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ABSTRACT

There have been many developments of anthropomorphic robotic hand in recent
years. These hands have become very advanced in term of the hardware. They
have also become more and more similar to human hand. Unfortunately, there are
only a few evidences that have displayed the capabilities of their usages due to the
lack of efficient method to control them. This thesis proposes a methodology to
control these robotic hands through human demonstration. The method focuses
on a dexterous manipulation of a hand referred to as regrasping. Regrasping is
an ability of a hand to change its grasping posture with an object by moving
the fingers. The proposed method teaches a robot to imitate these movements.
It allows a robot to observe a human perform regrasping movements, recognise,
and finally reproduce the regrasping movement.

The proposed method is based on a representation referred to as tangle topol-
ogy. Tangle topology is a representation that derived from a numerical invariant
that describes a relation between two curves called Gauss Linking Integral (GLI).
When hand and a manipulated object are considered as strands, it allows regrasp-
ing movements to be perceived as a change of tangle relation over time. The tan-
gle relation is described by an attribute called writhe matriz. Writhe matrix is
categorised into two types, which distinguish a contact relation between the hand
and object. Using this topological information, movement primitives for recog-
nising regrasping movement and skill parameters for mapping each movement
primitive to a robotic hand are defined.

Three movement primitives are defined based on changes in type of writhe
matrices during regrasping. The regrasping movement is first segmented into
smaller segments using parameters that describe writhe matrix. Then by con-
sidering the change in type of writhe matrices, each small segment is recognised
into a movement primitive. Once all movement primitives are recognised, the
original regrasping movement can then be represented as a sequence of movement
primitives.

To reproduce a regrasping movement, all movement primitives that represent
the movement must be sequentially mapped to a robotic hand. Skill parameters
for all movement primitive are observed and extracted from human demonstra-



tion. They are key information for mapping the movement primitives to a robotic
hand. Skill parameters are defined differently for each type of movement primi-
tive. A method to refine the observed skill parameters is also given to make them
suitable to be used during mapping process. Movement primitives are mapped
to a robotic hand in topological space. A method to interpolate writhe matrix
from its initial to final state is given. A trajectory of the hand for each movement
primitives is generated by following these intermediate writhe matrices.

The proposed methodology is validated by reproducing a regrasping move-
ment in a robotic hand. Human regrasping movements of a pen-like object are
considered. A custom-made robotic hand is attached to the Mitsubishi PA-10
robotic arm to maneuver and reproduce the movements. The successful repro-
duction of the regrasping movement verifies the proposed methodology to be
useful and proved that it is feasible to control a robotic hand by imitating hu-
man.

In short, this thesis describes a novel method to control a robotic hand by imi-
tating human movement. It focuses on hand movements referred to as regrasping
movements. The thesis shows that by observing and representing human move-
ments as a sequence of movement primitives, a robot can duplicate the movement
on its hand.
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1.1 Background

It was in 1954 when George C. Devol applied for a patent for “a more or less
general purpose machine that has universal application to a vast diversity of ap-
plications where cyclic digital control is desired.”, that human interest in robotic
arm-like devices first began. Since then, robots have been widely used in facto-
ries around the world to automate a manufacturing process and free human from
repetitive, risky and tiresome tasks. Applications in an industry has dominated
the usages of robots for (quite) some time, until recently when a trend of service
robots has emerged [Garcia et al. 2007] that robots have started to move into
human environments.

There are many potentials for robots to assist human in everyday settings, e.g.
accommodating the elderly, helping in a household or a restaurant, working in
hazardous or contaminated environments. These applications have been studied
and researched in the laboratories around the world, but only a few accomplished
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to become commercially available. Most promising applications need robots to
be able to automatically interact and physically alter the world. However, the
ability of a robot to perform sophisticated manipulation tasks is only possible in
a controlled environment or when controlled by a human [Kemp et al. 2007].

There are many ways for a robot to interact with the world. One of the ways is
to use a hand, which is biologically inspired by human. A hand is an important
human body part. Throughout a day, human uses its hands numerous times,
either with prehensile or non-prehensile movements [Jones & Lederman 2006],
to alter the environment. A robot that possesses a hand with such dexterity as
human hand would be able to interact well with its physical surroundings.

Many anthropomorphic robotic hands has been developed in recent years,
e.g. the Utah/MIT hand [Jacobsen et al. 1984], the Belgrade/USC hand [Bekey
et al. 1990], the NASA Robonaut hand [Lovchik et al. 1999], the DLR hand [But-
terfass et al. 1998], the Rutgers hand [DeLaurentis et al. 2000], the Shadow
hand [Reichel 2004]. With the advancement in technologies that used to con-
struct them, these hands have become very complex in term of their hardware
functionalities and have also become more and more similar to a human hand.
Unfortunately, there are only a few evidences that has displayed the capabilities
of their usages in everyday environment, except for those of the teleoperation
application. One of the main issues is the lack of efficient approach to control
these robot hands.

This thesis focuses an approach to control a robotic hand by observing how
human move their hand. This is based on the assumption that if the robotic
hands were to build to emulate how human hands are maneuvered and manipu-
late objects, the best way to control the robot hand is to simply imitate human.
Although the imitation approach might seem reasonable, in reality, it is not as
trivial and straightforward as it may sound. The most critical question is how to
model and represent human hand movement, so that it can be applied to robot
hands. Since a general human hand movement is very complicated and highly
sophisticated, this thesis will focus on one type of human dexterous manipulative
movement called regrasping or sometimes referred to a in-hand manipulation.

Regrasping is an ability of a hand to change its grasping posture with an
object by moving the fingers or, in other words changing the contact location
of fingers. Humans usually have more than one grasping posture for one type
of tool. A human makes a decision on which type of grasping posture to use
based on their intention of how to use the grasped object at that particular
moment [Cutkosky 1989]. For example, an artist grasps a pen or a paintbrush
differently depending on whether they want to draw or measure the length of the
scene, or people also grasp a hammer differently depending on whether they want
to strike or pull out a nail, or people grasp mobile phones differently depending
on whether they want to press a button or talk on the phone. This makes
regrasping an important function for robotic hands, if they were to be used to
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interact with tools created for humans.

1.2 Approaches in Regrasping Planning

Giving two grasping configurations, initial and final grasping configurations, re-
grasping planning is defined as a problem of finding trajectories of hand and its
joint angles to move from one configuration to the other. Several approaches have
been proposed in the literature to complete a regrasping movement in a robotic
hand. They can be divided into three major categories: a.) teleoperation, b.)
automatic programming, and c.) learning from human.

1.2.1 Teleoperation Approach

A teleoperation is the most intuitive approach to control a robotic hand. It is
usually referred to as a master-slave architecture of a control system, where a
human directly controls a slave robot hand to manipulate an object through a
master device. There are applications in many areas for this control scheme.
For example, a robotic surgical system in medical [Bann et al. 2003, Camarillo
et al. 2004], a maintenance humanoid robot in space [Ambrose et al. 2000, Diftler
et al. 2003], a mobile manipulation robot in hazardous areas [Taylor 1985].

This approach has been studied extensively in the last few decades. With
some efforts from human operator, the approach can be used to successfully
perform many complex manipulation tasks [Kemp et al. 2007]. Relatively recent
improvements for this approach can be seen in the following areas: precision
and ease of use [Fischer et al. 1998, Hu et al. 2004], haptic interface and force
feedback [Martin et al. 2004, Endo et al. 2011, Lii et al. 2010], Electromyography
interface [Farry et al. 1996, Bitzer & van der Smagt 2006].

1.2.2 Automatic Programming Approach

Automatic programming is the most common approach in the literature. In
this approach, regrasping planning problem is usually divided into two subprob-
lems [Trinkle & Hunter 1991, Michelman 1998]: a problem of searching for a path
in a configuration space of a specific representation, and a problem of generating
trajectories of hand/fingers to achieve the path. Both problem can be solved
either separately or simultaneously.

In this problem, the size of the search space is usually a main concern. By
formulating the problem using some specific representation (e.g. contact, or
their derivation), the search space becomes smaller and manageable. Various
constraints, including collision avoidance, grasp equilibrium etc. are also used
to confine the search space. Then, the algorithms are proposed to search a path
within the space to connect two grasping configurations together.
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If objects are represented by one or a combination of fundamental elements,
i.e. vertices, edges, and surface patches, contacts between them can be described
by contact formations (CFs) [Desai & Volz 1989]. A grasping configuration
is simply a combination of CFs between a hand and an object. Trinkle and
Hunter describes initial and final grasping configurations with two CFs, where
their corresponding CF-trees are created by sampling an input trajectory of the
hand [Trinkle & Hunter 1991]. The proposed method searches for a path to
connect the two CFs by branching through CF-trees until the common CF are
met and connected. Zhang et al. creates a taxonomy of grasping configuration
based on all feasible CFs between a hand and an object and referred to it as a
grasp transformation graph (GTG) [Zhang et al. 1996]. This graph can be used
to search for a path to connect between the initial and final grasp configurations.

Han and Trinkle proposed a general framework for dexterous manipulation [Han

& Trinkle 1998]. In the framework, a combination of rolling and finger gaiting
is used to change from initial to final configuration of point contacts. Rolling is
used in general, except when some finger reach its limit, finger gaiting is used
instead in order to replace the finger. The proposed framework is applied to ma-
nipulate a sphere with three fingertips. Cherif and Gupta allowed finger rolling
and sliding to reorient an objects [Cherif & Gupta 1999, Cherif & Gupta 2001].
A dexterous manipulation of four fingers were considered, where only one finger
was allowed to move at an instance. The proposed method used A* search to
search for a path in a discrete representation of a configuration space, referred
to as cell decomposition. Yashima et al. proposed a manipulation planner using
the Rapidly-Exploring Random Tree (RRT) algorithm [Yashima et al. 2003]. At
an instance, a choice of motions that a finger can move depends on its contact
mode. The proposed planner used this notion to explore and search a configu-
ration space for a regrasping path. Sudsang and Phoka proposed a regrasping
planner for four fingered hand [Sudsang & Phoka 2003]. The planner is based on
a structure called a switching graph, where each node in the graph represents a
grasp that satisfied properties of a concurrent grasp. The proposed method finds
the regrasping path by searching in the graph structure. Saut et al. proposed
a manipulation planner based on a probabilistic roadmap method (PRM) [Saut
et al. 2006, Saut et al. 2007]. The method is based on an ability to search and
connect between grasp subspaces, where a grasp subspace is a space of all grasps
that can be achieved by a particular set of grasping fingers. Two possible types of
path are allowed: transfer path (connecting within the subspace) and regrasping
path (connecting between two subspaces). Both object and finger trajectories
are given as an output of the planner.
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1.2.3 Learning from Human Approach

An approach to learn dexterous manipulation from human is quite new and cur-
rently gaining more attention from the community. When referring to this ap-
proach in general, it is not only teach a robot to mimic a human hand movement,
but also teach it to learn and understand the task that is being imitated [Bic-
chi 2000]. Unfortunately, to the best of our knowledge, there are only a few
researches that are directly related to regrasping planning or dexterous manipu-
lation planning. In order to increase an understanding of the approach, related
literatures on grasping planning are also described.

Briefly, planning a grasp for a robotic hand by observing human contains two
important components: a.) what to observe and how to represent knowledge from
human, b.) how to map the knowledge to a robotic hand. Some frameworks ex-
plained below are completed, while some only proposed the former components.

Cutkosky was the first person to suggest that knowledges from human could
be useful to plan a grasp for a robotic hand [Cutkosky 1989]. He suggested that
apart from a stability, a good grasp must also embrace knowledges about a task
requirement, which is already included in a human demonstration. Cutkosky col-
lected the knowledges by observing and interviewing the machinists while they
were working and proposed a grasp taxonomy upon it. A rule-based decision
system were developed to predict an appropriate grasp to use with a particu-
lar object in a specific task environment. Although more details planning on
recognition and mapping to a robotic hand was not given, the work has laid a
foundation for many other researches.

Kang and Ikeuchi proposed a method to recognise and map a grasp to a
robotic hand [Kang & Ikeuchi 1993, Kang & Ikeuchi 1997]. Contacts between a
human hand and the object are observed by processing images obtained from TV
cameras. Contacts are combined into a representation called contact-web, which
a grasp taxonomy is defined upon it. An observed grasp is recognised into one of
the grasp in the taxonomy and mapped onto a robotic hand. The mapping is con-
ducted in two levels: the functional level where a concept of virtual finger [Arbib
et al. 1985] is used, and the physical level where the geometric properties of the
object and the hand are considered to fine-tune the grasp. Aleotti and Caselli
took a similar approach in planning a grasp from human demonstration [Aleotti
& Caselli 2006, Aleotti & Caselli 2007]. However, a demonstration is done in a
virtual environment, as it allows more accurate information including contact
and joint angles to be collected. Both of which are used to recognise a grasp
against a subset of Cutkosky’s taxonomy. A mapping to a robotic hand is done
using only a recognised grasp type. A posture database of a target robotic hand
for every grasp types is captured off-line prior to the mapping. When the hu-
man grasp type is identified, a pre-defined posture is fetched and mapped to the
robotic hand. Steffen et al. also captured joint angles and contact information
from a virtual environment [Steffen et al. 2007]. However, the information is not
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used to recognise a grasp type, but instead used to search for a similar robotics
grasp in a database using a structure called a Partial Contact Posture (PCP)
as an index. To map the grasp, the fetched grasp is used to initialise a posture
of the robotic hand while tactile sensors and finger closing heuristic are used to
finalise the grasp.

Ritter et al. discovered positions of all fingertips of human hand using im-
ages [Nolker & Ritter 2002, Steil et al. 2004]. The fingertip positions is trans-
formed into the joint angle of the human hand using a Parameterized Self-
organizing Map (PSOM). The joint angles is then mapped to joint angles of the
robotic hand by considering the difference of their kinematic constraints. This
posture is used to initialise a posture of a robotic hand. The grasp is finalised by
moving fingers in the caging fashion while evaluating contact condition on the
way. Positions of fingertips can be used to recognise grasp. Ekvall and Kragic
proposed a method to recognise a grasp type in Cutkosky’s taxonomy using
fingertip positions, hand rotation and hand trajectory [Ekvall & Kragic 2005].

Kjellstrom et al. took an advantage of vision technology and managed to
recognize a type of grasp using a single 2D image [Kjellstrom et al. 2008|. The
vision-based grasp recognition system can take an input image from any direc-
tions, and search in a database to define the types of grasp. Each type of grasp
is mapped to robot hand through pre-defined rules. Each rule describes a robot
hand posture and roughly a place where to grasp at an object. A similar ap-
proach is used by Do et al. to plan a grasp on humanoid robot in real time [Do
et al. 2009].

It can be noticed that most approaches in grasp planning from observation
use a grasp taxonomy as a representation to connect between a human and a
robot grasp. Similarly, there are also two important components in the dexterous
manipulation planning from observation: a.) a representation and recognition
phase, b.) a mapping phase. However, same grasp taxonomy might not be a
good representation as it is a taxonomy for every kind of objects. For a specific
object, the taxonomy could be far too incomplete to represent all hand postures.

Steffen et al. [Steffen et al. 2008] use a continuous manifold of hand postures
to represent a regrasping movement. They construct a manifold by applying
Unsupervised Kernel Regression (UKR) and its modification [Steffen et al. 2009
on finger joint angle space. The method is applied to turning bottle cap in their
example. A demonstration is done using various sizes of bottle cap in a virtual
environment and the movement of the same robot hand is automatically repro-
duced with different cap sizes. They extend their UKR representation framework
to closed-loop control and use it to imitate the task of swapping Chinese health
balls where balls position are used as feedback [Steffen et al. 2010]. The drawback
of their framework is that the hands using during demonstration and reproduc-
tion must be the same hand.

To overcome the hand structure dependency, the representation is generally
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derived from a contact information, either on the hand or on the object. Lam
et al. combined information observed from human demonstration with motion
planning algorithms to recover a sequence of contact points on the object that
represents the original movement [Lam et al. 1999]. Human demonstrates a re-
grasping movement using data-glove and motion tracker. In order to recover
contact points in every frames, he starts by recovering initial and final contact
points based on observed data from data-glove. Once initial and final contact
points are found, contact points on the object of all intermediate frames is gen-
erated using motion planning while the demonstrated movement is used to limit
the search region of the algorithm. Kondo et al. attaches a tactile sensor sheet on
an object in order to observe changes in contact state during human regrasping
movement [Kondo et al. 2006, Kondo et al. 2008]. They manage to discover a
contact state on a human hand at a particular moment by processing a pres-
sure distribution image. A state transition diagram is created based on these
contact states. A target robotic hand is preprogrammed with the movement
that changes from one contact state to another. Human regrasping movement is
recognised and represented as a transition of contact states using Dynamic Pro-
gramming algorithm. The transition of contact states is sent as a command to
the robotic hand to reproduce the movement. Martins et al. came up with a sim-
ilar approach but a tactile sensor is directly attached to a human hand [Martins
et al. 2010, Faria et al. 2012].

It can be seen that for a dexterous manipulation planning from observation,
most frameworks only pass a high level knowledge to map to a robotic hand.
Other knowledge obtained from the observation has been abstracted out and not
used during mapping at all.

1.3 What is This Thesis About?

In a high-level context of learning from human, when a task of everyday object
manipulation is taught to the robot, there are many phases recognised and de-
tected. One of the phase that is crucial to the task as a whole is a manipulation
phase where human grasps a tool and use it to achieve something. For a par-
ticular tool there could be more than one type of feasible grasps. If the hand
employs different type of grasps, they are considered to be two different manip-
ulation phases. A regrasping phase connects between two manipulation phases
that employ different type of grasps on a particular tool [Kudoh et al. 2008|.
This thesis focuses solely on developing a method to automatically generate a
movement of a robotic hand that will achieve a regrasping phase.

As mentioned earlier in the section, a method is developed based on a Learn-
ing from Observation (LFO) paradigm. Initial and final grasps are given as an
input from a high-level task planner. A hand movement of human that connects
between two grasps is also given as an input. The method then automatically
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generates a movement of a robotic hand using knowledges extracted from this
human hand movement. The method is based on the fact that many robotic
hands are built to resemble human hand; therefore, a movement of a human
hand should also be useful for generating a movement for these robotic hands.
An advantage of the method is also similar to those that make use of a LFO
paradigm. Once the system has been successfully deployed, it would be easy
to teach other hand movements to the robot. A human operator can simply
demonstrate natural hand movements, and the robot will recognise and imitate
them.

It should be noticed that the proposed method is not same as a teleoperation
approach. Human hand movement cannot simply transferred to a robotic hand
due to a difference in their structures. In addition, during an execution on a
robotic hand, an open-loop control scheme is employed. No feedback system is
used on the robot due to the nature of the proposed method and also limitations
of resources.

1.3.1 Thesis Contributions

This thesis explains a method to teach a regrasping movement to a robotic hand.
The contributions of the thesis can be described as the followings.

1. A development of a methodology to allow a robot to imitate human regrasp-
ing movement and an introduction of a topological representation to use
with human and robotic hands. The method is based on LFO paradigm
and uses a topological representation referred to as Gauss Linking Integral
(GLI). The representation allows a human regrasping movement to be
segmented and recognised. When the movement is reproduced using this
representation, it also allows the movement to be efficiently interpolated
in the topological space. The works in this thesis are believed to be the
first method to apply this representation for representing and controlling
human and robotic hands.

