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Abstract

Statistical machine learning is a data processing technology that can make an intellectual
inference, e.g., regression analysis, classification, or clustering, by automatically extracting
important patterns from data. It has archived great success as an effective decision making
tool and has been employed in various research/social application fields, including medical
diagnosis and automatic driving systems. However, in the real world, we often obtain highly
contaminated data or rarely get an enough amount of data for proper inference. Such a case,
uncertainty arises on the output from statistical machine learning and can lead to wrong
decision-making. This is a crucial issue; for example, in medical diagnosis or automatic
driving, an decision-making error can be fatal or sometimes even life-threatening.

To avoid this risk, uncertainty estimation for the output is necessary. Although Bayesian
inference is one of the most effective ways to evaluate uncertainty in this context, modern
Bayesian statistic relies on a complex model whose posterior is hard to compute and can be
applied to large-scale data, which can increase the computational load. Therefore, making
an exact inference is typically intractable. Even though variational inference (VI) is typically
used to approximate the posterior, the objective function of VI itself becomes intractable
and can not be computed in a closed form for more complicated models such as Bayesian
neural networks.

To bypass this, Monte Carlo variational inference (MCVI), which is a stochastic inference
method based on the stochastic gradient, has proposed. However, the stochastic gradient
often takes high variance, and this negatively affects the performance of MCVI. Therefore, the
variance reduction of the stochastic gradient in variational inference is one of the important
research topics, and various methods have been proposed in recent years. The drawbacks of
these methods are that we need to use heuristic information and can not enjoy theoretical
guarantee for convergence, variance reduction, or the variance-reduced gradient.

In this thesis, we propose a framework for variance reduction using the multi-level Monte
Carlo (MLMC) method that makes it possible to “recycle” the parameter in the past obtained
naturally in optimization. The framework is naturally compatible with reparameterized gra-
dient estimators that are being used as a standard in MCVI. The proposed method has a
novel optimization algorithm based on SGD and estimates the sample size for stochastic
gradient estimation per level adaptively according to the ratio of the variance and computa-
tion cost in each iteration. Furthermore, we analyze the convergence of the gradient norm in
stochastic gradient descent, the scale of the variance of the gradient estimator, and its quality
in each optimization step on the basis of the signal-to-noise ratio. Finally, we experimentally
evaluate the proposed method by comparing it with baseline methods on several benchmark
data sets and confirm that the proposed method archives faster convergence, sometimes gets
closer to the optimal value, and reduces the variance of the gradient estimator more than
the other methods do.
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概要

統計的機械学習は，データから重要なパターンを自動的に抽出することにより，回帰，分
類，クラスタリングなどといった知的推論を行うことができるデータ処理技術である．この技
術は，効果的な意思決定方法として非常に有益なものであると見做され，医療診断や車の自動
運転システムなどを含む様々な研究・社会応用の分野に適用されている．しかし，実社会にお
いては，得られたデータが激しいノイズに汚染されていたり，適正な推論結果を得るために十
分な量のデータを入手することが困難である場合が頻繁に生じる．そのようなデータを，統計
的機械学習を用いて解析した場合，その出力に，「不確実性」が生じてしまう．この「不確実
性」の発生は，誤った意思決定に繋がり得るために，重大な問題となっている．例えば，医療
診断や自動運転システムの場合，誤った意思決定が何らかの危険性，あるいは命を脅かす事態
に繋がりかねない．
このようなリスクを回避するためには，統計的機械学習技術から得られた出力の不確実性を

推定し，それを加味した決定を下すことが必要である．不確実性を推定・評価する上で最も効
果的な方法の一つとされているものが，ベイズ推論である．しかし，近年のベイズ推論は，事
後分布が簡単には計算できない，あるいは解析的な計算が不可能であるほどまでに複雑な確率
モデルに適用されることが多い．加えて，大規模なデータに適用されることもあり，計算負荷
が大きくなり得る．このような場合，事後分布自体を，扱いやすい別の分布で近似することを
考えるが，その際によく使用されるのが，変分推論である．しかしながら，ベイジアンニュー
ラルネットワークのような，さらに複雑なモデルを構築する場合，変分推論の目的関数自体が
解析的に計算不可能になってしまい，閉じた形で推論を行うことができない．
この問題を回避するために，確率的勾配を基に確率的推論を行うモンテカルロ変分推論が

