
gorithm, we use models from the Stanford 3D Scanning Repository [47]
and AIM@Shape Shape Repository [46]. First test is extracting correspon-
dence between original model and the one distorted by affine transfor-
mations. The second test is between the static data and the synthesized

data gathered by virtual moving sensor.
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Fig. 4.8 and Fig. 4.9 are examples of extracted feature regions and their
affine normalizations. To show the performance of affine normalization,
only a single-scale corresponding region is shown for one key point. As
shown in the sub figures (a) and (b), the exact corresponding region is
extracted from the distorted data. After the affine normalization, the

normalized regions have the same shapes, up to a rotation.

4.5.1 Evaluation on Affine Distortion

To verify the performance of proposed algorithm to affine distortion,
a series set of affine transformations are applied to original object models.

As shown in Fig. 4.10 and Fig. 4.11, we apply different affine transfor-
mation to the bunny model and compare the extracted feature points with
the original model. The results show that although beta-stable Laplacian
Morse function can detect feature points twice than IP Morse function, IP
is more stable on different distortions.

We apply the same set of affine transformations to other models.
The repeatability curves using IP Morse function and beta-stable Morse
function are shown in Fig. 4.12 and Fig. 4.13, respectively. The results
show that IP does have a more stable performance than Laplacian in the
affine distortion. Fig. 4.14 (a) and (b) show the matching accuracy of using
IP and Laplacian, respectively. Fig. 4.15 and Fig. 4.15 show the matching
result of using IP and Laplacian on different models with the same affine

transformation, respectively.

4.5.2 Evaluation on Synthetic Data from Moving Range
Sensor
Fig. 4.17 and Fig. 4.18 are the matching results between the synthetic

static data and distorted data from moving sensor with different velocities,

using beta-stable Laplacian Morse function.
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4.6 Summary

In this chapter, we propose a novel algorithm of extraction of 3D
shape correspondences. The basic idea is utilizing Morse theory to ex-
tract topological information from information about critical points of a
function.

We design two types of Morse function for different conditions. The
one based on implicit polynomial fitting of 3D mesh is more robust to data
noise and suitable for sparse data set. The other one based on difference
of Laplacian has the advantages to the problem of data changes, like
occlusion or the change of view point and scene.

We then find the maximal stable energy basins from the extracted
topological tree by introducing energy landscape and disconnected graph
here. To describe the features, we apply an affine invariant normalization
to the extracted regions. We then attach a multiple-scale description based
on spin image to each critical point thus their similarities are compared
in different scales.

The simulation experiments prove the verification and robustness of
the proposed algorithm, especially for the distorted data gathered from

moving sensor.
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Figure 4.8: Example of extracted feature regions and their affine normal-
izations. (a) Two key points with their support regions extracted from the
original data. (b) Corresponding key points with their support regions
extracted from the data distorted by affine transformations. (c) and (e)
are the normalized regions from the original data. (d) and (f) are the
corresponding normalized region from distorted data.
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Figure 4.9: Another example of extracted feature regions and their nor-
malizations. (a) Two key points with their support regions extracted
from the original data. (b) Corresponding key points with their support
regions extracted from the data distorted by affine transformations. (c)
and (e) are the normalized regions from the original data. (d) and (f) are
the corresponding normalized region from distorted data.
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Figure 4.10: Repeatability curve of Stanford bunny model applied a set
of affine distortion, using IP Morse function.
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Figure 4.11: Repeatability curve of Stanford bunny model applied a set
of affine distortion, using beta-stable Laplacian Morse function.
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Figure 4.12: Repeatability curve of other models applied the same set of

affine distortion, using IP Morse function.
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Figure 4.13: Repeatability curve of other models applied the same set of

affine distortion, using beta-stable Laplacian Morse function.
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Figure 4.14: (a) Match accuracy using IP Morse function. (b) Match

accuracy using beta-stable Laplacian Morse function.



4.6. Summary 93

Figure 4.15: One group of matching result of the ones using IP Morse

function.
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Figure 4.16: One group of matching result of the ones using beta-stable

Laplacian Morse function.
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Figure 4.17: Correspondence between synthetic static data and constant
velocity (C;) data using our proposed algorithm.