2. A development of a method to segment human regrasping movement into
meaningful segments based on its topological features. The regrasping move-
ment are segmented into a sequence of contact relation by considering
changes in a type of writhe matrices. A writhe matric is a representa-
tion derived from the GLI. Two types of writhe matrices, peak-wm and
span-wm, are introduced for this purpose. (Explanation of the content can
be found in Chapter 4)

3. A development of a task model to represent human regrasping movements
and a method to recognise it. The task model is based on types of writhe
matrices. Three movement primitives, detaching-attaching-crossover, are
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Figure 1.1: Diagram shows the organization of the thesis.

defined and used to represent the regrasping movement. A necessary skill
parameters for mapping each movement primitive are defined and a method
to extract them from human regrasping movement is described. (Explana-
tion of the content can be found in Chapter 5)

4. A development of a mapping framework to map a recognised movement
to a robotic hand. The framework comprised of two steps: mapping skill
parameters to a robotic hand and interpolating between two robotic hand
postures. A method to interpolate between robotic hand postures in a
topological space is described. Human regrasping movement is reproduced
and executed in a custom-made robotic hand to test and verify the proposed
methodology. (Explanation of the content can be found in Chapter 6)

1.4 Organization of Thesis

Figure 1.1 shows a diagram of how the content are related to each other. The
remainder of this thesis is organized as the followings:

In Chapter 2, a LFO paradigm is described. Based on the literatures, a
method to design a system using LFO paradigm is explained. An overview of
the proposed system is also given in the chapter.

Chapter 3 begins with an explanation on Gauss Linking Integral (GLI). A
visualization of GLI is given together with how to calculate it, with the purpose
of enhancing an understanding on the topic. Writhe matrix is also introduced
in the chapter. It is a topological representation that is used throughout the
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proposed method. The chapter ends with an explanation of how to represent
hands and object as strands.

In Chapter 4, human regrasping movement is analysed with various features
in a topological representation. Two method to segment the movement is ex-
plained. A classification of writhe matrice into two types is also explained here.
The chapter is concluded with experimental results of both methods and their
comparison.

Chapter 5 describes a task model used in the system and how to recognise
it. A task model is the main component of the proposed system. The task
model dictates what is important and to be recognised in human regrasping
movement. The proposed task model is build upon a classification of writhe
matrices. A grasp taxonomy to classify grasping postures is described. This leads
to the definition of the task model: movement primitives and skill parameters.
Then a method to recognise movement primitives and extract skill parameters
from human regrasping movement is explained. The chapter concludes with
experimental results of a recognition of regrasping movements.

In Chapter 6, a method to map a regrasping movement to a robotic hand is
illustrated. The chapter begins with a method to refine skill parameters obtained
from human demonstration. These skill parameters cannot be used directly
to map the movement to a robotic hand. They are refined based on several
constraints that would allow them to successfully generate a movement that can
be used on the robotic hand. After that, a framework to map the movement
to a robotic hand is explained. The framework describes how to generate a
movement for each movement primitive in the topological space. It uses the
knowledge extracted from human demonstration. The chapter then concludes
with experimental results of mapping an example demonstrated movement onto
a robotic hand.

Chapter 7 concludes the study in this thesis. The discussion describes an
advantage of the proposed method. Future directions to improve and expand
the method is given at the end of the chapter.
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In this chapter, an overview of proposed system is explained. An objective
of Regrasping Planning from Observation (RPO) system is to allow a robot to
imitate a regrasping movement shown by human. The design of the system is
based on LFO paradigm. The key idea is to enable a system to observe human
performing a regrasping movement, understand it, and duplicate the movement
as similar as possible.

This chapter begins by explaining LFO paradigm, and how to design a system
using LFO. Then, the chapter is concluded with an outline of the proposed RPO
system.

2.1 Learning from Observation (LFO)

LFO, or sometimes refers to as Programming by Demonstration (PbD), is a
paradigm to teach a robot to imitate various tasks from human. Human per-
forms a desired task in front of a robot. The robot observes the task through
many sensors, and try to recognise it. Once the robot obtains all the required
knowledges, it performs the task on its own with minimum human intervention.
There are various techniques and has been applied in many robotic applica-
tions. In general, these techniques can be divided into two categories [Billard
et al. 2008]: imitation on trajectory level and imitation on symbolic level.
Imitation on trajectory level can be considered as an advanced version of
teleoperation. In traditional teleoperation, trajectory of human movement is

11
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captured and directly played back on the robot. Movement can be represented
in various forms, e.g. a joint space or a position and orientation of an end
effector, depending on a purpose of the movement. However, this direct playback
approach has a drawback that the captured trajectory is often redundant. Some
part of the movement is not really necessary to duplicate the original task. In
conventional teleoperation, or LFO on trajectory level, the captured trajectory
is modified before playing back on a robot. Various techniques, mainly are based
on statistic, are proposed and applied on a captured trajectory, in order to retain
only an essential information enough to reproduce an original task.

Imitation on symbolic level, on the other hand, uses a different approach to
imitate a task. A model use to represent a task is first defined. This model
contains an information of what is a necessary information to duplicate the task.
A robot then recognises these informations from the captured trajectory to decide
which task and how to perform the task. The model of a task can either be
defined manually from human, or be extracted from multiple demonstrations of
the task.

In this thesis, an imitation on symbolic level is used to teach robot a regrasp-
ing task. Specifically, it adopts an approach that was used to teach an assembly
plan to a robot [Ikeuchi & Suehiro 1994]. The difference from other approaches
is that it focuses on a particular domain of task, rather than a specific task. The
model for imitation will be defined for the task domain. An advantage is that
the defined model is more general, or in other word, the model is applicable for
all movement in the task domain, not only to a specific movement.

2.1.1 Designing LFO System

To design a system using LFO paradigm, the most crucial component is a model
for imitating a task. It is sometimes referred to as a Task Model. Two funda-
mental questions are needed to be answered in order to define a task model.

1. What to Do? What is an abstract representation that uses to represent
a task, and how to recognise it? An abstract representation is usually
described as a set of movement, often referred to as movement primitive.

2. How to Do? How to map each movement primitive to a robot, and what
are the necessary parameters to describe each movement primitive? These
parameters are usually referred to as skill parameters.

Teaching a task to a robot using LFO is divided into three phases: obser-
vation, recognition, and mapping. In observation phase, robot observes human
performing a task through a set of sensors. During recognition phase, robot
recognises human demonstration into a sequence of movement primitives, which
in turn represents an original task. In mapping phase, the robot duplicate a
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Figure 2.1: LFO paradigm consists of three important phases: observation, recog-
nition, and mapping. Task model is an important element for a robot to recognise
and understand a demonstration from human. It consists of movement primitives
and a set of skill parameters for each movement primitive.

task by performing each movement primitive sequentially. The skill parameters
extracted from human demonstration is used as an initial clue for the robot to
perform each movement primitive.

An abstract representation, or a set of movement primitives, is a vital com-
ponent for any LFO system. It bridges observation phase and mapping phase
together. It is also used as a main element during recognition phase. Movement
primitive is considered as a symbolic representation which is abstracted from
both human and robot. By referring to abstraction, it means that a movement
primitive performs on any human or robot is considered identical regardless of
their structure.

In order to define a set of movement primitives for a specific task domain, a
task or a movement must be characterised and classify into recognisable states
using some criteria. A transition between these states will then be classified
or grouped into one type of movement primitive, depending the nature of that
particular problem.

Assembly Plan from Observation (APO) was one of the pioneer using this ap-
proach to design LFO system [Ikeuchi & Suehiro 1994, Suehiro & Tkeuchi 1992].
A system to teach an assembly task to a robot was developed. Assembly task is
classified into various states based on their face contact relation. A total of thir-
teen movement primitives connect these states together. When human demon-
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Figure 2.2: In a LFO paradigm, a specific task domain is represented and char-
acterised by states, which are classified into groups by some criteria. State tran-
sition is a finite state machine that represents possibles changes. Movement
primitives of a task model can be defined by (grouping) these transitions.

strates assembly task in front of a TV camera, movement primitive together
with corresponding skill parameters are recovered from an image sequence by
the recognition module.

An enhanced version of APO system was developed to deal with rotation
movement in assembly plan [Takamatsu et al. 2007]. Contact relation between
object was used as a representation; however, it is not used to classify a task
because there would be an infinite number of states when any contact relations
other than face contact relation are considered. States are characterised by types
of legal infinitesimal displacement of an object, referred to as motion-DOF in that
particular object configuration. Then, a set of movement primitives are defined
based on changes of types of displacement.

Knot Planning from Observation (KPO) used the paradigm to construct a
system to teach knot tying task [Takamatsu et al. 2006]. A P-Data representation
is used to describe and characterise knot states. Although there is an infinite
number of knot states classified by this P-Data representation, a set of four
movement primitives is defined on this representation. This is because based on
a knot theory, only four movements are required to tie any types of knot for a
pair of opened strings.



CHAPTER 2. Regrasping Planning from Observation (RPO) <4 15

LFO paradigm is also applied to teach a humanoid robot to imitate dance [Nakaoka
et al. 2007]. A leg task model is defined to allow a biped robot to imitate a lower
body movement of a Japanese dance. States in the system are classified by a
waist location and contact relation between each leg and a floor. Transitions
between these states are then group into four types of movement primitives.

2.2 Outline of RPO System

RPO is designed to teach a robot to imitate regrasping movement from human.
It follows the LFO paradigm explained in Section 2.1. The teaching process
can be divided into three phases: observation, recognition, and mapping. In an
observation phase, robot observes a regrasping movement from human demon-
stration through a data acquisition system. Robot, then tried to understand and
recognise an important information based on a pre-defined model in a recogni-
tion phase. Finally, in a mapping phase, robot uses a recognised information
to reproduce a regrasping movement on its own hand. Figure 2.3 illustrates the
outline of RPO system.

A data acquisition system observes a human regrasping movement through
a motion tracker and a data glove. Data captured at a particular moment are
a configuration of human hand, position and orientation of both human hand
and a manipulated object. These data are referred to as a grasping posture. An
observed regrasping movement, hence, is a sequence of grasping postures.

In a RPO system, task model is designed based on tangle topology. Tangle
topology is a geometric property that describes the relation between two strands.
Hand and the manipulated object are considered as zero-width strands. This
allows each grasping posture to be considered as a tangle relation between strands
representing hand and object. Contact relation between hand and object can
then be realized from this tangle relation. Taxonomy of grasping postures is
constructed based on contact relations, which will, in turn, use to classify states
in the regrasping movement. Three movement primitives, a main element of the
task model, are defined as movement that transfers a grasping posture from one
state to another.

To simplify a complexity of the problem, a current task model is designed for
a regrasping movement of a pen-like object (e.g. pen, paintbrush). It should,
however, be applicable with any object that could be represented with one strand.
Designing a task model of regrasping movement for an arbitrary object is our
final goal, but this raises various difficult issues, such as how the object should be
represented by strands, or how to map the movement primitives that interacts
with more than one strands at the time.

An observed regrasping movement is segmented into many shorter sequences.
They are then recognised into states of grasping posture. The pre-defined task
model and these states information allow movement primitives to be recognised.
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An original regrasping movement is thus then be represented as a sequence of
movement primitives. Once regrasping movement is represented as a sequence
of movement primitives, skill parameters are used to describe how to reproduce
each movement primitives. A set of required parameters is different depending
on a type of movement primitives. These parameters are extracted directly from
the observed movement. A small modification of these parameters is applied
before reproducing each movement primitive. The objective of this parameter
refinement is to make these parameters obeyed the physical constraints in the
target environment.

A regrasping movement is duplicated on a target robot hand to verify the
proposed task model. In a mapping phase, movement primitives that represent
an original regrasping movement are mapped onto a robot hand sequentially.
Framework to map movement primitive to a robot hand are presented. It is based
on the interpolation in topological space. Each type of movement primitives are
interpolated differently depending on its characteristic.
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Gauss Linking Integral (GLI) is a topological representation that used through-
out the system. It is very important that it is explained properly in details. GLI
represents a geometric property between two parametric curves. However, for
any curves that are represented by a sequence of line segments, they are calcu-
lated differently using the analytical approach. A writhe matrix is a by-product
of the calculation. To use the representation on regrasping movement, the fun-
damental idea is to consider the hand and manipulated object as strands. This
allows a grasping posture to be considered as a tangle relation between strands of
hand and an object. Consequently, regrasping which is an alteration of grasping
postures over time can be examined as a sequential altering of the tangle relation
of the strands.

In this chapter, GLI is described together with its visualisation. Then one of
the analytical approach to calculate GLI is explained. The chapter is concluded
with an explanation of how hands, both human and robotic, and object are
represented as strands, together with some examples.

19
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Figure 3.1: Signed crossing and linking number between two closed curves.

3.1 Gauss Linking Integral (GLI)

Linking number of two closed curves describes the number of times that each
curve tangles around the other in three dimension space. This number is invariant
to the viewing direction. A straightforward method to calculate a linking number
of two curves can be done by projecting the two curves into a chosen plane and
summing up their signed crossings.

Figure 3.1(a) illustrates two types of crossing between two line segments: a
positive crossing and a negative crossing. Considering the segment on top, a
crossing is positive if the angle(< 7) is required to rotate its arrow onto the
arrow of the bottom segment is counter-clockwise; otherwise, it is negative [Au
& Woo 2004]. Linking number is equal to half of a sum of all signed crossings
between two curves.

Linking number can also be calculated using Gauss Linking Integral (GLI)
for two mathematically-defined curves. Let v, and 7, represent two curves, GLI
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of the two curves is computed by the following equation :

R N e e 3.)
| A

In short, it is a number of average crossing between two curves when viewing
from all viewing directions in three dimensional space. Note that Gauss Link-
ing Integral (GLI) of two zero-width curves can be directly used to describe a
linking number of the two curves; however, this is not the case when a ribbon is
considered [Dennis & Hannay 2005].

3.1.1 Visualisation of GLI

To understand the geometric interpretation of GLI equation, the concept of cross-
ing between two line segments is first explained. Considering a point 7; on a
line segments dvy; and a point 5 on a line segments dv,, two line segments are
crossed if and only if there is a line of sight 717 connecting between the two
points [Au 2008].

All line of sights between any two points on line segments, dv; and dvs, can be
combined into an angle d€2 in a three dimensional space. Considering a segments
d, as a source of viewing, points 7, ; and 7,, ; as the starting and ending points
of a segment dr,,, all line of sights from a point ~; ; to segments d~y, are described
by triangle Av; ;v2,72,;. Similarly, all line of sights from a point v; ; to segments
dry, are described by triangle Ay jv2,72,;. dS2 is then an angle at the top of a
quadrangular pyramid that connects the two triangle together by moving ~; ; to
Y15 as shown in Figure 3.2. Note that A~y ;9272 becomes Ay ;75,75 ; once
moved.

The angle df2 at the top of the quadrangular pyramid v; ; can be formally de-
fined as a solid angle. Considering the quadrangular pyramid with v ;7272572 ;
as a quadrangular base, an area of the quadrangular is equal to dA" = dvy; X ds.
Adjusting the quadrangle so that it is perpendicular to a line of sight %—y; =
Y9 — 71, its area can now be expressed as

g = dnxde-(e—m)

3.2
TE— (3.2)

The solid angle df2 that represents all line of sights between two line segments,
dy, and drys, is given by

dA _ dyy X dyz - (ya —71)

dQ) = =
||72 —71||2 ||72 —71||3

(3.3)

where ||y2 — 71 ]|* normalises the area onto a unit sphere.

GLI in Equation (3.1) is simply a summation of all solid angle between two
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Figure 3.2: Line of sight between two line segments. The combination of these
lines of sight can be visualized as a quadrangular pyramid.

curve segments, where the number of crossing is averaged by dividing with 47
which is a total solid angle in a unit sphere.

3.1.2 Calculation of GLI

GLI cannot be calculated directly from Equation (3.1), when curves cannot be
represented by a closed form function, but a chain of line segments. Consider
two curves S7 and S,, each curve is represented by line segments of n; and ns
segments respectively. GLI of the two curves can be calculated by a summation
of a GLI of every pair of line segments. Klenin and Langowski proposed four
analytical solutions for calculating a GLI of two line segments [Klenin & Lan-
gowski 2000]. One of the solution which is based on pure geometry is described
in this subsection. In short, it described a method to calculate the solid angle
between two line segments explained in Section 3.1.1.

For simplicity, a notation is redefined. Consider a line segment (with direc-
tion) r,, with points a and b as its starting and ending point, and a line segment
(with direction) r.y with points ¢ and d as its staring and ending point. A quad-
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Area on Unit Sphere = 4rn

Q' (Solid Angle)

Figure 3.3: A quadrangular base of the pyramid is projected onto a unit sphere by
extending the rays that connect to the apex. A solid angle €2* can be calculated
by angles of the quadrangular base on the sphere; Q* = a + 4+ 7+ € — 27.

rangular pyramid can be constructed using a concept of line of sight as described
in Section 3.1.1. GLI of these two line segments are defined as 2/4r, where ) is
a solid angle of the quadrangular pyramid. A solid angle is defined on a unit
sphere. To calculate €2, the quadrangular base of the pyramid is projected onto
a unit sphere by projecting rays that connected to the apex of the pyramid to
create a new quadrangular base as shown in Figure 3.3. The ©2*, or in other word
the area (positive) of this quadrangle on a united sphere, can then be calculated
by

M'=a+p+7+¢€—2m, (3.4)

where «, (8,7, € are angles of the quadrangle base on a solid sphere.

Giving that ry., req, e, pg 1S a vector connecting points a-c, a-d, b-¢, b-d re-
spectively, unit vectors normal to the planes bounding the pyramid can be de-
scribed as

Tge X Tgq Tgq X Tpg
n, = 5 n, = 5
[Tac X Tadl| [Taq X Toal|
n, — _Tbd X The ny = _Tbe X Tac_ (3.5)

[|Tpa x I'bc”’ [|Tpe X raCH'
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0.125 ] 0.047 | 0.004 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
0.047 ] 0.125 | 0.018 | 0.003 | -0.001 | 0.000 | 0.000 | 0.000 | 0.000 [ 0.000 | 0.000
0.009 | 0.047 | 0.038 | 0.010 |-0.002 | 0.000 | 0.000 | 0.000 | 0.000 [ 0.000 | 0.000
0.003 | 0.009 | 0.018 | 0.019 [-0.010(-0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
0.001 | 0.003 | 0.004 | 0.009 |-0.029|-0.007(-0.001| 0.000 | 0.000 [ 0.000 | 0.000
0.001 | 0.001 | 0.001 | 0.002 |-0.014|-0.024(-0.010|-0.001]-0.001 [ 0.000 | 0.000
0.000 | 0.001 | 0.001 | 0.001 |-0.003|-0.008[-0.046|-0.013]-0.003 [-0.001| 0.000
0.000 | 0.000 | 0.000 | 0.000 |-0.001|-0.001(-0.012|-0.058|-0.034(-0.003 |-0.001
0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 [-0.001|-0.012|-0.143]-0.020|-0.003
B 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |-0.001|-0.025(-0.047|-0.018

Jl 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |-0.003[-0.014|-0.239

Figure 3.4: An example of a calculation of a writhe matrix of a pair of curves.
A total writhe of the writhe matrix is equal to -0.2630.

Angles of the quadrangle base can then be expressed as, a = arccos(—n,n,) =
m/2 + arcsin(ngn,), S = 7/2 + arcsin(nyn,.), 7 = 7/2 + arcsin(n.ny), and € =
m/2 4+ arcsin(ngn,). This results in GLI of the two line segments as,

Q kY
4m 4w
k
= (arcsin(ngny) + arcsin(nyn,) + arcsin(n.ng) + arcsin(ngn,)), (3.6)
T

where k = 1 % sign((req X rep) - oe) indicates sign of GLI value.