開発されたが，確率的勾配はしばしば分散が大きくなってしまい，これがモンテカルロ変分推
論の性能に悪い影響を与えている．よって，確率的勾配における分散抑制は，重要な研究課題
の一つとなっており，様々な方法が提案されてきた．これらの手法の欠点は，分散を抑制する
ための新しい関数などを人為的に付与しなくてはならず，さらには「推論の収束性」，「分散抑
制の程度」，「分散抑制された確率的勾配の質」についての理論保証がない，あるいは享受でき
ないことである．
そこで，本論文では，マルチレベルモンテカルロ法を用い，最適化の行程で自然に入手で

きる過去のパラメータ情報を再利用する，新しい分散抑制法を提案する．提案法は，モンテカ
ルロ変分推論において標準的に使用されつつある再パラメータ化勾配のもとで自然に導出され
る．また，最適化における各行程において，確率的勾配の分散と計算コストの比によって推定
に用いる確率変数の数を動的に推定する，新しい確率的勾配推定法および最適化アルゴリズム
を提案する．さらに，確率的勾配降下法における提案法の勾配の収束性，勾配の分散の大きさ，
および SN比に基づく勾配推定量の質について，理論解析を行う．最後に，いくつかの数値実
験を行い，基準となる既存法と比較し，提案法の性能を評価する．この実験を通して，提案法
が，既存法に比べて，推論の収束が高速で，モデルによっては最適な解を得，勾配の分散を抑
制できていることを確認する．
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Chapter 1

Introduction

In this chapter, we state the introduction of this thesis. First of all, we overview the
outline of statistical machine learning and uncertainty in Section 1.1. Next, we briefly
introduce Bayesian inference that is important method to evaluate uncertainty in Section
1.2. Moreover, we explain an approximate inference including the relationship between VI
and MCMC in Section 1.3. In addition, we introduce Monte Carlo variational inference that
is the main method we focus on in Section 1.4. Finally, we summary the contribution and
the organization of this thesis in Section 1.5 and Section 1.6.

1.1 Statistical Machine Learning and Uncertainty

Statistical machine learning is a data processing technology that can make an intellectual
inference, e.g., regression analysis, classification, or clustering, by automatically extracting
important patterns from data [33]. It has archived great success as an effective decision
making tool and has been employed in various research/social application fields, e.g., recom-
mendation [41, 72], image recognition [36], causal inference [42, 49], simulation [13], natural
language process [10, 89], medical diagnosis [17, 45], and automatic driving systems [1]. Be-
yond the research community, it has been paid attention to by many people, societies, and
industries. Therefore, it has been extensively studied over the past few decades.

On the other hand, we can not always get clean and/or enough data. For example,
because of recent advances in sensor technology, we can get a vast amount of data with
spiky noise or so many annotated data obtained by using crowd-sourcing technology, but
it can be full of human errors [69, 57, 96, 4]. Besides, in astronomy or biology, it is hard
to gather enough data because huge costs are needed to obtain lunar photos or conduct
experiments in many settings. Such contaminated and/or limited data causes the uncertainty
on the output from statistical machine learning technology (called aleatoric uncertainty or
epistemic uncertainty [14]) and can yield wrong decision-making. It is sometimes a fatal
problem, i.e., in the case of a medical diagnosis problem. Therefore, an additional inference
method with uncertainty estimation is required to avoid making a potentially wrong decision.

Aleatoric Uncertainty [14] Aleatoric uncertainty captures noise inherent in the training
data set. For example, in Figure 1.1, this could be sensor noise or motion noise. In addition,
this uncertainty can not be reduced even if an enough amount of data is obtained. The
column (d) on Figure 1.1 shows that aleatoric uncertainty increases on object boundaries
and for objects far from the camera.
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Figure 1.1: Illustrating the difference between aleatoric and epistemic uncertainty for semantic
segmentation on the CamVid data set [6] [46].

Epistemic Uncertainty [14] Epistemic uncertainty accounts for uncertainty in the model
parameters, i.e., uncertainty, which captures our ignorance about which model generated our
collected data [46]. This uncertainty can be eliminated away if an enough amount of data is
obtained. In addition, it is often regarded as model uncertainty. The column (e) on Figure 1.1
shows that epistemic uncertainty increases for semantically and visually challenging pixels.