Figure 4.18: Correspondence between synthetic static data and constant
velocity (C,) data using our proposed algorithm.
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Chapter 5

Conclusions

51 Summary

¢ A real-time pile driver positioning system using laser range finder
We propose a method which utilizes the prior shape model to es-
timate sensor motion. Based on the estimated motion model, dis-
torted measurements can be rectified and accurate localization of
targets can be achieved. As an application, we build a real-time
pile driver positioning system using laser range finder. The detail
is described is Chapter 2.

e 3D shape reconstruction using a moving range sensor based on esti-
mation of sensor motion — We propose a feature based polynomial
titting method to estimate 6 DOF motion parameters of moving
range sensor. The 3D model can be reconstructed according to a
highly accurate sensor motion estimation. When using a 2D scan-
ning sensor instead of a 1D scanning sensor, the same region is
measured in multiple times when the sensor moves. We will show
that we can reconstruct the sensor motion and the scene from only

the measured coordinates and times of the same set of points. This



98

Chapter 5 Conclusions

reconstruction is intrinsic, which relies on only the intrinsic prop-
erties of the distortion, and not relying on the extrinsic information
from other sensors. Firstly, for robust estimating sensor movement,
we model the sensor motion using polynomial with respect to time.
Secondly, to estimate the parameters of sensor motion model, we
utilize the 3D corresponding points extracted from the overlapped
parts between consecutive frames. This method doesn’t need the
secondary sensor and is not limited with specific environment fea-
tures. Without linearization of constraint and discretization of tra-
jectory, distorted data is accurately rectified. The detail is described
is Chapter 3.

An 3D affine invariant shape feature

To obtain the corresponding constraints described in chapter 3, we
propose a novel 3D affine invariant feature detection and matching
method which is designed for the deformed 3D data collected by
moving range sensor. The basic idea is utilizing Morse theory to ex-
tract topological information from information about critical points
of a function. We design two types of Morse function for different
conditions. The one based on implicit polynomial fitting of 3D mesh
is more robust to data noise and suitable for sparse data set. The
other one based on difference of Laplacian has the advantages to the
problem of data changes, like occlusion or the change of view point
and scene. We then find the maximal stable energy basins from the
extracted topological tree by introducing energy landscape and dis-
connected graph here. To describe the features, we apply an affine
invariant normalization to the extracted regions. We then attach
a multiple-scale description based on spin image to each critical
point thus their similarities are compared in different scales. The
simulation experiments prove the verification and robustness of the
proposed algorithm, especially for the distorted data gathered from

moving sensor.
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5.2 Contributions

We have explored the problem of 3D reconstruction under a moving
sensing system only with a single range sensor. There are three contribu-

tions of the thesis.

1. Development of a real-time pile driver positioning system using

laser range finder.

2. Development of a 3D shape reconstruction method using a single

moving range sensor.
3. Development of a 3D affine invariant shape feature.

In the first contribution, we propose a highly efficient positioning
system using a Laser Range Finder. Over the traditional surveying sys-
tems ours is superior to automatically detect the position of the pile or
pile driver in real time with high accuracy. we first develop LRF based
surveying system to scan the construction site in real time and gather
the 2D laser point data. Then we detect target object such as pile or pile
driver by fast fitting a circle-like geometric model to the data based on
Maximum Likelihood Estimation (MLE) inference. The performance of
the algorithm is validated by both synthesized and real data set. The
results demonstrate the potentials on feasibility of our method in future
construction field.

In the second contribution, we propose a method of 3D reconstruction
under a moving sensing system only with a single range sensor. Different
from ”stop-scan-go” strategy, our method works in an efficiently con-
tinuous manner. There is no need to stop the platform to obtain an
stationary scan. Sensor can move under a reasonable motion mode and
simultaneously scan the target or environment. Data distortion caused
by continuous movement will be rectified. This continuous manner is
much more efficient and attractive in practical applications.

In the third contribution, we propose anovel 3D affine invariant shape

feature. It is designed for finding correspondence between distorted data
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deformed by sensor motion. Due to its multi-scale character, it is robust
to data change caused by occlusion or change of view point. The fact that
it extracts local affine invariant regions allows the possibility of dealing

with significant deformation.

5.3 Future Directions

e Shape structure analysis using Morse theory
To enhance the identification of feature, it is common to make a
combination of features. Considering the structure of disconnected
graph created from the Morse function on 3D mesh, it’s possible to
construct a more descriptive feature which is made by a set of critical
points. As mentioned before, DG is generated by critical points and
their connectivities relations. A sub-graph of DG which contains

more than one critical point, can apply a more static feature.

e Deformation measurement for comparing similarity between ob-
jects
Comparing similarity between a group of similar objects is an im-
portant task in a lot applications. Since our proposed shape fea-
ture actually detect local regions whose deformation satisfies affine
transformation between objects. Those local transformation can be
calculated and used as a deformation measurement of similarity

between objects.
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