3.1.2.1 Writhe Matrix

A writhe matrix [Ho & Komura 2009a] is a by-product from the calculation
of GLI between two curves that are represented as a chain of line segments.
Considering two curves S; and Sy, each curve is represented by a chain of line
segments of n; and ny segments respectively. A writhe matrix (7) is a ny X no
matrix whose element 7;; is the GLI between segment 7 of S; and segment j of
S, which calculated using a method explained previously in the section. GLI
between two curves, or sometimes referred to as total writhe, is a sum of the
GLI of every pair of segment. Note that the terms total writhe and writhe might
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be used interchangeably. Figure 3.4 shows an example of writhe matrix between
two curves together with its total writhe value.

3.2 Representing Hands and Object as Strands

To analyse and imitate a human regrasping movement using tangle topology, the
structure of a human hand, a robotic hand, and a pen must be represented as
strands (or curves). Each strand is a zero-width strand which deforms accord-
ingly to the object it represents. To start with, hands substituted with the same
number of strand as the number of their fingers. Each strand is directly substi-
tuted for each finger. The pen is substituted with one straight strand. Without
a loss of generality, direction of the strands of the hands are chosen to be from
the tip of the fingers to their proximal joint and direction of the strand of the
pen is chosen to be from the bottom to the tip of the pen. Figure 3.5(a) shows
how hands and pen are substituted with strand structure.

An alternative method to represent the hands is shown in Figure 3.5(b). Hand
are substituted with strands, where each strand is a connection between the tips
of any two fingers. In case of a hand with five fingers, the hand is substituted
with (g) = 10 strands. Similarly, the direction of the strands starts from the tip
of the former to the latter finger.

In general, the former representation is used throughout this research. How-
ever, the latter is used in some situations, which will refer to the representation
as an alternative representation of hands.

3.2.1 Experimental Results

Writhe matrices between fingers and a pen are the fundamental features in a
tangle topology used throughout the system. This section shows some calculated
results of writhe matrices of grasping postures. Writhe matrices of a grasping
posture of human hand is calculated, followed by a grasping posture of a robotic
hand.

Figure 3.6 shows calculated writhe matrices of an example of a human grasp-
ing posture. Both strand representations of the hand are considered, and the
corresponding write matrices of some fingers are calculated for comparison. It
can be noticed that the writhe matrix shown in Figure 3.6(b) is a combination
of thumb-pen and (minus of) index-pen writhe matrices shown in Figure 3.6(a).
This is because both strand representations contains common line segments,
e.g. strand that represents thumb-index finger has common line segments with
strands that represent thumb and index finger.

Similarly, Figure 3.7 shows calculated writhe matrices of an example of a
grasping posture of a robotic hand. This can be done easily because of an
abstraction of a strand representation. In other words, there is no distinction
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st

Each finger represents by one strand.

(a) Hands and a pen are represented with zero-width strands. For a hand, each finger is
represented with a strand. Thus, five strands is needed a five-finger hands. One strand
is used to represent a pen. The direction of strands effect the sign of the calculate
writhes. Without a loss of generality, the direction of strands of the hands are from
their tip to the corresponding proximal joint and the direction of the strand of a pen

is from its bottom to its tip.

8 Siiddle-little
: Smiddle—ring A

10:S 5: Sindexflittle

: Sindex—ring

* Sindex-middle

12 SthumbHittie
2 Sthumb-ring
8¢ Sthumb-middle

4: Sthumb-index

Each strand connects the tip of a pair of fingers.

(b) An alternative representation of how to rep-
resent a hand. Each strand connect tips of two
fingers. Human hand can be represented by a
total of ten strands.

Figure 3.5: Representing hands and an object as strands.



CHAPTER 3. REPRESENTATION OF HANDS AND OBJECT

27

thumbl

index
finger

middle
finger

pen

S
>

0.000

0.001 [ 0.001

0.004

0.020

0.056 | 0.014

0.003

0.001

0.001

0.001 | 0.002

0.007

0.013

0.010 | 0.003

0.001

0.001

Writhe matrix of a thumb and a pen (total writhe = 0.137).
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Writhe matrix of a index finger and a pen (total writhe =
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-0.029(-0.014

-0.005

-0.002

Writhe matrix of a middle finger and a pen (total writhe = -0.381).

(a) An example of a grasping posture of a human hand is given. Three writhe matrices of
three pairs of strands (thumb-pen, index-pen, middle-pen) are calculated, together with their
total writhe. It can be noticed that a sign of a total writhe of the thumb-pen writhe matrix
is opposite to the others. This is because the thumb is on the different side of the pen, when
comparing to the index and middle finger.
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Writhe matrix of a thumb-index and a pen (total writhe = 0.350).

(b) Writhe matrix of a human grasping posture shown in Figure 3.6(a) is
calculated, together with its total writhe. It is a writhe matrix of a pair of
strands; one represents a thumb-index finger as illustrated in Figure 3.5(b),
and the other represents a pen.

Figure 3.6: Writhe matrices of a grasping posture of a human hand.
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0.001 | 0.003 | 0.007 | 0.026 | 0.104 | 0.087 | 0.018 | 0.005 | 0.002
0.001 | 0.003 | 0.005 | 0.010 | 0.013 | 0.008 | 0.004 | 0.002 | 0.001
0.003 | 0.005 | 0.006 | 0.008 | 0.007 | 0.005 | 0.003 | 0.002 | 0.001

Writhe matrix of a thumb and a pen (total writhe = 0.339).

pen

0.001 | 0.001 | 0.001 | 0.002 | 0.003 | 0.006 | 0.010 | 0.014 | 0.014
0.001 | 0.001 | 0.001 | 0.002 | 0.003 | 0.005 | 0.006 | 0.005 | 0.004
0.001 | 0.001 | 0.002 | 0.003 | 0.003 | 0.004 | 0.003 | 0.002 | 0.002

Writhe matrix of a index finger and a pen (total writhe = 0.101).

pen

-0.002|-0.003 |-0.008-0.028-0.096-0.079(-0.021|-0.007|-0.003| | middle
-0.001]-0.002|-0.004|-0.008|-0.015|-0.016|-0.008|-0.004|-0.002 | | finger
-0.001[-0.001[-0.002|-0.003|-0.004 -0.004] -0.003 | -0.002 | -0.001

Writhe matrix of a middle finger and a pen (total writhe = -0.326).

Figure 3.7: An example of a grasping posture of a robotic hand is given. Three
writhe matrices of three pairs of strands (thumb-pen, index-pen, middle-pen) are
calculated, together with their total writhe. It can be noticed that a sign of a
total writhe of the middle-pen writhe matrix is opposite to the others. This is
because the middle finger is on the different side of the pen, when comparing to
the thumb and index finger.

between two types of hand, as long as they are represented as strands, they are
treated the same in tangle topology.
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In this chapter, methods to segment regrasping movements are described.
An objective of the segmentation is to divide a human movement into sequence
of shorter movements, which will later be classified into more meaningful repre-
sentation. A tangle relation of hand and object during regrasping are analysed.
Methods to segment a regrasping movement based on features in tangle topology
are proposed and compared.

The chapter starts by reviewing literatures on human manipulative move-
ment. Then features in topology space for analysing regrasping movement are
described, followed by the proposed segmentation methods. The chapter con-
cludes with the experimental results and their comparison.

29
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4.1 Studies on Human Prehensile Movements
and its Segmentation

Human prehensile movement has been widely studied in a medical field. Most of
which focus on classifying and categorising types of static human grasps. More
detail review on these classifications is given in Section 5.1.1. However, there
is only one classification to provide clear definition on types of dynamic hand
prehensile movements. Elliott and Connolly classified dynamic human prehensile
movements (referred to as intrinsic movements in the paper) as either simulta-
neous or sequential movement patterns [Elliott & K.J. 1984]. Movements are a
simultaneous movement when all fingers moves in a co-ordinated pattern, while
fingers move independently depending on its roles in a sequential movement.

In general, most methods analyse and segment human prehensile movement
based on changes of some particular features. The movement is segments into
shorter movements, where each of them will be recognised into meaningful states
based on some classification or pre-defined model. Features used to analyse and
segment the movement can be broadly divided into two groups: features that
are derived from the trajectory of the hand based on a particular characteristic
or relation, and features as a contact relation.

Kang and Ikeuchi used hand fingertip polygon and hand volume sweep rate
to temporally segment hand movement into pregrasp, grasp and manipulation
phase [Kang & Tkeuchi 1995]. However, they considered only a homogeneous ma-
nipulation which is not involved in a change of fingertip or grasp type. Zacksen-
house and Moestl proposed a method to segment human manipulative movement
based on phase-plane [Zacksenhouse & Moestl 1999]. Two most active joints de-
fine a phase-plane for each movement. The segmentation is conducted based on
the assumption that the trajectories of simultaneous movement are linear due to
the coordination of both joints. However, for sequential movements or complex
movements, the method would require multiple phase-planes as a segmentation
feature.

Dejmal and Zacksenhouse extended the idea of the correlation structure of
joints during the manipulative movement [Dejmal & Zacksenhouse 2006]. They
applied Principal Component Analysis (PCA) onto all joints of the hand during
the repetition of simultaneous hand movement. It appeared that the 15 Principal
Component (PC) accounts most of the variance and captures well the complete
movement. The segmentation method is conducted the 1°* PC when it reaches
an extreme point. Vinayavekhin et al. also applied similar approaches on more
complex movements [Vinayavekhin et al. 2009]. However, they used the first
three of PC instead as suggested by the experimental results.

Using contact relation as a segmentation feature is a prominent choice, as
most manipulative movements changes a contact between hand and object in
order to change a grasp configuration. An obvious approach to observe the
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changes of contact is to use a tactile sensor [Yousef et al. 2011, Johansson &
Flanagan 2009]. Zollner et al. used an observed force value to distinguish and
segment a prehensile movement into three different phases: static grasp, exter-
nal forces, and dynamic grasps [Zollner et al. 2002]. Then a Support Vector
Machine (SVM) classified were used to identify the type of each dynamic grasps.
Bernardin et al. combined pressure value from the tactile sensor array and joint
angle information as features for Hidden Markov Models (HMM) [Bernardin
et al. 2005]. The proposed method segmented a human movement into shorter
movement, which can be classified into one type of grasp. Kondo et al. attached
a tactile sensor sheet on the object to capture pressure value during in-hand
manipulation movement [Kondo et al. 2008]. A pre-defined contact state on the
hand is discovered by processing a pressure distribution image. The movement is
segmented into a transition of contact states using a dynamic programming. Sim-
ilarly, Faria et al. segmented in-hand manipulative movement into a transition of
pre-defined contact states [Faria et al. 2012]. However, the tactile sensors were
attached directly onto human hand, and Bayesian model was used to continuous
classify and segment the movement.

An alternative approach to observe contact relation is to demonstrate a move-
ment in a virtual environment [Aleotti & Caselli 2006]. In general, a glove data
and motion tracker are used to track hand configuration and location. The
demonstration is then performed in the virtual environment, while a physic col-
lision engine simulates and provides a precise contact information. Scharfe et al.
developed the system for Shadow Hand model, and demonstrated in-hand ma-
nipulative movement of a wooden block [Scharfe et al. 2012]. The system shown
a promising capturing results of the contact information; however, a method to
segment and recognise the movement were not given.

4.2 Features for Segmentation

In this research, features in topology space are used to segment a human re-
grasping movement. T'wo sets of features are proposed based on writhe matrices
between strands of fingers and object. Attributes of both sets of features are
extracted from writhe matrices depending how they are perceived. The first
set of features is called topological coordinate, and it models all writhe matri-
ces identically. Topological coordinate consists of three attributes that describe
each writhe matrix. On the other hand, the second set of features is based on the
idea to distinguish writhe matrices into two types. The classification of writhe
matrices depends on whether there is a contact relation between fingers and the
object that constitute them.
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Figure 4.1: A topological coordinate of writhe matrix. [Ho & Komura 2009a].

4.2.1 Writhe matrices as Topological Coordinate

Consider a writhe matrix 7" which is calculated from strand S; of size n; and
strand Sy of size ny, a topological coordinate of the writhe matrix of size ny x no
is consisted of three attributes [Ho & Komura 2009a: writhe (w € R), center
(c € R?), and density (d € R). The first attribute, w, is simply a sum of all

elements of writhe matrix.

The other attributes are introduces based on the characteristic of the writhe
matrix. Center, a two dimensional vector (¢;, ¢;), describes an overall location of
the tangled area. The first element ¢; indicates the position on strand S; where a
center of the tangle formed by S5 is, whereas ¢; indicates the position on strand
Sy where the tangle formed by Sy is centered. Center is calculated by computing
the center of mass of all elements in writhe matrix as the following,

niy n2 ny n2
2122 W 212] Ti; n
c=(ci,c;) = ket e ot e S I (4.2)

w 27 w 2
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(a) Grasping postures with differ- (b) Grasping postures with differ-
ent values of writhe. It can be no- ent values of center (¢, which rep-
ticed that a writhe of the left pos- resents a location of the tangle on
ture is close to zero. the pen).

~

) Grasping postures with differ-
ent values of density.

Figure 4.2: Grasping postures with different topological coordinates when con-
sidering writhe matrices of thumb-index and pen.

Density describes how the two strands are tangled around each other. It indicates
how much the tangle area is concentrated at one location along the strands.
Density is defined by the angle made between the principle axis and the diagonal
line as shown in Figure 4.1(b), once the writhe matrix is scaled to a square writhe
matrix.

When S; and Sy are strands representing fingers and a pen as described
in Section 3.2 with the alternative representation of hands, each attribute of
topological coordinate can be interpreted as the following. Writhe describes the
number of tangle on the pen made by two fingers. Since the number of tangle is
usually either 0 or 1 (and -1), the attribute indicates whether a particular pair
of fingers is wrapping around the pen or not. Since the pen does not deform
and wrap around the finger, ¢; of center indicates the average location on the
finger that tangles around the pen and c; of center indicates the average location
on the pen that is tangled by the finger, if any tangle exists. Finally, density
indicates the orientation of the two fingers with the pen, if the tangle existed
between them. Figure 4.2 illustrates pairs of grasping postures that have different
topological coordinate. It emphasised the different of each attribute separately.
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4.2.2 Writhe matrices as Peak-wm or Span-wm

The structure of a human hand and a manipulated object (pen-like object) are
represented as strands described in Section 3.2. One strand from the hand and
another strand from the object form a pair of strands. It is these pairs of strands
whose writhe matrix will be analysed.

In general, writhe matrix could be in various shapes depending how the two
strands are tangled together. Ho and Komura proposed a method to encode
writhe matrices of motions of characters, and use it to retrieve similar mo-
tions [Ho & Komura 2009b]. However, in a very specific case where a finger
can barely tangled around the object more than one round, writhe matrices
could be examine differently.

Based on an observation and analysis of writhe matrices of various human
manipulative movements, e.g. movements in the performance of Japanese tea
ceremony, movements of artists during painting, writhe matrices of hand ma-
nipulative movement can be broadly classified into two types: peak-type writhe
matrix (peak-wm) and span-type writhe matrix (span-wm).

e Peak-wm (77) is a writhe matrix whose majority of non-zero elements
are concentrated at a specific area. This type of writhe matrices is used
to represent grasping postures where the corresponding finger is in contact
with the object.

e Span-wm (7%), in contrast, is a writhe matrix whose non-zero elements
are spread across the matrix. It represents grasping postures where the
corresponding finger is located at some distance from the object.

Figure 4.3 illustrates an example for each types of writhe matrices, where the
thumb finger of grasp posture in the figure are in contact with a pen and the
index finger is not.

The classification of writhe matrices is also comprehensible from Equation (3.1).
The denominator of GLI is (a power of three of) a distance between two curves
or two line segments, when curves are represented with line segments. It greatly
affects the value of the writhe. When a finger is in contact with a manipulated
object, portions of line segments that represent the finger and the object are
close together. This leads to higher writhe values in a specific area of the writhe
matrix which is referred to as peak area.

For both types of writhe matrices, writhe is not only reflecting the average
distance of the finger from the object, but also indicating the orientation of the
finger to the object with its value and its sign. In Equation (3.1), each strand
is assigned with the direction. Sign of writhe is determined by the numerator.
Depending on the direction of strands of the finger and the object, writhe changes
its sign.
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Figure 4.3: Example of two types of writhe matrices. Writhe matrix between
thumb and pen is peak-wm (sign+), while writhe matrix between index finger
and pen is span-wm (sign-).

In short, two types of writhe matrices distinguish whether there is a contact
relation between the finger and the object. The segmentation method described
later in the chapter is based on this concept.

4.2.2.1 Exceptions : Writhe matrices as Zero-wm

It can be noticed that writhe matrix (or a GLI) is a representation that embeds
a lot of information and is very rich in its own. However, there are some cases
that it cannot represent well. To illustrate this, GLI equation is again examined.
Consider two line segments dvy;,dv, and Equation (3.1), a writhe between the
two segments is equal (or close) to zero in three situations:

e when dv; and dv, are parallel to each other (dy; x dvy, = 0),
e when dv; and dv, are on the same plane (dvy; X dvyy - (72 —71) = 0),
e when dvy; and dv, are far away from each other (||y2 — 71| is large).

All three situations are shown in Figure 4.4(a).
When considering a writhe matrix calculated from a grasping posture, it is
very rare that a finger and a pen would be in the orientation that all elements of
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(a) Special situations of two line segments where their writhe is equal (or close) to zero.

!

dy, /1 dy, (dy,x dy,) L(y,-7) v, =7 is large

(b) Writhe matrices between the index finger and the pen of these grasping
postures are classified to be zero-wm.

Figure 4.4: Zero-wm: a special case of span-wm.

their corresponding writhe matrix would be all zeros. However, there are specific
cases that most elements of the writhe matrix would be close to zero, which
result in its total writhe to be close to zero as well. In this specific case, the
writhe matrix is referred to as a zero writhe matrix (zero-wm), a special kind of
span-wm. Grasping postures whose writhe matrices between index finger and a
pen is considered to be zero-wms are illustrated in Figure 4.4(b).

4.3 Temporal Segmentation of Regrasping Move-
ment

A data acquisition system captures a regrasping movement into a time series of
grasping postures. Writhe matrices of all grasping postures in the sequence are
calculated for all pairs of strands depending on the chosen representation of the
hand. The regrasping movement is then segmented into many shorter movements
based on some features. This section explains two segmentation method based
on topological coordinate and types of writhe matrices.
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Figure 4.5: Regrasping movement as a transition of tangled states.

4.3.1 Method based on Topological Coordinate

Once a human hand and an object are represented as a combination of strands,
grasping posture is simply a collection of tangles between these strands which
can be described through a topological coordinates. In a similar manner, the
regrasping movement can be perceived as a sequence of topological coordinates
between the hand and the manipulated object over time. By observing a human
hand during regrasping and analysing the tangle relation between the strands
of a human hand and the object, it can be seen that there is a time period
where tangle relationships of every pair of strands are not changed. In other
words, if a Tangled State describes an unspecific-length time period where some
specific attributes of topological coordinates of every concerned pair of strands
remain, somewhat, constant, the regrasping movement can then be referred to
as a transition of tangled states as shown in Figure 4.5.

A regrasping movement is segmented into many shorter segments, where each
segment is referred to as a tangle state. Within a state a specific attribute of
topological coordinates for related strand pairs remain consistent. In this subsec-
tion, segmentation methods based on each attribute of topological coordinates
are described.

A human hand is represented with alternative representation explained in Sec-
tion 3.2. In this method, only the tangle relation between three strands of the
hand {Sthumbfindexa Sthumbfmiddlea Sinde:tfmiddle} and a strand of the pen are con-
sidered. They are the strands that represent a connection between thumb, in-
dex and middle finger. By considering only the three fingers, the complexity of
analysing a tangle relation between a human hand and the manipulated object is
greatly reduced as well as the complexity of the proposed segmentation method.