Uncertainty Evaluation on the Bayesian Model The bottom row on Figure 1.1 shows
that the segmentation model fails to segment the footpath due to increased epistemic uncer-
tainty but not aleatoric uncertainty. Therefore, the epistemic uncertainty evaluation would
be important for making proper decision. One of the ways to evaluate epistemic uncertainty
is constructing models with the Bayesian approach, which is called the Bayesian model. The
Bayesian model consists of probability density functions and is inferred under Bayes’s theo-
rem. This inference process is called Bayesian inference. Thanks to the Bayesian inference,
we can get the output with its distribution and confirm the uncertainty according to the
shape of it.

1.2 Bayesian Inference

As noticed in the previous section, Bayesian inference is an essential method of statistical
inference to make reasonable decisions with uncertainty. The object of Bayesian inference is
to estimate the posterior distribution of latent variables z given observation x: p(z|x), i.e.,

p(z|x) =
p(x|z)p(z)∫
p(x|z)p(z)dz

.

In the example of uncertainty introduced in the previous section, x is the input picture in the
CamVid data set and z is the weight of the model constructed for semantic segmentation.
The exact computation for p(z|x) amounts to sum or integration over all z. We can flexibly
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incorporate hypotheses and knowledge in the model as a likelihood and a prior. Because of
this flexibility, Bayesian inference has found many applications in a wide range of research
fields, e.g., medical science [51], biology [75, 34, 12], sociology [93], psychology [91], and
economics [90]. By using this, we can evaluate epistemic uncertainty on the basis of the
posterior: p(z|x), e.g., the scale parameter in the Gaussian distribution.

1.3 Approximate Inference

Modern Bayesian statistic relies on a complex (e.g., non-conjugate) model for which the
posterior is not easy or able to compute. Furthermore, the entire inference procedure can
be large-scale and therefore making an exact inference is typically intractable. To overcome
these situations, we need efficient algorithms for approximating the posterior.

Markov Chain Monte Carlo (MCMC) In the context of posterior approximation,
MCMC [37, 21] has been used for a long time. This method has evolved independently
of modern Bayesian statistics. The famous algorithm of MCMC is the Metropolis-Hastings
algorithm [59, 37], and the Gibbs sampler [23]. These methods have been applied to Bayesian
statistics by Gelfand and Smith [22]. MCMC algorithms have been widely studied and
extended by Blei et al. [3] (please see Robert and Casella [74] for a perspective). Furthermore,
they also provide guarantees of producing (asymptotically) exact samples from the target
distribution.

Variational Inference (VI) The object of VI is to seek a distribution, from a variational
family of distributions, that best approximates an intractable posterior distribution [60].
Recently, extensive research has been conducted to reveal the behavior of VI theoretically
and improve the performance of VI [7, 18, 56, 60, 64, 67, 68, 70, 76, 79, 80, 83, 84, 87, 88, 94].

Relationship between VI and MCMC However, when data sets are large, or the model
we construct is complex, the problem occurs in the usage of MCMC algorithms. That is,
they tend to be computationally intensive and need much computation for convergence. On
the other hand, VI tends to be faster than MCMC for the large-scale data sets because it can
easily enjoy the stochastic optimization scheme, which is computationally highly efficient [5].
It is important to note that, however, VI does not enjoy guarantees of getting samples from
the target distribution because it can only find a density closest to the target distribution
in a variational family.

In short, if we want to explore models quickly, VI would be suitable; on the other hand,
if we want to get precise results and be able to pay a high computation cost for it , MCMC
would be suitable.

Not only the data set size, but the geometry of the posterior distribution is also an impor-
tant factor to use VI and MCMC properly. For example, Gibbs sampling [23] is a powerful
tool to sample from target distributions. However, Gibbs sampling suffers restriction on the
choice of models in. For the models where Gibbs sampling is not permitted, VI may perform
better than a more general MCMC technique (e.g., Hamiltonian Monte Carlo [19]), even for
small data sets [50].

In the big-data era, a scalable and high-speed inference method such as VI has become
more and more required [95]. Therefore, understanding VI and improving its performance
contribute to broadening the utility of modern Bayesian statistics in various situations.
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1.4 Monte Carlo Variational Inference

Unfortunately, because of the very high complexity of recent models such as Bayesian neu-
ral networks, the objective function of VI itself is often intractable and can not be computed
in a closed form. In this case, we often use stochastic gradient methods called Monte Carlo
variational inference (MCVI) or black box variational inference [68]. In MCVI, sampling
from a variational posterior distribution is the key to estimating the gradient stochastically.
However, the stochastic gradient obtained with Monte Carlo approximation may cause slow
convergence because of the high-variance. Therefore, the variance of the stochastic gradient
estimator needs to be controlled carefully to make MCVI useful.