Considering a pair of strands (S, S,), S, one of the three strands {Sy;, Sim, Sim }
from a strand structure of human hand and S, is a strand representing a pen,
writhe value of this pair of strands is described by wg, s, = GLI(S}, S,). Since
it is almost impossible for humans to use only two fingers to wrap around any
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Figure 4.6: Sample graphs of writhe and its normalised of three pairs of strands:
red= thumb-index and pen, green= thumb-middle and pen, blue= index-middle
and pen

object more than one round, the normalised writhe wg, g, is defined as :

1 w5h57, Z 5
wg, s, = 0 —0 < wgs, s, < o, (43)
—1 wg, s, < —0

where 0 < 0 < 1 is a threshold value to separate whether there is a tangle
between the pair and the plus/minus sign indicates the direction of the tangle.

Considering the three pairs of strands concerned, {Sy;|Siun|Sim} pairs with
Sy, their writhe over time during a sample regrasping movement is shown in
Fig. 4.6(a) and their normalised writhe over time in Fig. 4.6(b). In the later
figure, the regrasping movement is segmented at the point where there are critical
changes in two graphs from the total of three. The critical change in each graph is
recognised by the local minimum /maximum in its first derivative. It can be seen
that within the same segments every grasp posture has similar writhe relation.

There is also an analogy between the segmentation points based on writhe
and the hand movement. These segmentation points can be interpreted as a
movement where one of the fingers, either thumb, index, or middle finger, is
purposely moving as to change its grasping position around the strand of the
object. As a result, there are changes in the tangle relation of two strand pairs.
One strand pair is changing from no tangle to one tangle around each other and
the opposite is true for another strand pair.

Depending on the type of regrasping movement, the location on the pen
where fingers are grasping can be greatly altered during the regrasping movement.
For these kinds of movement, segmentation can be done based on an attribute
center of topological coordinates. Center is a two dimensional vector. Each
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Figure 4.7: Sample graphs of center and density of three pairs of strands: red=
thumb-index and pen, green= thumb-middle and pen, blue= index-middle and
pen.

of its elements illustrates an average location of tangle on one strand made by
another strand. The element that describes the location of the tangle on the pen
is analysed in the regrasping movement. Unlike the value of the tangle which
describes by writhe, the location of the tangled area is a continuous attribute and
cannot be broken down into finite feasible values. Therefore, the segmentation
is performed at the points where one or more fingers are moving along or about
the strand of the pen. They can be recognised by considering a high alteration
of the center value in two or more graphs as shown in Fig. 4.7(a).

In a similar manner, an attribute density of topological coordinates can be
used to segment a particular kind of regrasping movement. A segmentation
based on density is used when a tangle (formed by fingers and the pen) changes
shape over time. Density describes an angle between two axises in the writhe
matrix, so its domain ranges from [0, 7). In the case of regrasping a rigid body
object, strands of the object cannot wrap around strands of the manipulating
hand. Therefore, the range of density is limited to [0, 7). However, this does
not have a significant effect on the designed segmentation method. Similar to
center, density is a continuous value, although it has a very limited range, but
still cannot be broken down into finite states. The segmentation points are thus
defined as the high alteration of density in two or more of the three graphs as
shown in Fig. 4.7(b).

Once the movement is segmented, based on either of the three attributes, into
many shorter segments, every grasp posture in each segment are considered to
be in the same tangled state because of their similar characteristics in topology
space. For each segment, a grasp posture in the middle of the segment is chosen
as its representative grasp posture. As a consequence, the original movement is
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now represented with a sequence of these representative grasp postures which
represents its change in topological relation during regrasping.

4.3.2 Method based on Types of Writhe Matrices

When a writhe matrix represents a tangle relation between a finger and a pen,
it is possible to be characterised into either peak-wm or span-wm. Peak-wm
represents a situation where a finger is in contact with a pen, and span-wm
otherwise as mentioned earlier in Section 4.2.2. Regrasping movement can be
thought of as a sequence of these writhe matrices, repeatedly changing from one
type to the other. The proposed method segments a regrasping movement into
many shorter movements, where all writhe matrices in every shorter movements
are the same type. The segmentation is done independently for a sequence of
writhe matrices of each finger. In other word, the proposed method can be
perceived as a method to segment a regrasping movement based on the changes
of contact relation between hand and object. It does not use the tactile sensor
to detect this, but instead use tangle relation between a finger and a pen.

In short, the following process is used to segment a regrasping movement.
After all writhe matrices of grasping postures in the sequence are calculated, each
of them is fitted to a non-singular Bivariate Gaussian distribution. Parameters
obtained from the fitting is use to characterise one writhe matrix to the others.
The segmentation method makes use of these parameters to decide when the
changes in type of writhe matrices occurs.

4.3.2.1 Fitting Writhe Matrix

Consider two strands S; and S, each strand is represented by line segments of
ny and no segments respectively. As explained in Section 3.1, a writhe matrix
(T) is a nq X ny matrix whose element 7}; is the writhe between segment i of S
and segment j of S;. The distribution of these T};s is modelled as a non-singular
Bivariate Gaussian function. Parameters of a particular writhe matrix is defined
as parameters of the function. In order to discover these parameters, a writhe
matrix is fitted to a Bivariate Gaussian function using a least square method.

A non-singular Bivariate Gaussian function is described as the following [Hagen
& Dereniak 2008]:

f(,’]j’ y) = A,4e_(0«(416‘—liac)2-1-21)(33—/m)(y_muy)_|_C(y_uy)2)7
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Figure 4.8: Result of fitting bivariate Gaussian distribution to writhe matrices
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(4.4)

Equation (4.4) have six parameters, (A, i, fty, 0z, 0y, 0). The explanation of all

parameters are summarized in Table 4.1.

A least-square method is used to find the most appropriate parameters to fit
a particular writhe matrix.A Levenberg-Marquardt algorithm is used to find the
optimized parameters. For fitting writhe matrix 7}, xn,, the objective function
for the optimization is given in Equation (4.5) as
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Parameter Description

A amplitude of the peak

[z mean in z direction

[y mean in y direction

Oy standard deviation in x direction
oy standard deviation in y direction
0 rotation angle (clockwise)

Table 4.1: Description of parameters for Bivariate Gaussian function.

niy  n2

minimize Z Z (To; — f(i,9))°, (4.5)

(A#xn“y,a'acpyue) i=1 j:].
where f(i,7) is a Bivariate Gaussian function defined in Equation (4.4). Notice
from Equation (4.5) that the objective function allows the writhe matrix to be
partially fitted to the Gaussian function.

Fingers of human hand are represented by strands as shown in Figure 3.5(a).
Intuitive method of dividing a strand into line segments is by having a line seg-
ment connecting between two consecutive joints. However, all line segments that
represent same strand would have different strand length. This causes its corre-
sponding writhe matrix to be very different from a Bivariate Gaussian function.
The issue is solved by further divided all line segments into smaller line segments
until they have the same (similar) length. This can be performed without having
any effect on the total writhe as GLI satisfies a distributive property over the
operation of concatenating two strands [Ho & Komura 2009b]. The algorithm
used to normalize length of line segments in the strand is similar to an algorithm
used to approximate a greatest common divisor, and is given in Algorithm 1.

Granularity of how the strand is divided into line segments is another issue.
The more the number of line segments is divided, the more the number of ele-
ments in writhe matrix to be fitted. If strand S is divided into a different number
of line segments, it may result in a different outcome of fitting parameters. This
issue is solved by applying a scale space technique [Witkin 1983]. Strands of
a finger and a pen is divided into a shorter normalized line segments using Al-
gorithm 1 with a range of desired length. Writhe matrix is calculated for each
desired length, and is fitted to the Gaussian function. The resulting parameters
are compared, and the final desired length is chosen to be the shortest one that
the resulting parameters are started to be constant.

Figure 4.9 shows a graph between a number of line segments used to represent
a strand of a (middle) finger and a resulting parameter (p,) from a Bivariate
Gaussian fitting. It is noticeable that when a number of line segments is increased
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Algorithm 1: NLENGTH Normalize length of line segments in a strand

Input: S, = [s1,...,Sn]; List of line segments representing strand S
Input: [; Desired length of line segments, where Vs € S,, 1 <= |[|s]|
Output: S, = [s1,...,S,]; List of normalized line segments representing
strand S, where Vs € Sy, = ||sg]|

1 Sb < { ]

2 % For every line segments in the initial set,

3 % divide it into a smaller line segments.

4 for s, € 5, do

5 % Explanation of each sub-sequential line :

6 % — Find # of smaller line segments to be divided.

7 % - Find new length for each smaller line segment.

8 % - Divide s, into num segments with length [, .

9 % - Combine result to output list.

10 num < floor (lIskl/i)

11 lnew < l/num

12 [t1, oy toum] < divide(sg, Lyew)

13 | Sy < append (S, [t1, - - -, tnum])

14 return S,

Normalized p, — Number of line segments (finger)

s
=
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Figure 4.9: Considering a grasping posture in Figure 3.6(a), writhe matrices of
a middle finger and a pen are calculated by varying a number of line segments
that used to represent a strand of the finger. Each writhe matrix is then fitted
to a Bivariate Gaussian function. Graph shows a relation between a number of
line segments and a resulting parameter (u,) after normalized to the same scale

(:uac S [_17 1])
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Type Ox hd
Peak-wm low high
Span-wm high low

Table 4.2: Relationship between two types of writhe matrices and their param-
eters.

to a certain value, the resulting parameter has become stabilised.

4.3.2.2 Segmenting Regrasping Movement

The segmentation is done so that all writhe matrices in every shorter movement
are the same type (either peak-wm or span-wm). When considering writhe ma-
trices in regrasping movement, the change in writhe matrix are continuous. In
fact, there is no clear line to separate between peak-wm and span-wm, especially
when a peak-wm is about to change to span-wm during detaching. To solve this
issue, thresholding is used to create a clear separation for two types of writhe
matrices.

Two parameters, a standard deviation of writhe matrix along a finger o,
obtained the fitting and a total writhe w, are considered in this segmenting
process because of the way writhe matrices are categorised into two types in the
first place. In the case of peak-wm, when the finger are in contact with the
object, the value of total writhe is usually higher than that of the span-wm. On
the contrary, the value of o, of peak-wm is supposed to be lower than that of
the span-wm. This is because when a finger is in contact with the object, the
high values of writhe along the finger direction seems to be concentrated only
in the vicinity of the contact location. The relationship of both types of writhe
matrices and theirs parameters is summarized in Table 4.2.

A combination of the two parameters o,/ |w| is used as a feature for a seg-
mentation. Captured regrasping movement is turned into a sequence of writhe
matrices. Hysteresis thresholding is applied on a temporal sequence of features.
The higher threshold is related to span-wm, while the lower threshold is related
to peak-wm.

4.4 Experimental Results

Two sequences of human regrasping movement are captured using a data acquisi-
tion system described in Appendix A. They are both represented an Interdigital
Step movement as illustrated in Appendix C. Both analysis and segmentation
methods are applied to both input sequences and the results are shown sequen-
tially in the following subsections. The section is concluded with a comparison
of the results.
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Figure 4.10: Topological analysis and segmentation of Interdigital Step — Se-
quence 1.

4.4.1 Results based on Topological Coordinate

Figure 4.10 shows an analysis and a segmentation result of Interdigital Step —
Sequence 1. Graphs in each colour shows a writhe (or a normalised writhe) of a
pair of strands, one from the hand and the other from the pen. A threshold value,
d = 0.3, is used in Equation (4.3) to discretise decide whether there is a tangle
between the pair. The movement is segmented at frame 40" and 216" based on
the normalised writhe value. At the segmented frames, it can be seen that there
are critical changes in two graphs from the total of three. The segmented frames
divide the movement into three shorter segments, which respectively assign into
tangle states p,, pp, pe due to the similarity in their writhes of the three pairs of
strands within the segments.

Similarly, Figure 4.11 shows an analysis and a segmentation result of Inter-
digital Step — Sequence 2. The threshold value, 6 = 0.3, is used to discretise the
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(b) Grasping postures, at the middle of each segment, represent each tangle states.

Figure 4.11: Topological analysis and segmentation of Interdigital Step — Se-
quence 2.

writhe value. The result shows a similar result with the two segmented frames,
570" and 1420'", and three tangle states.

Regarding the choice of the threshold value, ¢, it is chosen to discretise
whether there is a tangle (or a reversed tangle) between the pair of strands
or not. It can seen from the graph that when there is a tangle between a par-
ticular pair of stands, the total writhe of the writhe matrix is between 0.5 — 0.8
which is corresponded to what GLI is described. This mean that if the threshold
is chosen to be a little more than zero or a little less than 0.5, the result would
still be very similar.

The segmentation divides regrasping movement into a sequence of tangle
states. Within each state, the normalised writhes (w) of all strand pairs are same
throughout. For instance, in Interdigital Step — Sequence 1, state p, represents
grasping postures that there is a tangle (w = 1) between two pairs of strands
Sy — S, and Sy, — S,; while there is no tangle (w = 0) between a pair of
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strands S;,, — S,. From this knowledge, the movement between states can also
be interpreted as well, e.g. a movement from p, to p, represents a movement
where an index finger moves from one side of the pen to the other, getting ride
of a tangle between S;; — S, and creating a tangle between S;,, — .S,.

4.4.2 Results based on Types of Writhe Matrices

Figure 4.12 shows a graph of o,/ |w| of the sequence of writhe matrices be-
tween the three fingers and the pen and the segmentation result based on two
types of writhe matrices of Interdigital Step — Sequence 1. All writhe matrices
in the sequence are fitted with a Bivariate Gaussian function, as explained in
Section 4.3.2.1, to obtain their o,s. Hysteresis thresholding is used to segment
each coloured line independently to identify when there is a change in type of
writhe matrix, either from peak-wm to span-wm or span-wm to peak-wm. A
high threshold of 700 and a lower threshold of 200 is used. At the segmented
frames, it indicates a moment when the finger starts to have or to lose a contact
with the pen. The segmented frames for the red line are frame 1515 and 249"
as a changes of contact of the thumb, and for the green line are frame 22" and
87" as a changes of contact of the index finger.

Similarly, Figure 4.13 shows a o,/ |w| graph and the segmentation result of
Interdigitral Step — Sequence 2. Same thresholds are used for the segmentation.
Similar results can be seen except the frame number of the segmented frames.

Regarding the choice of the threshold values, they are empirically decided.
A lower threshold indicates a value when the finger is in contact, and the higher
threshold to handle the case when there is noise from the data acquisition system.
For instance, in Figure 4.12(a) it can be seen that in the beginning of the red line,
the value spikes up due to the inaccuracy of the capturing system (the thumb
should be in contact, but it isn’t. This can see very clear in frame 35™ - 50" in
Appendix C.1.1). Therefore, the downside of the method is that these threshold
values have to be carefully chosen, unless the accuracy of the data acquisition
system is improved.

4.4.3 Comparison of Segmentation Results

It is noticeable that results from both methods are interpreted in totally different
manners. Results based on topological coordinate consider a regrasping move-
ment into a sequence of tangle states. Although the method could recognise the
finger that move to change its orientation to the pen, it cannot identify when the
movement started to occur. The grasping postures shown in both Figure 4.10(b)
and Figure 4.11(b) are only chosen from the middle of the segments to show
the characteristic of the corresponding tangle states. On the other hand, results
based on differentiating types of writhe matrix segment a regrasping movement
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(b) Interpretation of the type of writhe matrices. The colours are corresponded
to Figure 4.12(a). Grasping postures of the segmented frames are also illustrated,
representing the movement where writhe matrices change their type.

Figure 4.12: Graph of a combination of features of writhe matrices and the
segmentation of Interdigital Step — Sequence 1.

into a sequence of segments based on contact relations of the fingers. The method
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to Figure 4.13(a). Grasping postures of the segmented frames are also illustrated,
representing the movement where writhe matrices change their type.

Figure 4.13: Graph of a combination of features of writhe matrices and the
segmentation of Interdigital Step — Sequence 2.

recognises whether at the particular moment the fingers have contact relations
with the pen or not.
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The information on contact relation is very crucial for mapping the movement
onto the robotic hand. This can be seen from the literature presented in Sec-
tion 4.1. In fact, the experiment on mapping the regrasping movement to the
robotic hand using a topological coordination has been conducted [Vinayavekhin
et al. 2011]. The results indicate that to imitate human regrasping movement in
a physical world, an information on contact locations are very crucial. Topolog-
ical coordinate might allow movements of finger to be easily interpolated, but to
retain the stability of the object, contact relation must be considered.

4.5 Summary of Chapter

Human regrasping movement is analysed and segmented with features in tangle
topology. Two segmented methods are described. One is based on an attribute
of topological coordinate, while the other is based on a classification of writhe
matrices into two types: peak-wm and span-wm. Peak-wm represents a writhe
matrix when a corresponding finger is in contact with the object, and span-
wm otherwise. The segmented results from both methods can be interpreted
differently. The former represents human regrasping movement by a sequence of
tangle states, where some attribute of topological coordinate is constant within
the state. The latter represents human regrasping movement as changes in type
of writhe matrices, which can referred to as changes of contact states of fingers
during regrasping.
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In this chapter, a method to recognise human regrasping movement is pre-
sented. Robot recognises the regrasping movement to understand what is im-
portant and learn how to imitate it. This is done based on a pre-defined model,
referred to as a task model. The chapter starts by defining a task model for a
RPO system. Then a method to recognise the task model from human grasping
movement is described. The experimental results of the recognition method is
given. They are intermediate results that will be later used to map the movement
onto the robotic hand.

5.1 Task Model

A task model is very important element of the RPO system. It consists of
two main components: movement primitives and skill parameters. Movement

51
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primitives define what the robot suppose to do in order to imitate human, and
skill parameters tell the robot how to do that. The definition of the task model is
based on the classification that classify writhe matrices into two types: peak-wm
and span-wm.

According to what had been described in Section 2.1.1, in order to define
a set of movement primitives for a specific task or movement, it needed to be
characterised and classify into recognisable states. Then these states can be
classified or grouped into one type of movement primitive. Therefore, the section
starts by describing a grasp taxonomy used to classify human grasping posture.
Then the definition of movement primitive and skill parameters are followed
respectively. Finally, it explains how the regrasping movement can be represented
once a task model is defined.

5.1.1 Classification of Grasping Postures

Regrasping movement is captured as a sequence of grasping postures by a data
acquisition system. Before a set of movement primitives, which is a main part of a
task model, can be defined, there must be a method to characterise this sequence
into states. To satisfy this, a taxonomy of grasping postures is required.

There are quite a few studies in the literature on a classification of grasping
postures. Napier divided grasping postures broadly into two categories: power
and precision grasp [Napier 1956]. The idea was based on the distinction of
their anatomy and functionality. However, some prehensile movements could
also be considered in both categories. Cutkosky adopted this idea and extended
it into a detailed taxonomy of human grasping postures [Cutkosky 1989]. The
taxonomy is a hierarchical tree. Different grasping postures in the hierarchy are
differentiated by their functionalities (task requirements) and a geometry of the
manipulated object.

Kamakura et al. also proposed a classification of grasping postures [Kamakura
et al. 1980]. However, their categories were derived from differences in contact
areas, both on human hand and the object. They suggested that grasping pos-
tures should be able to classify regardless of the knowledge of activities (task
requirements). Kang and Ikeuchi followed similar ideas and proposed another
grasp taxonomy [Kang & Ikeuchi 1993]. Their classification utilized an informa-
tion about the hand configuration and the object shape, without any knowledge
about task requirements. They classified grasping postures based on a contact
web, a 3D graphical structure of contact location on the hand.

In RPO system, the taxonomy will be used to characterise grasping pos-
tures in a regrasping movement. These grasping postures could be any pos-
ture that does not possess any meaning. They might be just any interme-
diate posture that leads to the final posture in the movement. This is why
those taxonomies that illustrate grasping postures based on their task require-
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ments [Napier 1956, Cutkosky 1989] are not suitable. Furthermore, these inter-
mediate grasping postures could have some fingers that are not in contact with
the object, but moving to change its contact. Imitating regrasping movement is
also about representing these postures. This mean that those taxonomies that
based solely on contact location [Kamakura et al. 1980, Kang & Ikeuchi 1993]
are not applicable as well.

A taxonomy used in RPO system is described in the following subsections.
The taxonomy is based on a geometric property that describes a relation between
two strands, a GLI. The taxonomy is proposed based on the changes of type of
writhe matrices between fingers and object.

5.1.1.1 A Taxonomy of Grasping Posture

The taxonomy for RPO system is developed based on different types of writhe
matrices of the hand. To reduce the complexity, the taxonomy will consider
grasping postures that relate to only three fingers: thumb, index finger, and
middle finger. At the particular moment, writhe matrix of each finger could
be in one of the following four states: peak-wm(sign+), peak-wm(sign-), span-
wm(sign+), and span-wm(sign-). This mean that, in general, for three finger
case, the taxonomy would possess 4° = 64 different states of grasping posture.
However, when all other constraints applied, the taxonomy ends up having only
18 feasible states.

Before describing the taxonomy, a notation is given here for a concise de-
scriptive purpose.

e F2 : represents writhe matrix of finger F', with a type T, having a sign S.

— F € {t,i,m} : Only thumb, index finger, and middle finger are con-
sidered.

— T € {p,s} : Type of writhe matrix can only be either peak-wm or
span-wm.

— S € {+,—} : Sign of writhe matrix can only be either plus or minus.

o trifm  =m, t il Order of fingers makes no difference, but ¢im will be

used throughout.
The taxonomy is derived as the followings:

1. Consider when the direction of the pen is fixed, sign of the writhe matrix
indicates the side of the corresponding finger regarding to the pen. Since
there are only three fingers involved, two of them must be on the opposite
side in order to hold the pen. In other word, all three writhe matrices
cannot have the same sign, regardless of their types. This makes all the
possibilities to be 23 — 2 = 6 cases, as listed below.
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o ttitm™ ot itm™T o titm”
o (tiTm* o t7i”m* o (tiTm~

2. Among three writhe matrices, at least two must have the peak-wm type.
Furthermore, those particular two must have the opposite sign. In other
word, at least two fingers must be in contact and holding the pen. There-
fore, there are three possibilities for each one of six cases listed previously,

e.g.
e for t*i*m™, all possible states are t}ifm , tFifm, and t[ifm, .

Combining these two constraints, the taxonomy ends up having a totally of
6 x 3 = 18 possible states, or 18 categories of grasping posture used to manipulate
the pen. A more perceptual understandable taxonomy is illustrated in Figure 5.1.

It can be seen that by comparing with other taxonomies explained early in
the section, the proposed taxonomy described more about fingers that are not in
contact with the object, i.e. the finger that was corresponded to span-wm. This
is essential in a RPO system because the finger, that is not in contact, might be
moving as a part the original regrasping movement and its role might need to
be imitated. The concern about movement in grasp taxonomy can be seen in a
recent proposal [Bullock et al. 2012]. Bullock et al. proposed a taxonomy that
covered a movement of grasping postures. Their taxonomy is quite general, and
can deal with any kind of object. Although RPO system is considered grasping
postures in different context, the proposed taxonomy in a RPO system could be
considered as a Sub-Classification of their taxonomy.

Another interesting of aspect of the proposed taxonomy is that it treats each
finger as an individual entity. This is resembled to the concept of Virtual Fin-
gers [Arbib et al. 1985]. Virtual finger represents a finger or a group of finger or
a hand surfaces that work together as a unit and apply same direction of force
or torque at the object. Currently, in the proposed taxonomy only one finger is
grouped as an entity. However, an idea of applying virtual finger could be useful,
if more fingers are to be considered into the taxonomy.

5.1.2 Movement Primitives

Based on the taxonomy, grasping postures are classified into 18 states as de-
scribed in Section 5.1.1.1. In theory, there should be a totally of (128) = 153
transitions between every pair of states. However, when all constraints are taken
into consideration (e.g. at least two fingers have to be in contact and hold the
pen at all moment), there are only 18 feasible transitions as shown in Figure 5.1.

Each transition represents a movement that connects between two states of
grasping postures. Eighteen transitions can be classified into three categories
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Figure 5.1: State-transition of RPO system. Taxonomy of grasping postures is
constructed based on types of writhe matrices between fingers and a pen-like
object. States (circled with —) in a diagram represents all grasping postures in
the taxonomy. Transitions connects between two states, representing a change of
one grasping posture to the other. States are grouped (circled with - - -) based
on signed of all writhe matrices.
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based on the changes of writhe matrices during the movement. These cate-
gories of transition are referred to as movement primitives in the RPO system.
Movement primitive is a main component of RPO task model. It is an abstract
representation that connect between human demonstration and robot execution.
Original regrasping movement is represented as a sequence of these movement
primitives, which will then transfer to the robot to inform which movements
should be imitated. Based on an observation, through these three movement
primitives, the robot should be able to imitate any human regrasping move-
ment of the pen-like object. In this section, all three movement primitives are
described.

1. Detaching represents a movement where a finger moves away from an
object. The writhe matrix changes from peak-wm to span-wm, within the
same sign of writhe matrix.

2. Attaching, on the contrary, represents a movement where a finger moves
toward an object in order to make a contact. The writhe matrix changes
from span-wm to peak-wm, within the same sign of writhe matrix.

3. Crossover represents a movement where a finger changes from one side to
another side of the corresponding strand that representing the object. The
writhe matrix changes from span-wm to span-wm with the different sign
of writhe matrix.

These movement primitives are defined based on changes in finger level. This
is a reason why 18 transitions of movement can be grouped into three types of
movement primitive. Two different transitions may have the same movement
primitives for different fingers, e.g.

o trifm,  — tfifm, is detaching on thumb while ¢ i mb — ¢ i7m} is
detaching on index finger,

o trim; — thi;m, is attaching on middle finger while t;ifm =~ — t itm,;
is attaching on thumb,

— ~+ + e + . . . + .- — + [ —
. ?fp igmy — i m,, is crossover on index finger while 71, mg — t i, m
is crossover on middle finger.

Figure 5.2 shows an example of all three movement primitives for the index finger
when the manipulated object is a pen.

5.1.3 Skill Parameters

Beside movement primitives, skill parameters are also a main component for RPO
task model. It tells the robot how to imitate each movement primitives. Each



CHAPTER 5. RECOGNITION OF REGRASPING MOVEMENTS <4 D7

(a) Detaching represents a movement (b) Attaching represents a movement
when a writhe matrix between a (index) when a writhe matrix between a (index)
finger and a pen changes from peak-wm finger and a pen changes from span-wm
to span-wm, within the same sign of to peak-wm, within the same sign of
writhe. writhe.

(c) Attaching represents a movement when a
writhe matrix between a (index) finger and a
pen changes from span-wm with a plus/minus
sign to span-wm with an opposite sign.

Figure 5.2: Grasping postures show three movement primitives of an index finger.

movement primitive need a different set of skill parameters to be executed. In
this section, a set of skill parameters for each movement primitives is described.

Skill parameters for each movement primitive are mainly taken from writhe
matrices of its initial and final states. The section will start by outlining a set
of parameters used to describe each types of writhe matrix. Then by combin-
ing these informations and some additions, a set of skill parameters for each
movement primitive are described.

5.1.3.1 Parameters for Each Types of Writhe Matrix

Ho and Komura used writhe matrix to represent motions between characters [Ho
& Komura 2009a]. All writhe matrices are treated the same in their system. A
topological coordinate explained in Section 4.2.1 is used to describe all writhe
matrices. However, this approach is not suitable for representing a regrasping
movement as it needed a distinction of a contact relation. An evidence for this
could be seen in our previous work [Vinayavekhin et al. 2011].

In RPO system, writhe matrix are characterised based on their appearances.
Writhe matrices appear differently whether there is a contact relation between a



58 > 5.1. TASK MODEL

blue curve y
0.2
0 ||
@ (p,.p,)
o | 2 0.1
2
(S) 0.0
AR
= -0.1
8 X
Y
Y 52 1 6 8 -02 \
two curves writhe matrix representation
(peak-wm) of peak-wm (sign +)

(a) Ideal case of peak-wm, where two curves are close to each other. It is noticeable that there is
an area in writhe matrix that writhe value is high compared to the others. The region is referred
to as peak, and parameterised by its location (pg, py).
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(b) Ideal case of span-wm, where two curves are, on average, apart from each other. Writhe is
distributed across various area in the writhe matrix, and can be estimated as a line. It is referred
to a span-line, and parameterised by its orientation (o, l).

Figure 5.3: Ideal case of two types of writhe matrix, and how they are parame-
terized.

finger and the object as explained in Section 4.2.2. Figure 5.3 shows two types
of writhe matrix in an ideal situation where two strands are close or apart from
each other. To describe each type of writhe matrix, a different set of parameter
are used.

e Peak-wm is described by two attributes: writhe w and a location of a
peak p = (p,py). The location of a peak indicates the area where contact
occurs. p, indicates location of contact on the finger, while p, indicates
location of contact on the object. For peak-wm TP, its parameters will be
referred to as P(17) = (w, ps, py)-

e Span-wm is described by two attributes: writhe w and a span-line I =
(a,l,). The first part of the span-line, slope «, reflects the average orien-
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Type Parameter Description
Peak-wm weR total writhe
p. € [-1,1] location of contact on a finger
py € [—1,1] location of contact on an object
Span-wm w € R total writhe
a € [0, average orientation between a finger and an object
l, € [-1,1]  average location on an object that is tangled

Table 5.1: Summary of parameters for each type of writhe matrix.

tation between the finger and the object. The other part [, indicates the
average location on the object that is tangled by the finger. A straight line
is used to represent the orientation of the finger in this situation because
when the finger is not in contact with the object, it makes little difference
whether it is bent or not as shown in Figure 5.4(a). For span-wm 77, its
parameters will be referred to as S(7°) = (w, o, l,).

Notice that the span-line does not contain directional information, which
introduces two possible ambiguities as shown in Figure 5.4(b). However,
the sign of writhe solves this ambiguity.

In addition, it is noticeable that some parameters of both types of writhe
matrix are scaled to the range of [—1,1] x [—1,1]. An explanation for this can
be found in Section 6.2.1.1.

5.1.3.2 Parameters for Each Types of Movement Primitive

Most of skill parameters for each movement primitives are taken from its initial
and final grasping postures. All the movement primitives have states of initial
and final grasping postures as skill parameters. Each movement primitive also
requires parameters that describes all three writhe matrices of both initial and
final states. They are different depending on their type of movement primitive.
These values determine the starting configurations of robot hand in mapping
phase.

Another skill parameter for all types of movement primitive is an orientation
of the pen. This information is necessary because writhe matrix does not contain
this information, and the pen might be moving during a regrasping movement.
Note that in a RPO system, the pen is assumed not to be moving within each
movement primitives. However, the pen can be moved between two movement
primitives. More details on this issue will be explained in Section 5.1.4.

Table 5.2 summarizes skill parameters for all movement primitives. As men-
tioned in Section 5.1.2, the major movement may occur in different fingers, even
when referring to the same movement primitives. This finger is referred to as a
major moving finger. It is a finger whose writhe matrix changes its type or its
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(a) Two grasping postures are similar. The difference
between them are the shape of an index finger which
is not bent in the top case and bent in the bottom one.
The index fingers results in similar span-lines of span-
wms, which will not be differentiated when their span-
wms are parameterised. The only difference between
their parameters could only be a slight difference of a
total writhe value.

red curve red curve
_
o r\ / m
g i i 2 =
3 i 3
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3 ! 3
= 45 ! < =
span-wm (+) span-wm (-)

(b) Orientation of two pairs of curves are the same, except the direction of the curves. They
result in two similar span-wms. However, their sign of writhe are different which eliminate
an ambiguity issue.

Figure 5.4: More explanations for a parameterisation of span-wm.

sign to the opposite one between the movement primitive. On the other hand,
a minor moving finger is a finger that may move slightly, but its writhe matrix
is kept as peak-wm with the same sign throughout the movement primitive. For
instance,
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Primitive

Parameter

Description

All

Si

. . . + ~+ —
initial states (e.g. t;ifm.)

(common-  sf
parameters) P;

final states (e.g. tfi m,)
params. of initial peak-wm of 15 minor finger

Py, params. of final peak-wm of 15* minor finger
P; params. of initial peak-wm of 2"¢ minor finger
Py, params. of final peak-wm of 2°¢ minor finger
vy, € H orientation of the pen
Detaching P, params. of initial peak-wm of major finger
St params. of final span-wm of major finger
Attaching §;, params. of initial span-wm of major finger
Pt params. of final peak-wm of major finger
Crossover §;, params. of initial span-wm of major finger
S, params. of final span-wm of major finger

Table 5.2: Summary of skill parameters for each type of movement primitives.

o trifm, — thifm, is considered as detaching, and the major moving finger
is thumb. The less are minor moving fingers.

® l)i, m; — t, i;m; is also considered as detaching. However, its major
moving finger is index finger, while the less are minor moving fingers.

5.1.4 Regrasping Movement as a Sequence of Movement
Primitives

A regrasping movement of human hand is represented by a sequence of movement
primitives. Each movement primitive connects between two states, an initial
state and a final state. This mean that for two consecutive movement primitives,
a final state of the former is the same as an initial state of the latter. However,
this cannot guarantee that their corresponding grasping postures are exactly the
same. This applies to all states in Figure 5.1 that have three peak-wm, i.e. all
states with ?,i,m,. The method to connect the two grasping postures which are
in these same states is discussed in Section 6.3.

Regarding a movement of the pen during regrasping, this information is also
captured during observation. It can also be observed from human movement
that when the pen movement occurs, a grasping posture do not change its state.
In addition, the pen movement usually occurs in the states that have three peak-
wm, i.e. all states with ¢,i,m,. There is only a minority of pen movement occurs
during any movement primitives. Thus, the conclusion regarding a movement of
the pen in task model of the RPO system are the following:
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e The pen is considered to be immobilised during each movement primitive
is performed.

e The pen only moves when three fingers are in contact with the pen. In
other words, writhe matrices between each finger and the pen are peak-
wm. During the pen movement, contact location of some finger (thus some
parameters of writhe matrices) and the grasping posture may change, but
its state does not change.

5.2 Recognition of Task Model

A method to recognise a task model is presented in this section. A captured
regrasping movement is recognised against the task model, in order to be repre-
sented as a sequence of movement primitives and skill parameters as described in
Section 5.1.4. A recognition of task model is divided into two parts: a recognition
of movement primitives from human regrasping movement, and an extraction of
skill parameters for each movement primitive.

5.2.1 Recognition of Movement Primitives

A data acquisition system captures regrasping movement into a time series of
grasping postures. This sequence of grasping postures is made up of various
shorter sequences. Some of which are the movement that changes a state of
grasping posture from one to another according to taxonomy explained in Sec-
tion 5.1.1.1. These short movements, according to the definition in Section 5.1.2,
are in fact the movement primitives.

To recognise the movement primitives in the regrasping movement, the cap-
tured regrasping movement is first segmented into many shorter movement using
method described in Section 4.3.2. Once a sign and type of all writhe matrices of
all three fingers are known, states of their corresponding grasping posture can be
easily identified using taxonomy explained in Section 5.1.1.1. Finally, movement
primitive can be identified by the change of these states as well.

5.2.2 Extracting Skill Parameters

After movement primitives are recognised, the human regrasping movement is
represented semantically by a sequence of movement primitives. Skill parameters
for each movement primitives, explained in Section 5.1.3.2, is extracted in order
to be used during reproduction in a robotic hand.

In Section 5.2.1, movement primitives are recognised from the change of one
state to another. However, a state is representing a range of grasping postures.
In other word, many consecutive grasping postures are binded to a same states.
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Thumb & Pen Peak-wm (+)

Middle & Pen m Span-wm (+)
. ," - g -
s

Figure 5.5: Example of identifying state of grasping posture from type of writhe
matrix. Note that blue edges of movement primitives indicates that they belong
to the movement of the middle finger.

The issue is that most of the skill parameters are extracted from initial state and
final state, but not all parameters are not constant across the same state. In fact,
only two parameters are constant across the same state which are parameters
that indicate type of state themselves (referred to as s; and s; in Table 5.2).
Therefore, before skill parameters of each movement primitive can be extracted,
the first thing to do is to specify the range of the grasping postures that the
primitive is spreading across. Then other skill parameters can then be extracted
from the first and last grasping postures of the range.

5.2.2.1 Specifying a Range of Movement Primitive

All movement primitives always occur and are detected when a writhe matrix
of one finger is span-wm. In other word, every time when there is a segment
of span-wm occurs, it indicates that there is at least one movement primitive
within that segment.

For all span-wm segments, there are four possible cases, as shown in Fig-
ure 5.6.

case 1 If the span-wm segment is in between two peak-wm segments and the sign
of writhe changes to the opposite one, there are three movement primitives
occurred in the segment which are detaching — crossover — attaching.

case 2 If the span-wm segment is connected to only one peak-wm segment and
the sign of writhe changes to the opposite one, there are two possibilities
in this case. When the segment is at the beginning of the hand movement,
there is an occurrence of a sequence of crossover — attaching movement
primitives. On the other hand, when the segments is at the end of the hand
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Casel : 5
> Detaching = Crossover = Attaching >

w Span-wm (+) Span-wm (-) End
Case 2 ! !
> Detaching = Crossover >1
Case 3 ; i
> Detaching > Attaching >

Span_wm (+) End
Case 4 5 5
> Detaching >

Figure 5.6: Four possible cases of movement primitives recognised in a span-wm
segment.

movement, thus connected to peak-wm at the beginning of the segment,
there is a sequence of detaching — crossover movement primitives occurred.

case 3 If the span-wm segment is in between two peak-wm segments and the
sign of writhe value does not change, there is an occurrence of a sequence
of detaching — attaching movement primitives.

case 4 If the span-wm segment is connected to only one peak-wm segment and
the sign of writhe value does not change, there is one movement occurred in
the segment. When the segment is at the beginning of the hand movement,
it is a attaching primitive. On the other hand, if the segment is at the end
of the hand movement, it is a detaching primitive.

When a span-wm segment contains more than one movement primitive, the
boundary of each movement primitive is needed to be specified. The ways the
boundary is chosen are different depending whether there is a crossover primitive
involved. When there is a crossover primitive in between a span-wm segment
(in case 1 and case 2), the span-wm segment is first divided into two shorter
segments at the frame where the sign of its writhe value flips. Then, the first and
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last grasping posture of crossover are taken from the middle frame of the two
smaller segments. On the other hand, when there is no crossover primitive (thus
no sign change in span-wm segment), the middle frame of span-wm segment is
chosen as a segmented frame if required. Notice that when the span-wm segment
is segmented, the middle frame is used in this case, as opposed to the ideal case
where the frame that the finger is farthest from the object would be chosen.