There are two standard MCVI gradient estimators: the score function gradient estima-
tor [64, 68] and the reparameterized gradient estimator [83, 70, 48]. The score function
gradient estimator can be applied to both discrete and continuous random variables, but
it often has high variance. In contrast, the reparameterized gradient estimator often has a
lower variance for continuous random variables. Recently, Ruiz et al. [79] bridged these two
gradient estimators. In addition, Tokui and Sato [85] and Jang et al. [40] proposed a repa-
rameterization trick for discrete or categorical variables. Moreover, theoretical properties of
the reparameterized gradient have been analyzed recently [94, 18]. As a result, the repa-
rameterized gradient has become a more practical way to reduce the variance of a gradient
estimator. Furthermore, Buchholz et al. [7] proposed using a randomized quasi-Monte Carlo
(RQMC) method for MCVI, which can reduce the variance of gradient estimator lower than
that of the MC method.

1.5 Contribution of This Thesis

In this section, we summary the technical contribution and explain how this thesis con-
tributes to society.

1.5.1 Technical Contributions of This Thesis

In this thesis, we propose a novel framework for reducing the variance of gradient estima-
tor in the MCVI framework on the basis of the multi-level Monte Carlo (MLMC) method.
The proposed method is naturally derived from the reparameterized gradient estimator based
on the reparameterization trick [48], achieves better predictive performance, and provides a
faster convergence speed than the baseline methods do. Moreover, the proposed method can
be easily implemented in modern inference libraries such as Stan [9], Edward [86], Tensor-
Flow Probability [16], and Pytorch [65].

Through this thesis, we investigate the idea of using the MLMC method for MCVI on
reparameterized gradient estimation. In addition, we develop an algorithm that gives a
low-variance gradient estimator with decreasing the number of samples by “recycling” the
gradient in the past.

We also guarantee the optimization convergence theoretically on the basis of stochastic
gradient descent with a decreasing learning rate in both the proposed method and the existing
methods. Thorough the convergence analysis, we found that the proposed method is able
to accelerate the optimization compared to the baseline methods. Besides, we analyze the
quality of the gradient estimator in terms of the signal-to-noise ratio (SNR). From this
analysis, we show the proposed method could control it by making use of a learning-rate
scheduler.
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Figure 1.2: Relationship of chapters and sections

Finally, we confirm the performance of the proposed method through three experiments
on toy and real-world data sets. According to the experimental results, we find that the
proposed method could asymptotically reduce the variance of the gradient estimator as
optimzation proceeds.

1.5.2 Contribution to Society

In recent years, the phenomena that we want to represent via models have become more
complex, which has made it more difficult to derive and implement inference algorithms. To
reduce the burden, automatic-inference tools such as Stan [9] or Edward [86] have developed,
which infer the model we constructed automatically without implementing the learning al-
gorithm. Among them, an approximate inference method which I introduced in Section 1.3
has attracted attention in recent years. This tool helps users focus on model construction
by taking the hassle out of implementing inference algorithms each time.

Thanks to these tools, the flexibility of constructing the model is improved. However,
there is a significant problem that it took much time for the convergence of the inference.
Due to this, we have difficulty to perform trial-and-error analysis of the model in a short
period of time. One of the reasons why this problem occurs is dependency of the variance of
the stochastic gradient on the inference accuracy and convergence [68, 80, 70, 7].

My research contributes to this part. The proposed method can reduce the variance of
gradient estimator more than the sampling-based state-of-the-art variance reduction method
[7]. Therefore, my method makes the speed of convergence faster than the other methods and
gives us more time to do trial and error to seek the proper model. Through this contribution,
many physiological burden for modeling will be removed, and the statistical machine learning
will more and more widely spread in society.

1.6 Organization of This Thesis

The rest of this thesis is organized as follows.
In Chapter 1, we introduce the concept of Bayesian inference, variational inference, and

Monte Carlo variational inference to which we mainly contribute. Furthermore, we explain
the contribution and the organization of this thesis briefly.