Assuming g, and g, are the first and last frames of the span-wm segment,
an explanation for specifying a range of movement primitives in all four cases of
span-wm segment are given as the following.

case 1 There are three movement primitives in this segment, detaching — crossover —
attaching. Assuming gy is a frame where a sign of writhe is equal to zero
(flips to opposite sign), g, is a mid frame between g, and gy, and g, is
a mid frame between gy and g, a range of each movement primitive are
given in Table 5.3.

ga gm gf gn gb
P (+) Span-{:/vm (+) Span-ﬁ:/vm ) P ()
> Detaching }> Crossover: )!2 Attaching >

Primitive First Last
detaching go—1 @gm —1
crossover Im n
attaching g, +1 g +1

Figure 5.7 & Table 5.3: A range of movement primitives in case 1 of
span-wm segment.

case 2 Considering the segment shown in Figure 5.6, there are two movement
primitives in the segment, detaching — crossover. Assuming gy is a frame
where a sign of writhe is equal to zero (flips to opposite sign) and g, is
a mid frame between g, and gf, a range of each movement primitive are
given in Table 5.4.
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ga glm gf gb
Span-<:/vm (+) Span-wm (-) End
;> Detaching )*I> Cr(:)ssover )

Primitive First Last
detaching g, —1 gm—1
crossover Im 9

Figure 5.8 & Table 5.4: A range of movement primitives in case 2 of
span-wm segment.

case 3 There are two movement primitives in this segment, detaching — attaching.
Assuming g, is a mid frame between g, and g, a range of each movement
primitive are given in Table 5.5.

ga gm gb
Span-{:/vm (+)
> Detaching )!:> Attaching )‘

Primitive First Last
detaching g, —1 ¢gm —1
attaching Jm g+ 1

Figure 5.9 & Table 5.5: A range of movement primitives in case 3 of
span-wm segment.

case 4 Considering the segment shown in Figure 5.6, there only one movement
primitive in the segment, detaching. Therefore, the first and last frame of
this primitive are g, and g, respectively.

Once a range of each movement primitive are specified, the less of their skill
parameters can be obtained by considering its first and last grasping postures.

5.2.2.2 Extracting Parameters of a Writhe Matrix

For each movement primitive, parameters of writhe matrices of its first and last
grasping postures (frame) are used as its skill parameters. Parameters for each
writhe matrix are different depending on its types, as described in Section 5.1.3.1.
This section explains how to extract parameters from a given writhe matrix for
both peak-wm and span-wm.
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Extracting Parameters of Peak-wm For peak-wm T7? of size n; X no, its
parameters are referred to as P(1?) = (w, p,, py). Writhe is a sum of all elements

in the matrix,
w = ZZ Tpi,j. (51)

The less of the parameters can be extracted by fitting the writhe matrix to the
Bivariate Gaussian. The same method explained in Section 4.3.2.1 is used. The
value of peak location are taken directly from the expectation value of the fitting
result.

P = (Do py) = (Ha, 1ty)- (5.2)

This is also the incentive behind the name peak writhe matrix.

It can be seen from Equation (4.5) that the result of the Gaussian function fit-
ting can be a partially fit in some circumstance. This means that the expectation
value could be outside of the domain of writhe matrix, (y, 1t,) € [1,n1] X [1, nol.
In such cases, the values are projected back into the range before assigning to
the peak location. This is done by:

e A line equation [ represents a line that passes through (s, i) and having
a slope 6 (another parameter from the Gaussian fitting).

e A box b represents a rectangle that all of its side are the border of the
range [1,n1] x [1,ns).

e Line [ passes through b at points ¢; and cg. Peak location is assigned to
be the point that is closer to the original (fi,, f1y).

Figure 5.10 visualises a method to project (u., p,) before assigning to a peak.

In Table 5.1, it can be seen that the range of (y, p,) is different from the
range of (p,,p,). Therefore, the final value of p is changed from [1,n] x [1, ng]
to [—1,1] x [—1, 1] by linearly scaling as

Pz Py
(D, Py) < <2~ o 1,2- o ) : (5.3)
Extracting Parameters of Span-wm For span-wm 7° of size n; X no, its
parameters are referred to as S(7%) = (w, a,1,). Writhe w is calculated using
Equation (5.1). The less of the parameters is derived from the result of the
Gaussian function fitting explained in Section 4.3.2.1. They are derived as the
followings:

e A line equation [ represents a line that passes through i, 1, and having a
slope 6 (another parameter from the Gaussian fitting).
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Figure 5.10: A Gaussian fitting result may result in the expectation value (1., jty)
that is outside of the domain of writhe matrix [1,n1] X [1,n2]. The values are
projected back into the range along an axis of the fitting before assigning to a

peak.

e A span-line of span-wm is actually the same line as [. They have the same

slope,
a=40, (5.4)

but with a different passing point. The other part [, is defined as a y-
coordinate of the point (1/2,1,), whom [ passes through. Therefore,

ly = (% — u$> tan a + i, (5.5)

This indicates that the location where the mid of the finger tangled with
the object is considered as the average location on the object that is tangled

by the whole finger.

Similarly with peak-wm, the range of the coordinate system change from

[1,m1] x [1,n9] to [—1,1] x [—1,1]. This effects in the linear scaling in [,,, and also

the value of « as,

a = arctan (@ tan «9) : (5.6)

ni
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5.2.2.3 Extracting Orientation of the Object

The orientation of the object is captured during human demonstration. This can
be used directly as a skill parameter. An orientation of the object is supposed
to be constant throughout a movement primitive. Therefore, the orientation of
the pen of the first grasping posture (frame) is used. Alternatively, the average
orientation of the first and last grasping posture, or of the whole sequence of
grasping postures in the range of primitive can be used to handle the noise that
might occur during demonstration.

5.3 Experimental Result

The same sequences of human regrasping movement considered in Section 4.4 are
recognised against the task model. The segmentation method is used to divide
the movement to many smaller segments depending on their types of writhe
matrices. The recognition method uses this knowledge to determine movement
primitives that occurs in the movement. Skill parameters for each movement
primitives are extracted. The sequence of movement primitives, together with
their skill parameters, are used to represent the observed regrasping movement.

Figure 5.11 shows a recognition result of Interdigital Step — Sequence 1. Total
writhe value between each finger and the pen indicates the sign of all correspond-
ing writhe matrices. At the particular moment, when a sign and a type of all three
writhe matrices are known, a state of the grasping posture can be identified (e.g.
t; igm, from frame 2214 to 58). Using this information, movement primitives
can be easily recognised. In the movement, there are six movement primitives.
Three of which have an index finger (shown in green), while the others have a
thumb (shown in red), as their major finger. Range of each movement primi-
tive is calculated using method explain in Section 5.2.2.1. They indicate frames
which the skill parameters of the movement primitives should be extracted. It is
noticeable that there is no movement primitive connecting frame 87" and 151%".
All grasping postures in the segment are considered to have the same state, i.e.
t; i;m; . Figure 5.12 illustrates corresponding grasping postures of initial and
final frames of all movement primitives.

Similar recognition result of Interdigital Step — Sequence 2 is illustrated in
Figure 5.13.

5.4 Summary of Chapter

A task model to recognise human grasping movement of a pen-like object is
described. It is based on the classification of writhe matrices into two types:
peak-wm and span-wm. A taxonomy of all grasping postures is described based
on types and signs of writhe matrices between fingers and an object. In the
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(b) The regrasping movement is recognised into six movement primitives. The colour of the
arrows indicate the major finger of the movement primitives (red for thumb and green for
index finger). Frame numbers of the range of movement primitives are also illustrated.

Figure 5.11: Recognition results of Interdigital Step — Sequence 1.

taxonomy, there are limited numbers of transition between two grasping postures.
Transitions are categorised into groups, which defines three movement primitives
of the task model: detaching, attaching, and crossover. Skill parameters for each
movement primitive are defined by states and parameters of writhe matrices of
initial and final grasping postures. They are a necessary information needed to
map each movement primitive onto a robotic hand.
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Figure 5.12: Grasping postures of the beginning and the end of all movement
primitives are shown, together with the information on their states (Interdigital
Step — Sequence 1).

A recognition method for the task model is also described in the chapter.
Due to a strict definition of the task model, once human regrasping movement
is segmented into changes of types of writhe matrices, movement primitives in
the regrasping movement can be easily recognised. Their skill parameters are
extracted from parameters describing writhe matrices, depending on their types.
Finally, human regrasping movement is recognised and represented as a sequence
of movement primitives together with their skill parameters.
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b) Grasping postures of the beginning and the end of all movement primitives
are shown, together with the information on their states.

Figure 5.13: Recognition results of Interdigital Step — Sequence 2.
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A method to map a human regrasping movement onto a robotic hand is de-
scribed in this chapter. Knowledge obtained from a recognition of regrasping
movement is used to guide a robot to imitate the movement. Unfortunately,
a recognised skill parameters cannot be used directly to map the movement to
a robotic hand. Therefore, a method to refine these skill parameters is neces-
sary. Once refined, skill parameters are used directly in the mapping process. A
regrasping movement is mapped onto a robotic hand on a movement primitive
basis. In a RPO system, a movement of a robotic hand is generated for each
movement primitive off-line. Then all the generated movements are connected

73



4 > 6.1. REFINEMENT OF SKILL PARAMETERS

together to make a movement for the robotic hand that imitates the observed
movement.

The chapter starts with an explanation of how to refine skill parameters
obtained from the recognition. Then, a framework on how to map each type of
movement primitives on to the robotic hand is described, followed by a method
to connect them together. Finally, the chapter concludes experimental results of
mapping a human regrasping movement onto a robotic hand in the real world
environment.

6.1 Refinement of Skill Parameters

This section explains a method to refine skill parameters obtained from human
demonstration. The main objective of this refinement is to modify skill param-
eters, so that they are suitable to be used to map the movement to a robotic
hand. The refinement is necessary due to two main reasons. First, the inaccuracy
of a data acquisition system dues to the demonstration in virtual environment
(more details in Appendix A). This makes captured skill parameters violate some
physical constraints. Second, the differences between structures of the human
hand and the target robotic hand. This make the skill parameters without any
refinement impossible to be used in the target robotic hand.

The section starts by introducing constraints that restrict skill parameters.
Then a refinement method for each movement primitives based on these con-
straints are described.

6.1.1 Constraints for Skill Refinement

There are three constraints for skill refinement described in this subsection. The
first two constraints are defined to force the skill parameters to obey the physical
constraints when executing a movement with a robotic hand in the real world.
The last constraint is defined to adjust skill parameters to be used in the target
robotic hand. These constraints are defined based on the following preconditions:

e At least two fingers out of the three are in contact with the object, while
contacts are modeled as a soft finger frictional contact [Kao et al. 2008].

e an object is a pen-like object.
e Within each movement primitive, there is no movement of the object.
e The problem is simplified into two dimensional problem.

e There are only some specific area on the fingers of robotic hand that can
be contacted with the object.
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Figure 6.1: Visualisation of constraints that are related to contact locations.

These preconditions lead to the following constraints.

Constraint 1 When only two fingers are in contact with the pen, their contact
location on the pen must be on the opposite side of the pen and near to each
other, in order to kept the pen in stable state and not moving. Considering
Pi(w', p, p,) and P;(w?, pl, p)) as the skill parameters of two fingers that
are in contact with the pen, these constraints can be written as

P, — Pyl < 1, (6.1)

where 9; > 0 is a small threshold value.Figure 6.1(a) illustrates the con-
straint in a better visualisable manner.

Constraint 2 When all three fingers are in contact with the pen, two of the
contact will be in one side of the pen while another contact will on the other
side. A contact location on the pen of the lone contact must be in between
the others. Considering Pi(wi,p;,pg), P; (wj,p;,pé) and Pk(wk,pg’j,p’;) as
the skill parameters of all fingers that are in contact with the pen where
Py is a lone contact and p; < p]y is assumed without loss of generality, this
constraint can be written as

P, — 02 < pj < pl + 0, (6.2)

where dy,93 > 0 are small threshold values. Figure 6.1(b) shows more
comprehensive illustration of this constraint.

Constraint 3 For a particular robotic hand, the area on fingers that can be in
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Figure 6.2: Limited area of contact on a robotic hand.

contact with the pen can be limited. The related skill parameters must
be adjusted accordingly. Considering P;(w’, p’, p;) as skill parameters of
the finger that is in contact, and [lin, lnez] € [—1,1] are the area of the
robotic finger that could be in contact, this constraint can be written as

<Py < lnaa (6.3)

lmin

6.1.2 Skill Refinement for Movement Primitives

A method for refining skill parameters of each movement primitive is based on
preconditions and constraints explained in Section 6.1.1. Constraints are applied
to the initial and final writhe matrices of the movement primitives to initially
modify their skill parameters. Then a different refinement method is applied
depending on a type of the movement primitive.

For every type of movement primitive, both initial or final grasping postures
has three writhe matrices involved as described in Table 5.2: one for major finger
and two for two minor fingers. Without loss of generality, assuming that

o Fo(w?,...)is parameters of writhe matrix (either peak-wm or span-wm) of
the major finger my,

o Pi(w',p},p,) is parameters of peak-wm of the first minor finger m; where
ww! > 0 (same sign of writhe value),

e and Py(w?, p2, p;) is parameters of peak-wm of the second minor finger m
where w%w? < 0 (opposite sign of writhe value),

constraints modify these parameters as the following:
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e if Fy is parameters of span-wm, Constraint 1 is applied by modifying

P 1Py — pyll <01
pp=14 py—0  pp<py -0 (6.4)
p;—!—(ﬁ p§>p31/+(51

where 9; < 0 is a small threshold value.

o if F{ is parameters of peak-wm and pg < p; is assumed without loss of
generality, Constraint 2 is applied by modifying

i Py — 02 < pp < py 4 03
pi=14 -0 pl<pl—0 : (6.5)
py+03  py>p,+0s

where 9, 03 > 0 are small threshold values.

e Notice that Constraint 3 is applied to any peak-wm of any finger to
modify a contact location on the finger to be feasible for a target robotic

hand.

For each type of movement primitive, skill parameters are further refined so
that when the movement is mapped to the robotic hand, it does not affect on
the movement of the pen. Fundamentally, the refinement methods are based
on the assumption that if the contact location on the pen of both minor fingers
are the same in both initial and final grasping postures and the location of the
pen is fixed when the movement primitive is interpolated for the robotic hand, a
location (position and orientation) of the pen should not change much during the
real execution. Therefore, it depends on whether to use the contact location of
the initial or the final grasping posture for both minor fingers. These refinement
methods are different for each type of movement primitive, which are described
below.

e For Detaching, contact locations on the pen of the two minor fingers of
the final grasping posture are used. The contact locations on the pen the
initial grasping posture are then changed and refined to these values.

e For Crossover and Attaching, contact locations on the pen of the two minor
fingers of the initial grasping posture are used. The contact locations on
the pen the final grasping posture are then changed and refined to these
values.

Note that the refinement is applied sequentially by the order of movement
primitives. For two consecutive movement primitives that share common grasp-
ing posture and skill parameters, the changes in skill parameters of the prior
movement primitive will affect the changes of the skill parameters of the latter
movement primitive.
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6.2 Mapping of Movement Primitives

The section describes a framework to map movement primitives to a robotic
hand. The purpose of this mapping framework is to generate trajectories of
joints/hand of the robotic hand that is resembled to a demonstrated movement.
Skill parameters of each movement primitive are used as a fundamental knowl-
edge to ensure that the generated movement primitive is similar to the demon-
strated one.

Generating (or interpolating) a trajectory of the robotic hand can be consid-
ered as solving a series of Inverse Kinematics (IK) problem. In short, a time-series
of the goal constraints is specified. Then a hand configuration and location are
synthesised to meet the constraints of each frame by solving an IK problem. In
a general IK problem, the goal constraints are usually a desired trajectory of
the end effector, which could be yielded from any motion planning technique.
Buss presented an extensive survey article on the techniques used to solve the
IK problem [Buss 2004].

In this framework, the tangle relation of hand and object are used as a goal
constraints. To be more specific, the trajectory of desired writhe matrices are
used to lead the interpolation of the robotic hand. The method to generate the
trajectory of desired writhe matrices that connects between two writhe matrices
is also proposed in the framework. In fact, the idea of planning a trajectory
in topological space was originally used to synthesise a whole body motion of
a character [Ho & Komura 2009a]. The method is adopted and modified to be
used in this framework.

The following priors and inputs are given to the system.

e A structure of the robotic hand, and an exact geometry of the pen.
e Skill parameters of the movement primitive.
e Location (position and orientation) of the pen; more details in Section 6.3.

e Initial location (position and orientation) and configuration of robotic hand
for both initial and final state described in the skill parameters; more details
in Section 6.2.2.

To generate a trajectory of a robotic hand for each movement primitive, the
following steps are used.

step 1 Mapping skill parameters to the initial and final robot grasping postures.
This step maps an abstract information obtained from human demonstra-
tion to the robotic hand. It creates the initial and final grasping postures
of the robotic hand that have the same skill parameters as the movement
primitive.
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step 2 Interpolating the robotic hand from its initial grasping posture to its
final grasping posture. This step generates a trajectory of the robotic hand
to connect between its initial and final grasping postures. The motion is
synthesised by planning a trajectory in the topology space.

The less of the section is organized as the followings. First, the method for
solving IK problem of the robotic hand in the topology space is described. It is
used heavily in both steps for the mapping framework. Then both steps of the
mapping framework are explained respectively.

6.2.1 Inverse Kinematics in Topology Space

The method is first used by Ho and Komura [Ho & Komura 2009a] to solve IK
problem for a character. This section describes the method and how to formulate
it to solve an IK problem for a robotic hand.

A generalized coordinate of the robotic hand, r at the specific moment is
described by its joint angles and its location (position and orientation). Writhe
matrix 7T represents tangle relation between the robotic hand and the object.
It represents either a writhe matrix between a specific finger and the object,
or a concatenation of them. To simplify the representation, let t be a vector
representation of writhe matrix 7'. For writhe matrix T,,.,, t is a vector of size
m X n where,

t= [T(l,l), . 7T(1,n)> T(271), - 7T(2’n), - 7T(m1)> - ,T(m,n)]T (6.6)

Assume a location of the object is fixed, writhe matrix is a function of a
generalized coordinate of the robotic hand alone; this fact can be expressed as
t = t(r), where t is a

Given a target tangle relation between the robotic hand and the object as
writhe matrix t?, the IK problem is to find a hand generalized coordinate, r so
that

t? = t(r). (6.7)

An iterative method is used to approximate a solution for Equation (6.7). A
Jacobian matrix is used to linearly approximate the function of t. The Jacobian
matrix J of function t is a function of vector r and defines as,

oty .. Ot

8t or1 8r‘r|
Jey=oi= | (6.8)

g e el

87'1 8'!"!.'

The small change in the generalized coordinate of the robotic hand relates to the



80 > 6.2. MAPPING OF MOVEMENT PRIMITIVES

Movement Primitive (e.g. Attaching) A
\\ Initial State Final State \
\

|

Both initial and final robotic postures
3 has the same tangle relation with those

" ‘}'7}\!3’/ . Obtained from human demonstration.

Interpolating Movement Primitive for a Robotic Hand

Synthesized Synthesized
Span-wm peak-wm
Interpolate a sequence of
intermediate writhe matrices based ®

on the type of movement primitive.

7

Inverse Kinematics in Topological Space

Figure 6.3: Framework for mapping movement primitives to a robotic hand.
A movement primitive is passed to a system together with its skill parameters
obtained from human demonstration. A corresponding skill parameters is first
mapped to a robotic hand to create initial and final grasping postures. Then
a trajectory of a robotic hand is created to connect between the two grasping
postures by interpolating in a topological space.
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change in writhe matrix through this Jacobian matrix as,
At = J (r) Ar. (6.9)

Starting with a generalized coordinate of the robotic hand r with a writhe
matrix t and a target writhe matrix t?, the key idea of solving this IK problem
is to update a generalized coordinate with Ar so that it effects in a change of
writhe matrix At which is approximately equal to t¢ — t.
To find the most appropriate value of At, the damped least squares method [Wampler 1986,
Nakamura & Hanafusa 1986] is used. The objective function to search for At is
given as the following:

minimize |7 (r) Ar — (t7 = t) [|* + \*|| Ar|?, (6.10)

where A € R is a non-zero damping constant. Damping constant A can also be
chosen to be different for each finger or each element in the generalized coordi-
nate.

Other constraints can be included in Equation (6.10) in order to restrain the
generated regrasping movement. In this system, two additional constraints are
added; a collision avoidance and a kinematic limitation of the robot hand.

Collision between a robotic hand and manipulated object can be avoided by
limiting the maximum writhe between segments of concerned strands. When two
line segments approach each other, the absolute value of their writhe increases
and becomes 0.5 at the moment of crossing. This can be described as :

17 (r) Ar + t]| < o, (6.11)

where ¢ is a threshold vector.

Kinematic limitation of finger/hand are restricted by assigning a feasible
search space for Ar. Assume that r,,;, , and r,,.,; are a minimum and maxi-
mum possible value for joints and movement of robot hand, the constraint can
be written as :

Coin — T < Ar < 71,0, —T. (6.12)

To sum up, to approximate a solution for Equation (6.7), the following ob-
jective function and constraints are minimized,

minimize |7 (r) Ar — (7 — t)|* + || Ar|)?
subject to |J(r)Ar +t|| <o
Toin — T < Ar < e —T. (6.13)

The problem is formulated as a quadratic function of Ar, subject to its linear
constraints, widely known as a Quadratic Programming (QP) problem [Nocedal
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Figure 6.4: Examples of synthesised writhe matrices.

& Wright 2006]. The generalized coordinate Ar are iteratively updated so that
the tangle relation, a writhe matrix in this case, is sufficiently close to a target
writhe matrix t,.

Note that the Jacobian matrix defined in Equation (6.8) is numerically esti-
mated because Equation (6.7) is very complex and cannot easily be written in a
closed form. Each element of the Jacobian is calculated as

ot; b (rl,...,rj+h,...,r|r|) —t; (r)
87"j_ h ’

(6.14)

where 1 <14 < [t], 1 < j <|r| and the value of h close to zero.

6.2.1.1 Synthesising Writhe Matrix from its Parameters

Skill parameters obtained from human demonstration is passed to the robot
system in the form of parameters of writhe matrices, P or S. In order to use
these informations for robot mapping, it is necessary that these parameters are
converted back to the writhe matrix so that the method to solve IK problem in
Section 6.2.1 can be used. This subsection describes a method to synthesise each
type of writhe matrices from their corresponding parameters.
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Synthesising Peak-wm Given parameters of peak-wm P described in Ta-
ble 5.1, a synthesised writhe matrix 77T of size n; X ny can be synthesised using
the following procedures:

1. Scaling (ps, py) linearly from the range of [—1,1] x [—1, 1] to [1,n] X [1, ng],
and referred to them as (pl, p;)

2. Using a (singular) Bivariate Gaussian function to create each element of
the target writhe matrix. This can be mathematically written as,

1 (i—p.)°  U=p)
P T Yy
T = — 6.15
v 2mog0y P ( ( 202 i 202 ’ (6.15)

V(i,5) € [1,n1] x [1,ng]. Value of o, and o, effect the distance between
strands of the robotic hand and the object when they are in contact. These
values can be set empirically for each pair of stands representing a finger
and a object.

3. Scaling a writhe matrix 7" to a total writhe value w in P including the
sign.

PT/
P _ ]
7-'7;7]' =w ny no :
> 2Ty,

i=1j=1

(6.16)

Notice that a singular Bivariate Gaussian function is used in Equation (6.15).
This is because when the finger is in contact with the object, the rotation angle
0 of the original writhe matrix is not significant. Figure 6.4(a) illustrates an
example of synthesised peak-wm.

Synthesising Span-wm Given parameters of span-wm S described in Ta-
ble 5.1, a synthesised writhe matrix ST of size ny X ny can be synthesised using
the following procedures:

1. Scaling (o, [,) from the range of [—1,1] x [—1,1] to [1,n1] X [1,ns] by in-
versing the method explained in Section 5.2.2.2, and referred to them as
(o', 1)

2. Considering a line equation [ : j = itan(a’) +1;, each element of the writhe
matrix is assigned a constant value ¢ according to whether the line [ passes
through it. In most cases, the line [ will not pass through an integer point
(i,7) € Z x Z. Therefore, one of i or j will be assigned to be an integer
and be iterated over it. Assuming i € Z, a point (i, j,.) is passed through
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Algorithm 2: SYNSPANWM Synthesised Span Writhe Matrix

© 00 N O o A W N =

[ S S
[ S G T B Ry S,

16

17
18
19
20
21

22

Input: (o/,1;) Scaled span-line of a desired span-wm.

Input: (ny,ns); Size of a target writhe matrix.

Output: $T’; Writhe matrix of size n; x ns, synthesised from the
span-line (o, ;)

% Initialising ST' with zero-matrix of size my X ngy

ST' < zero[ni] [na]

% Deciding whether to iterate over i or j

if tan(a’) < m2/n, then

% Iteration over i€ [l,n] €Z

for i + 1..n; do

Jr ¢ dtan(a’) + 1

% Check whether j, is an integer.

if j, € Z then

% Assigning an element with a constant c=1.

Sn/,jr “—1

else

% Assigning elements on both nearest blocks,

% proportionated to their distance to (i,J,).

Sq_;/,floor(j7.) - (JT - flOO’f’(jr))

ST oy = (ceil(j,) — j,1)

else

% Iteration over j € [l,ny] € Z

for j < 1..ny, do

L % Similar method to the iteration over i

return °7”

by line [. If j, ¢ Z, both (i, floor(j,)) and (i, ceil(j,)) are assigned with a
fraction of the constant value ¢ proportionated to their distance to (3, j,).

The decision whether to iterate over an integer ¢ or j is depended on the
value of . Considering a line l; that passes through point (1,1) and
(n1, n2) which represent a limit of the domain of writhe matrix, the iteration
will be over an integer ¢ when a slope of line [ is less slanted than a slope
of line I; : tan(a’) < m2/n; and over an integer j otherwise.

The writhe matrix that is synthesised by above method is referred to as
ST'. Algorithm 2 describes the method more precisely, while Figure 6.5
illustrates the method more visually.
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Figure 6.5: Two span-wms are synthesised differently based on the orientation
(') of their span-line.

3. Scaling a writhe matrix 7" to a total writhe value w in S including the
sign using a Equation (6.16).

Figure 6.4(b) illustrates an example of synthesised span-wm.

Size of Synthesised Writhe Matrix Size of Synthesises writhe matrix is
directly related to the granularity of how the strands of the robotic hand and
the object are divided into line segments The more the number of line segments
is divided, the more the number of elements in writhe matrix will be used to
solve the IK problem explained earlier in the section. This is similar to the
discussion in Section 4.3.2.1. However, more line segments does not guarantee a
better result in solving IK problem. It could also be a trade-off to a computation
time because it increases the number of variables in the optimization problem.
The number of line segments are identified empirically during the experiment;
however, the number of line segments are considerably low (around 10 times less)
comparing to the case used during recognition.

Notice that each element of writhe matrix is treated equally during synthesis.
This means that all line segments that represent same strand should have the
same (or at least similar) segment length. Algorithm 1 is also used for this
purpose.

There is also a reason why some parameters of both types of writhe matrix
are scaled to the range of [—1,1] x [—1,1]. The size of writhe matrix during a
recognition process and the size of writhe matrix during mapping process might
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Figure 6.6: Mapping of writhe matrices for hands with different fingers’ length.
Skill parameters are scaled to standard length before scaling back to the length
of the destination finger. They are treated equally regardless of their structure
(e.g. lengths of finger segments.)

be different. Scaling to a standard length makes the mapping between the two
possible. However, this mean that the finger of human and a target robotic
hand are mapped together regardless of their length and structure, as shown in
Figure 6.6.

6.2.2 Mapping Skill Parameters to Robot Postures

Before generating a trajectory of a robotic hand for each movement primitive,
initial and final grasping postures of the robotic hand are created to have the same
skill parameters as of the movement primitive. This can be done by solving the
IK problem, individually for initial and final postures, given parameters of their
writhe matrices which are part of the skill parameters explained in Section 6.2.1.
The remaining question is how to initialise the robotic grasping posture so that
it can be used as an initial generalized coordinated of the IK problem.

The initial grasping posture for IK problem can be divided into the initializa-
tion of two parts: pen location, and a configuration and location of the robotic
hand. The former can be initialised using an arbitrary position with a parameter
v, from skill parameters directly. For the latter, a configuration of the robotic
hand for IK problem is initialised with state information i.e. s;, orsy in Table 5.2.
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Figure 6.7: An initial robotic grasping posture for all states with tti~m™. It is
used to initialise a robotic configuration before it is mapped to skill parameters
obtained from human demonstration.

For each group of states with the same sign of writhe matrices for all three fin-
gers, i.e. those in each dashed line circle, a robotic grasping posture is prepared
and given as an input to the system. The grasping posture does not need to
be in a particular type of writhe matrix or to have a specific skill parameters
of the writhe matrices. It is only needed to have the same correspondence of
the sign of all writhe matrices with states it represented. This will provide an
initial configuration of the robotic hand and also a relative location of the hand
to the pen, which can then be adjusted accordingly to the location of the pen.
Figure 6.7 shows examples of an initial grasping posture for states with tTi~m™.

Notice that in this step, the trajectory to reach the desired writhe matrices
is not important. The hand configuration and location are updated iteratively
using Equation (6.13) until writhe matrices between the robotic hand and then
pen are similar to the desired writhe matrices.

6.2.3 Interpolate Hand Motion between Initial and Final
States

Once initial and final grasping postures of a robotic hand for the movement
primitive is created, the next step is to generate a trajectory of the robotic
hand that connects them together. An IK solver explained in Section 6.2.1 is
used to generate the trajectory of the robotic hand. The method tries to move
the robotic hand so that its writhe matrices are similar to the desired writhe
matrices. Therefore, to interpolate a trajectory for the robotic hand, a sequence
of intermediate writhe matrices to lead the trajectory interpolation is required.
In other words, this sequence of intermediate writhe matrices dictates how the
movement of robot hand turns out to be for each movement primitives. In this
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section, a method to create a sequence of intermediate writhe matrices for each
movement primitives is explained.

A sequence of intermediate writhe matrices of major finger for each movement
primitive is created as follows:

e Detaching : Consider Py(w’,p,p,) and S;(w’, o/, 17) as skill parameters
for initial peak-wm and final span-wm writhe matrix. In this case, a mid
span-wm writhe matrix is necessary. It is assigned with skill parameters
Sy (w™, ™, [77), where

wm = w’
a™=al
L =p, —a'p,. (6.17)

A pair (@™, [}) represents a span-line that pass through point (pt, pZ), but
has the same direction as a span-line (o, lgj) Then a process of creating
a sequence of intermediate writhe matrices for this movement primitives is
divided into two steps. First, intermediate writhe matrices between P; and
S,, are created. This can be done by synthesising both writhe matrices,
T, T™ from their skill parameters, and then element-wise linearly interpo-
lating between them to create all intermediate writhe matrices. Assume
that 77, r € [1,n] is one of the n intermediate writhe matrices that would
be created between T and T™, T of size n; X ngy is calculated as

T
Ty, =P T, (6.18)

Y(p,q) € [1,n1] X [1,n3]. Second, intermediate writhe matrices between S,
and §; by linearly interpolating between their skill parameters to obtain
skill parameters for all intermediate span-wm, S,. Then each intermediate
writhe matrix is synthesised from this parameter S;.

e Attaching : It uses the same algorithms as Detaching, but in the reversed
direction.

e Crossover : Consider S;(w’, o', I}) and S;(w’, o/, 1) as skill parameters for
initial span-wm and final span-wm writhe matrix. Mid span-wm is also
necessary in this case. It is assigned with skill parameters S,,,(w™, a™, [;"),
where

w0
a™ =7/o

I = @+ ). (6.19)
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(a) Detaching. The process is divided into two steps, connecting by a mid span-wm S,,. The
mid span-wm has same writhe as the final span-wm (w™ = w’), same orientation of the span-line
as the final span-wm (o™ = /), but its span-line pass through a peak of the initial peak-wm
(L= pL —alpl). Firstly, intermediate writhe matrices between the initial peak-wm and the mid
span-wm are created by linearly interpolating each element of their synthesised writhe matrices.
Secondly, intermediate writhe matrices between the mid span-wm and the final span-wm are
created by linearly interpolating between their parameters and then synthesised span-wm based
on the interpolated parameters.
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on Parameters

S,w' a1l — T S.(ha ) P,(w’,pl,p))
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Span-wm Linear Interpolation @

Element-wise
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(b) Attaching. This is simply a reversal of the method of detaching movement primitive.

Linear Interpolation Linear Interpolation
on Parameters on Parameters
i il S I m S J yJ 7]
Si(w ,(X ’ly) | | ’Sm(o’ 2’ly ) | | ’Sj(w ,a 7ly)
Synthesize Synthesize
Span-wm Span-wm
ARl teabralra| B
- —
. (D) \
l = — *When hand trajectory is generated,
Y 2 it is done in a reversed order.

(¢) Crossover. The process is divided into two steps, connecting by a mid zero-wm S,,,. The mid
zero-wm is a special kind of span-wm that its writhe is close to zero (w™ ~ 0) and its span-line
is a horizontal line (., = P¥/2). Note that [’ is set to (1, +1))/2 for connecting purposes. Both
steps generate intermediate writhe matrices by linearly interpolating between their parameters
and then synthesised span-wm based on the interpolated parameters.

Figure 6.8: Methods to generate a sequence of intermediate writhe matrices for
a major finger for each movement primitives.
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Figure 6.9: Methods to generate a sequence of intermediate writhe matrices for
minor fingers for all movement primitives. Intermediate writhe matrices between
an initial peak-wm and a final peak-wm are created by linearly interpolating be-
tween their parameters and then synthesised peak-wm based on the interpolated
parameters.

This §,, represents a zero-wm, a special kind of span-wm, where o' is a
slop of span-line that results in the horizontal line in the writhe matrix.
In the similar manner as detaching, the process of creating a sequence of
intermediate writhe matrix is divided into two steps: creating intermedi-
ate writhe matrices between S; and S, and creating intermediate writhe
matrices between S, and S;. Both steps can be done by linearly interpo-
lating between skill parameters of initial and final writhe matrices to obtain
skill parameters for all intermediate span-wm writhe matrices. Then, each
intermediate writhe matrix is synthesised from its skill parameters.

Notice that the process of generate a trajectory of the robotic hand for
crossover is also divided into two steps. The first steps is to generate the
trajectory to follow intermediate writhe matrices from S; and S,,, and the
second steps is to generate the trajectory to follow intermediate writhe
matrices from S; and S,,. Then the first trajectory is connected with
the reversal of the second trajectory to create a trajectory for crossover
primitive. This is because the IK solver tends to fail to find a global
optimum solution when the total writhe value of the writhe matrix is small.

Although there is not much change in skill parameters of minor fingers in
each movement primitive after the refinement, it is still necessary to provide a
method to create a sequence of intermediate writhe matrices for them. Changes
in minor fingers are from peak-wm to peak-wm within the same sign of writhe.
Consider P;(w’, pl, p},) and P;(w’,pl, p},) as skill parameters for initial peak-wm
and final peak-wm writhe matrix. A sequence of intermediate writhe matrices
can be created by first linearly interpolating between skill parameters of initial
and final peak-wm to obtain skill parameters for all intermediate peak-wm. Then
each intermediate writhe matrix is synthesised from its skill parameters.
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Figure 6.8 illustrates a visualization of how the intermediate writhe matrices
are interpolated for the major finger and Figure 6.9 for the minor fingers of all
movement primitive. Note that linearly interpolation of skill parameters between
two span-wm (with the same sign of writhe), that has been used in the process
of creating intermediate writhe matrices, results in rotation of a span-line of the
span-wm.

6.3 Connecting Movement Primitives

A sequence of movement primitives is passed to the robot system to be mapped
onto the robotic hand. A trajectory of joints/hand for each movement primitive
are generated separately. This section explains how to connect them together
into a regrasping movement that is resembled to the one observed from human.
A method to connect two movement primitives can be divided into two cases:
a.) a case when a final grasping posture of the former movement primitive is
the same as an initial grasping posture of the latter movement, or in other word,
they possess the same skill parameters obtained from human, b.) a case when
a final grasping posture of the former movement primitive is not the same as
an initial grasping posture of the latter movement primitive, but they are in the
same state in the taxonomy.

In the former case, connecting two consecutive movement primitives is simple.
Since they are originally connected through the grasping posture (a final posture
of the former and a final of the latter), both trajectories can directly be attached
to each other. Note that in this case, the orientation of the pen obtained from
the demonstration for both movement primitives are always the same, due to
the fact that both movement primitives are connected during the demonstration
and the initial assumption that an orientation of the pen does not change within
the same movement primitive.

Based on a method how a range of each movement primitive is identified
explained in Section 5.2.2.1, the latter case can only occur at the state which
all three writhe matrices are peak-wms, i.e. all states with ¢,i,m,. In other
word, this case can only occur when the former movement primitive is attaching
and the latter movement primitive is detaching. Note the method to connect
these two movement primitives can also be used to connect the initial grasping
posture of the regrasping movement to the first detaching movement primitive,
or to connect the last attaching movement primitive to the final grasping posture
of the regrasping movement.

In the latter case, if the orientation of the pen of both trajectories are the
same, an interpolation in the topological space can be used to connect the final
grasping posture of the former movement primitive to the initial grasping posture
of the latter. Both grasping postures are described by skill parameters of three
peak-wms, the trajectory to connect them can be interpolated by the method
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explained in Section 6.2. By applying a method formerly used to generate in-
termediate writhe matrices of the minor fingers of the movement primitive to all
fingers, the intermediate writhe matrices that connects between the two grasping
postures can be created; thus the hand/joint trajectory to connect them.

However, if the orientation of the pen changes, this can be very complicated.
When a robotic hand tries to move or change an orientation of a grasped object
without any contact between fingers and the object being detached, the move-
ment can be referred to as rolling or sliding [Bicchi 2000]. In this system, this
movement is created manually by the human operator by considering appropri-
ate trajectories for the fingertips of all fingers and using a simple IK solver to
generate a hand/joint trajectory.

6.4 Experimental Results

Sequences of human regrasping movement considered in Section 4.4 and Sec-
tion 5.3 are mapped to the robotic hand described in Appendix B. Regrasping
movement is recognised into a sequence of movement primitives and their skill
parameters. These skill parameters are refined before they are used to generate a
movement. Trajectories of hand and finger movement are generated for all move-
ment primitives in the sequence and connected together to create a regrasping
movement for a robotic hand that imitates the observed human movement.

6.4.1 Results of Skill Refinement

Figure 6.10 and Figure 6.11 illustrate refinement results for skill parameters
obtained from Interdigital Step — Sequences 1 and 2 respectively. Both original
and refined skill parameters are shown for comparison. The skill parameter
shown is a p, of peak-wm, which represents a contact location on the pen of the
corresponding finger. In each small image, contact locations of all three fingers
are shown, except when the corresponding writhe matrix is span-wm, a [, is
displayed instead.

It is noticeable that within a movement primitive, contact locations of both
minor fingers are refined to be unchanged from the initial state to the final state.
As a result, for all consecutive movement primitives, the contact locations of
their minor fingers are unchanged throughout, e.g. contact location of thumb
(red) and middle finger (blue) are unchanged from frame 22" to 87" in the
refined version of Figure 6.10.