In Chapter 2, we concretely summarize the background method with its concept and
variance reduction research, which is one of the crucial research fields on variational inference.
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Through this chapter, we explain the reason why the research we worked on is necessary. In
addition, we introduce the related work, and compare the proposed method with them.

We illustrate the proposed method, including the idea, central concept, algorithm, and
its derivation in Chapter 3. Here, we explain how the MLMC method and Monte Carlo
variational inference is combined. Besides, it is shown that how the number of samples
is adapted for stochastic gradient estimation on the proposed method. Furthermore, in
Section 3.4, we reveal theoretical properties in the proposed framework. Firstly, we analyze
the convergence of the weighted averaging gradient on the basis of stochastic gradient descent
with a learning-rate scheduler. Secondly, we evaluate the quality of the gradient estimator on
the basis of the signal-to-noise ratio. These theoretical results on the proposed method are
compared with the naive baseline method and the state-of-the-art method from the gradient
variance reduction perspective. The proofs of these theoretical analyses are represented in
Chapter 4.

Through several experiments on the real-world data sets, we evaluate the proposed
method by comparing it with sampling-based baseline methods in Chapter 5. Here, we find
that the proposed method achieves faster convergence than the existing methods, and gets
closer to the optimum in several experiments. Moreover, we confirm the proposed method
reduces the variance of gradient estimator more than the other methods do.

Finally, we describe the conclusion of this thesis and mention the future prospects in
Chapter 6.

We show the relationship between each chapter and section in Figure 1.2.
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Chapter 2

Background and Related Work

In this chapter, we explain the background of the proposed method and introduce the
related work. First, we explain the preliminaries of variational inference, the reparameterized
gradient, and Monte Carlo variational inference in Section 2.1. Moreover, we describe the
problem which we focus on thorough this thesis in Section 2.1.4. Finally, we introduce the
related work, including the basic variance reduction methods such as control variates and
importance sampling in Section 2.2. For readability, we summarize the notation, which is
mainly used in this thesis, in Section 2.3.

2.1 Background

In this section, we briefly summarize variational inference in section 2.1.1. Next, we
introduce the gradient estimator based on the reparameterized gradient that is often used
for complex model or reducing the variance of gradient estimator. In addition, we overview
Monte Carlo variational inference (MCVI) based on the reparameterized gradient. Finally,
we explain the variance problem on MCVI, which we mainly focus on.

2.1.1 Variational Inference

VI constructs an approximation by minimizing the Kullback-Leibler (KL) divergence
between p(z|x) and a variational distribution q(z|λ),

argmin
λ∈S

KL(q(z|λ)∥p(z|x)),

where

KL(q(z|λ)∥p(z|x)) =

∫
q(z|λ) log

q(z|λ)

p(z|x)
dz,

and λ ∈ Rd is a single vector of all free parameters and d is the dimension of the parameter
space S (see Figure 2.1). However, this objective cannot be computed because it can be
expressed as

KL(q(z|λ)∥p(z|x)) = Eq(z|λ)[log q(z|λ) − log p(z|x)]

= Eq(z|λ)[log q(z|λ) − log p(x, z)] + log p(x),
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Figure 2.1: Schematic image of variational inference [3].

and the log p(x) term appears which is unknown. Therefore, we optimize an alternative
objective function and that is equivalent to minimizing the KL divergence. Because of the
non-negativity of KL, we can derive the lower bound as

log p(x) ≥ Eq(z|λ)[log p(x, z) − log q(z|λ)],

which is called the evidence lower bound (ELBO) [44]. Thus, minimizing the KL divergence
is the same as maximizing the ELBO:

L(λ) = Eq(z|λ)[log p(x, z) − log q(z|λ)]. (2.1)

When VI is applied for large-scale data or a complex model, however, it is hard, or even
sometimes impossible, to compute the differentiation of the objective (2.1) with respect to λ
directly. One way to handle this problem is to use a stochastic gradient on the basis of two
major gradient estimators: the score function gradient estimator [68] and the reparameterized
gradient estimator [66, 48, 70]. These gradient estimators are obtained by approximating
the expectation of the gradient of (2.1) with independent and identically distributed (i.i.d.)
samples from q(z|λ). However, the score function gradient estimator tends to be noisy
because of sample variance, which can negatively affect the accuracy of gradient estimation.
Therefore, we focus on the reparameterized gradient estimator, which is a useful way to
reduce the variance less than that of the score function gradient estimator.