Regarding the threshold values used in refining constraints, they are assigned
empirically excepts for Constraint 3. For Constraint 1 and Constraint 2,
01, 09, 03 are assigned equally to 0.1 throughout the experiment. This is equal to
30/2% 0.1 = 1.5 centimetres, when a 30 centimetres pen is used. For Constraint
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Figure 6.10: Refinement of the skill parameters obtained human demonstration of
Interdigital Step — Sequences 1. The left column shows original skill parameters,
where the right column shows the refined version. For a peak-wm (a filled circle),
a contact location on the pen p, is shown, where for a span-wm (an unfilled
circle) an average tangled location on the pen [, is shown instead (red=thumb,

green=index finger, blue=middle finger).
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Figure 6.11: Refinement of the skill parameters obtained human demonstration of
Interdigital Step — Sequences 2. The left column shows original skill parameters,
where the right column shows the refined version. For a peak-wm (a filled circle),
a contact location on the pen p, is shown, where for a span-wm (an unfilled
circle) an average tangled location on the pen [, is shown instead (red=thumb,
green=index finger, blue=middle finger).
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Frame 0022
Skill Parameters Value
(Refined)
Si g My
Vb (0,0,0,1)
Py (Index) (-0.246, -0.850, 0.437)
P, (Thumb) (0.172, -0.850, 0.081)
P,, (Middle) (-0.412, -0.771, 0.045)

(a) a human grasping posture (frame 22"?) and its skill param-
eters.

—

Initial Robotic Posture Result Robotic Posture

(b) Initial robotic posture and the result robotic posture of the
mapping.

Figure 6.12: Skill parameters obtained from human is mapped to a robotic hand
(frame 22" of Interdigital Step — Sequence 1).

3, a feasible contact area on the fingers are measured and l,,,;, = —0.85, 0 =
—0.70 are selected.

6.4.2 Results of Movement Mapping

To map a human regrasping movement onto the robotic hand, trajectories of all
movement primitives are generated and connected together. In order to generate
a trajectory for each movement primitive, initial and final grasping postures of
the robotic hand are first created from the corresponding skill parameters. Then
a trajectory that connected between these two grasping postures is generated.

6.4.2.1 Mapping Skill Parameters to Robot Postures

Figure 6.12 illustrates a robotic posture that is mapped to skill parameters that
obtained from human demonstration (frame 22"¢ of Interdigital Step — Sequence
1). Three writhe matrices, all peak-wms in this case, are synthesised from their
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Frame 1559
Skill Parameters Value
(Refined)
s; ti,'my
vy, (0,0,0,1)
Sio (Thumb) (-0.106, -0.159, -0.314)
P, (Index) (0.227, -0.850, 0.317)
P;, (Middle) (-0.275, -0.700, 0.231)

(a) a human grasping posture (frame 1559*") and its skill pa-
rameters.

—

Initial Robotic Posture Result Robotic Posture

(b) Initial robotic posture and the result robotic posture of the
mapping.

Figure 6.13: Skill parameters obtained from human is mapped to a robotic hand
(frame 1559'® of Interdigital Step — Sequence 2).

corresponding skill parameters using method explained in Section 6.2.1.1. Then,
they are used as a target tangle relation for solving an IK problem. The robotic
posture shown in the left of Figure 6.12(b) is used as a initialising hand config-
uration. The IK solver then iteratively searches for a solution, until the criteria
is met which yields a resulting posture on the right of the figure. Note that the
criteria used for a stop condition is ||Ar||, where Ar is a small change in the
generalized coordinate of the robotic hand.

Similarly, Figure 6.13 displays a robotic posture that is mapped to skill pa-
rameters that obtained from human demonstration (frame 1559 of Interdigital
Step — Sequence 2). However, the grasping posture contains a finger (thumb)
whose writhe matrix is a span-wm. Thus, a method to synthesise a target tangle
relation is slightly different. In addition, the initialising hand configuration for
the TK problem, shown in the left of Figure 6.13(b), is also different due to the
state of human posture (i.e. t7iTm™).

As mentioned in Section 6.2.1.1, the value of o, and o,, when peak-wm is
synthesised, effect a distance between strands of the finger and the pen. The
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distance indicates whether the finger is in contact with the pen or not. In the
current implementation, these value are empirically and manually assigned so
that the finger is in contact with the pen. The range of assigned values are range
between 0.6 to 1.5 depending on obtained writhe value and the length of a target
robotic finger. This process can be automated by using a collision detection
engine to identify the value that would lead the finger to be in contact with the
pen.

In addition, in a current implementation, the setting of o, and o, are also
used to solve the problem of an inaccuracy in the data acquisition phase. For
instance, it can be seen clearly in frame 40" of Figure 5.12 that the thumb is
not in contact with the pen, but its writhe matrix is classified as a peak-wm.
This results in the low value of total writhe matrix of the peak-wm that is passed
on to the robot as a skill parameter; thus lower values of o, and o, used in the
synthesized process.

An alternative approach to tackle the issue is to find a specific writhe value
the is required for each finger of a particular robotic hand to be in contact with
the pen, and set it to all corresponding peak-wms during skill refinement. This
would narrow down the range of possible value to be assigned to o, and o,.
However, this approach should not be used to refine a span-wm as its writhe
value also reflects the average distance from the finger to the pen.

6.4.2.2 Mapping of Regrasping Movement

Figure 6.14 and Figure 6.15 show results of a robot imitating human demon-
stration of Interdigital Step — Sequence 1 and 2 sequentially. Trajectories of all
movement primitives are generated and connected together. The connected tra-
jectory is passed onto the robot to be executed. In current implementation, the
robot uses no force or visual feedback during an execution of the trajectory.

It is noticeable from the results that the pen orientation changes during the
imitation. However, in the demonstration of these two sequences, Interdigital
Step — Sequence 1 and 2, the orientation of the pen does not change at all, so
as to the result from the mapping. A small improvement on this issue can be
achieved by tuning the opposition distance threshold using during the refinement
or the assigned values of o, and o, using during the synthesised of peak-wms. An
alternative improvement would be to incorporate force and visual feedback into
the robot system, and an algorithm to real-timely modify the hand trajectory.
However, the alternation in the mapping framework could be expected in this
case.
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Figure 6.14: A result of the robotic hand imitates a human regrasping movement
(Interdigital Step — Sequence 1).
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Figure 6.15: A result of the robotic hand imitates a human regrasping movement
(Interdigital Step — Sequence 2.
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6.5 Summary of Chapter

A framework to map human regrasping movement to a robotic hand is described.
Human regrasping movement is represented as a sequence of movement primi-
tives. A trajectory for each movement primitive is generated based on their
skill parameters and connected together to create the regrasping movement for a
robotic hand. The trajectory of each movement primitive is generated by inter-
polating the hand in a topological space. Based on the skill parameters of initial
and final writhe matrices of each movement primitive, the interpolation method
for all three movement primitives are proposed. It creates intermediate writhe
matrices which, in turn, are used to lead the interpolation of the robotic hand
in a topological space.

Skill parameters obtained from human demonstration cannot be used directly
to generate a trajectory for a robotic hand that can be successfully executed in
the real world. A method to refine these skill parameters is proposed. Finally, a
regrasping movement for a robotic hand is generated using the proposed frame-
work and these refined parameters and is successfully executed on a robotic hand
in the real world.
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7.1 RPO — A Summary

This thesis describes a novel approach to teach a regrasping movement to a
robot. The approach is based on a LFO paradigm, which allows the robot to
learn how to perform a certain task by observing and imitating human. Robot
plans its own regrasping movement by observing human demonstrating a move-
ment, segmenting and recognising the movement based on a pre-defined task
model. This allows an observed regrasping movement to be represented by a
sequence of movement primitives. The robot then imitates the movement by se-
quentially executing these movement primitives using skill parameters obtained
in the planning process.

The thesis focuses on the changes of topological relation, referred to as tan-
gle topology, between a hand and an object in a regrasping movement. Hands
and a manipulated object are substituted with a set of zero-width strands. Tan-
gle relation examines a relation between these strands. Features based on this
relation are used to temporally segment a captured regrasping movement into
various meaningful segments. By comparing segmented results, the segmenta-
tion of based on a change in types of the feature called writhe matrices is chosen
to build a task model upon.

A task model is consisted of two components: movement primitives and skill
parameters. In the RPO system, movement primitives are defined based on

101
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changes in types of writhe matrices between fingers and the object. A set of
skill parameters for each type of movement primitive are a necessary information
needed to transfer the movement primitive from a human hand to a robotic hand.
Both movement primitives and skill parameters are recognised and extracted
from human demonstration, which turns a captured regrasping movement into a
strategy or a plan for a robot to execute it.

A sequence of movement primitives together with their skill parameters are
used by a robot to imitate the captured regrasping movement. Skill parame-
ters of all movement primitives are refined to comply with physical constraints
of a target robotic hand and environment before the movement primitives are
sequentially executed. A mapping framework to map each movement primitive
to a robotic hand is described. It is based on the interpolation of a robotic hand
in a topological space and composed of two steps: 1.) mapping skill parameters
to create an initial and a final postures of a robotic hand and, 2.) creating a
trajectory of the hand to connect between the two postures.

Once trajectories for each movement primitives are created, they are con-
nected together to create a regrasping movement for a robotic hand. A robot
imitates the movement by simply following the pre-constructed trajectory. A
robot system used to execute the movement comprised of a 20 DOFs custom-
made robotic hand, attached to the Mitsubishi PA-10 robotic arm to maneuver
around. The hand is build to resemble the DOF structure of the human hand.

7.1.1 Discussion

The approach described in this thesis has various advantages over other method-
ologies. Firstly, RPO system is based on a LFO paradigm. It can be seen that
the movement of the robotic hand produced from the proposed system is similar
to that of a human. By mimicking the way a human regrasps an object, the
generated movement will in include knowledge of various constraints of the real
world environment. These include object constraints and task constraints. By
comparing to automatic programming approaches, many of these constraints are
ignores which may make the approach struggle when applied outside a controlled
environment [Cutkosky 1989].

Secondly, once human performs a certain regrasping movement, the knowl-
edge recognised and extracted can be used to create a movement on many hands.
Due to the limitation of resources, the method has not been tested with other
types of robotic hand. However, it is believed that if their structure are not too
different from that of the human hand, the proposed method should work well
with them with some parameter tuning.

Thirdly, an observation process requires poses and configuration of a human
hand and an object at every frame in the sequence. In this thesis, a CyberGlove
data glove and a Polhemus motion tracker are used to capture these data. How-
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ever, this can be replaced by other devices (e.g. vision-based) that provide a
better accuracy. Although a force/tactile information might improve the seg-
mentation method that separates between two types of writhe matrix, there is
no need for the use of a tactile sensor. This is because contact relations during
regrasping are indirectly inferred from a topological representation, which only
requires information of poses.

Lastly, a topological information chosen as a main representation in the sys-
tem contains more information than a set of contact locations (the object) which
generally uses to represented in a planning of regrasping movement. A peak-wm
contains contact locations both on the object and on the hand. A span-wm
stores information of a grasping posture when there is no contact between the
hand and the object. A combination of both types of writhe matrix in a sequence,
not only provides an information where the contacts should be, it also includes
an information of the trajectory of the fingers (regards to the object) during
regrasping. This allows a trajectory of a robotic hand to be easily interpolated
in a pre-defined path in a topological space.

7.2 Future Directions

Although the proposed RPO system allows a robot to imitate a regrasping move-
ment from human demonstration, it has reduced and omitted various conditions
and constraints. The following directions can be done to improve the capabilities
of the system.

The current system only considers a pen-like object, or an object that is can
be represented by one straight strand. It would be interesting to explore into the
regrasping movement of other objects. To begin with, if the object is represented
by a strand that is not straight, tangle relation might not remains the same during
regrasping. Furthermore, if regrasping movements of more complicated objects
that cannot be represented by one strand are considered, the foremost question
would be how to represent them as strands.

The current taxonomy of grasping postures considers a tangle relation of
three fingers. This results in the movement primitives that allow only one finger
to greatly move (a major finger) because other fingers (minor fingers) need to
keep the stability of the object. If a taxonomy is extended to more fingers or to
other components of the hand (e.g. palm), it would allow a regrasping movement
that contains a simultaneous movement of more than one (major) finger to be
imitated. However, this might also result in the modification of task model and
the mapping framework.

A contact location provided by peak-wm as the strands do not possess a
directional information on their side. In other word, for a particular grasping
posture, if the pen rotates around its axis, the recognised contact information
will remain the same. Including this information in the recognition process would
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enhance a knowledge obtained from human demonstration and provides more
precious imitation on the robot. By doing this, a method that is used to refine
skill parameters before mapping to the robotic hand would need to be enhanced
to a three dimensional problem.

In current system, the object is not allowed to move when each movement
primitive is performed. This is due to the lack of knowledge on how the tangle
relation (i.e. writhe matrix) would be altered, if the movement primitive of a
finger effects the location and orientation of the object. It is not immediately
obvious what would be necessary to enabling this. However, at a very least, a
change of tangle relation, due to a movement of a finger that moves the object,
must be calculated.

Lastly, in current system a trajectory of a regrasping movement for a robotic
hand is pre-calculated and simply playback on the robot. This dues to the lack of
sensors on a robot system, e.g. force tactile sensors, visual sensors. It would be
interesting to develop a feedback system on the robot when imitating a regrasping
movement. A sequence of movement primitives can be executed one at the time,
and examine its state before proceeding to execute the next one.
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Main objective of developing data acquisition system is to let a robot ob-
serve a human regrasping movement. In other words, it is used for human to
demonstrate a regrasping movement to a robot system. In this chapter, a detail
information about the data acquisition system is explained. A possible improve-
ment for the developed system are also discussed, together with other alternative
system setups.

A.1 System Setup

At a particular moment, a data acquisition system should be able to capture a
configuration (joint angles) of a human hand, and poses (position and orienta-
tion) of both a human hand and a manipulated object. These data are referred
to as grasping posture. A regrasping movement are captured as a sequence of
grasping postures concatenated together into a trajectory of grasping postures.
In the system, a pen-like object (e.g. pen, paintbrush) is considered. The exact
geometry of the manipulated object is known prior to the demonstration.

An obvious approach for the problem would be to use cameras to track the
hand and object in real-time. However, this approach usually suffers from either
an occlusion problem, or a captured rate due to a calculation of complicated
tracking algorithm. A different approach would be to use a marker based tracking
system [Chang et al. 2007]. However, after some experiments with the regrasping
movement of interest, it seems to be suffering from the occlusion problem as well.
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In this system, a CyberGlove data glove and Polhemus motion tracker are
used to capture a demonstration of regrasping movement. Information from the
glove and motion tracker could have been used directly. However, due to its lack
of accuracy to capture hand configuration in the real world, data obtained from
these sensors are connected to a virtual environment [Miller & Allen 2004] and
the information in a virtual environment is used instead. In other word, a human
demonstration of a regrasping movement is conducted in a virtual environment,
while the glove and the motion tracker are used to interface with the models in
a virtual environment. Figure A.1(a) illustrates how human interfaces with a
virtual environment via the glove and the motion tracker.

A.1.1 Mapping Sensor Data to a Virtual Environment

Data acquired from sensors are hand and object location from Polhemus motion
tracker, and hand configuration from Cyberglove. The hand and object location
are transformed and mapped directly into the virtual environment. As for a
hand configuration, the data obtained from the sensors are mapped to the model
according to their labels shown in Figure A.2. For (h,c) € {(0,8), (1,4), (2,5), (3,
11), (4,6), (5,7), (6,11),(7,9), (8,10), (9, 14), (10, 12), (11, 13), (12,0), (13, 3), (14, 1),
(15,2)},

HIE] = Gy oCle), (A1)

where G, . is a gain parameter different for each (h,c) pair. These gain param-
eters are identified manually based on trail-and-error. In general, accuracy of
the values are acceptable, except abduction joints and the thumb that usually
required a fine tuning for different grasping postures. Alternative approaches to
calibrate these variables or mapping a glove to a particular hand model could
be used to increase an accuracy [Fischer et al. 1998, Griffin et al. 2000, Maycock
et al. 2011]. Though, they are usually applicable to increase an accuracy for only
some grasping postures or movement.
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CyberGlove & Polhemus Grasplt Simulation
[Miller & Allen ’00]

(b) Data captured from Cyberglove and Polhemus are mapped to a virtual
environment [Miller & Allen 2004].

Figure A.1: A data acquisition system.
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(a) The 18-sensor Cyberglove.

(b) Human hand model (16 degree of free-
doms) provided in Grasplt simulation.

Figure A.2: Joint numberings of Cyberglove sensor and human hand model.
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A robot system used to imitate human regrasping movement is described in
this chapter. A robotic hand is made to resemble a human hand configuration.
It consists of 20 degrees of freedom and attached to Mitsubishi PA-10 robotic
arm to be maneuvered around.

B.1 Configurations of a Robotic Hand.

A custom-made robotic hand is constructed by attached 20 Futaba RS303MR
servo motors together as shown in Figure B.1. It consists of five fingers, named
similar to fingers of human hand. Each finger contains four degrees of freedom.
All fingers, excepts the thumb, have the same kinematic configurations. Denavit-
Hartenberg parameters (DH parameters) of the thumb and other fingers is given
in B.1.

All five fingers are attached to a rectangular aluminium palm plate. Di-
mensions of the palm plate are 200 x 100 x 5 millimeters Consider an origin to
be at the mid-bottom of the front of the plate as shown in Figure B.1(b), the
transformation from the origin of the palm plate to the finger bases are shown
in Table B.2.
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Index
gL

d )1 ) >
_ ﬂ

' Thumb

(a) A robotic hand attached with (b) Joints information of the robotic hand.
a Mitsubishi PA-10 robotic arm.

Figure B.1: A custom-made 20 degrees of freedom robotic hand.

a) DH parameters of the thumb.
0 (deg.) d (mm.) a (mm.) « (deg.)

R[0]— 90  36.865 0 90
R[] 0 80.350 90
R[2]  —0.116 47.481 0
R[3]  —0818  63.061 0

(b) DH parameters of index finger (and the others).
0 (deg.) d (mm.) a (mm.) o« (deg.)

R[] 29.364  1.019 90
R[5]  —0.127  47.481 0
R[6]  —0.016  47.482 0
R[7]  —0.140  63.061 0

Table B.1: Denavit-Hartenberg parameters of fingers of the robotic hand.

Finger Translation (mm.) Orientation (zyz in deg.)
Thumb  (94.431, 1.545, 20.092) (0,0, —90)

Index  (52.650,98.321, 15.998) (90,0,0)
Middle  (5.150,98.321,15.998) (90,0,0)

Ring  (—42.350,98.321, 15.998) (90,0,0)

Little  (—89.850,98.321, 15.998) (90,0,0)

Table B.2: Transformation of each finger to a base of the robotic hand.
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This chapter illustrates regrasping movements capture from a data acquisition
system described in Appendix A. These movements are used as input data for
the experiments conducted in this research.

C.1 Interdigital Step

Figure C.1: Interdigital step movement.

Interdigital step is a manipulative movement that applied to long, thin ob-
jects [Elliott & K.J. 1984]. Three fingers move and combines to achieve the
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movement as shown in Figure C.1. The reversal of this movement is captured
and shown in the following subsections.

C.1.1 Interdigital Step — Sequence 1

The captured movement consists of 497 frames. It is divided and illustrated
sequentially in Figure C.2, Figure C.3, and Figure C.4.

C.1.2 Interdigital Step — Sequence 2

The captured movement consists of 1938 frames. It contained a lot more frames
than one in Appendix C.1.1 due to the higher frame rate of the data acquisi-
tion system. It is divided and illustrated sequentially, one every four frames, in
Figure C.5, Figure C.6, and Figure C.7.
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Figure C.2: Interdigital Step — Sequence 1 :
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Figure C.3: Interdigital Step — Sequence 1 : Frame 180"-359",
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Figure C.4: Interdigital Step — Sequence 1 : Frame 360'"-496".
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Figure C.5: Interdigital Step — Sequence 2 : Frame 0"'-716'" (one every four
frames).
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Figure C.6: Interdigital Step — Sequence 2 : Frame 720'"-1436'" (one every four
frames).
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Figure C.7: Interdigital Step — Sequence 2 : Frame 1440'""-1936" (one every four
frames).
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