2.1.2 Gradient Estimator based on Reparameterization Trick

A reparameterized gradient is a notable approach for learning complex models or reducing
the estimation variance based on the reparameterization trick [48]. In this gradient, the vari-
able z generated from the distribution q(z|λ) is expressed as a deterministic transformation
T (·) of another simple distribution p(ϵ) over a noise variable ϵ. Therefore, z can be expressed

as z = T (ϵ;λ) where ϵ
i.i.d.∼ p(ϵ). We often use an affine transformation T (ϵ;λ) = m+vϵ [83],

when λ = (m,v). If we set p(ϵ) as the standard normal Gaussian N (0, Id), for example,
T (ϵ;λ) is equal to samples from N (m,v⊤v). By using the reparameterization trick, the
gradient of the ELBO can be expressed as the expectation with respect to p(ϵ) instead of
q(z|λ):

∇λL(λ) = Ep(ϵ)[∇λ log p(x, T (ϵ;λ)) −∇λ log q(T (ϵ;λ)|λ))]. (2.2)

Thus, the distribution needed for the expectation is fixed, and the gradient estimator is
obtained by approximating the expectation with i.i.d. random variable ϵ from p(ϵ).
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2.1.3 Monte Carlo Variational Inference (MCVI)

In the general MCVI framework, the gradient of the ELBO is represented as an expecta-
tion ∇λL(λ) = E[gλ(z̃)] over a random variable z̃, where gλ(·) is a function of the gradient of
Eq.(2.1). For the reparameterization estimator, Eq.(2.2) with z̃ = ϵ leads to the expression,
∇λL(λ) = Ep(ϵ)[gλ(ϵ)], where

gλ(ϵ) = ∇λ log p(x, T (ϵ;λ)) −∇λ log q(T (ϵ;λ)|λ)). (2.3)

To estimate this gradient stochastically, we use an unbiased estimator calculated by averaging
over i.i.d. samples {ϵ1, ϵ2, . . . , ϵN}:

∇̂λtL(λt) = ĝλt(ϵ1:N ) =
1

N

N∑
n=1

gλt(ϵn),

where t represents the optimization step. The ELBO can then be optimized on the basis
of ĝλt(ϵ1:N ) by using some form of stochastic optimization (e.g., stochastic gradient descent
(SGD) [73], AdaGrad [20], and Adam [47]). For example, optimization can be performed by
iterating SGD updates with a decreasing learning rate αt = α0ηt:

λt+1 = λt − αtĝλt(z̃).

Here, α0 is the initial value of the learning rate, and ηt > 0 is the value of the learning-rate
scheduler which is defined in Section 3.6.

2.1.4 Variance Problem on MCVI

Since MCVI was introduced, VI has become a useful way of handling various model
architecture and coping with scalable inference on big data [95]. However, it has a crucial
problem that the convergence of the stochastic optimization scheme tends to be slow when
the magnitude of the variance of the gradient estimator becomes high because of the Monte
Carlo estimation. Buchholz et al. [7] showed the convergence of optimization on the basis
of the Randomized Quasi-Monte Carlo (RQMC) method [35, 82, 63, 55, 15] and SGD with
fixed learning rate depends on the variance of the stochastic gradient estimator.

Theorem 2.1 (Buchholz et al. [7]). Let F be a function with Lipschitz continuous derivatives,
i.e., there exists L > 0 s.t. ∀λ, λ̄∥∇F (λ) − F (λ̄)∥22 ≤ L∥λ− λ̄∥22. Let UN = {u1, . . . ,uN} be
an sobol sequence [82] and assume ∀λ, G : u 7→ gΓ(u)(λ) has cross partial derivatives up to
order d. Further assume the constant learning rate satisfies α < 2/L and let µ = 1 − αL/2.
Then ∀λ, trVarUN

[ĝN (λ)] ≤ MV · r(N), where MV < ∞ and r(N) = O(N−2),∑T
t=1 E[∥∇F (λt)∥22]

T
≤ 1

2µ
αLMV r(N) +

F (λ1) − F (λ∗)

αµT
,

where λt is iteratively defined in the SGD update-rule as λt+1 = λt+1 − αĝN (λt). Conse-
quently,

lim
T→∞

∑T
t=1 E[∥∇F (λt)∥22]

T
=

1

2µ
αLMV r(N).

In the above, Γ is a transforming function from the RQMC sequence to the original
random variables from the target distribution. These results underline that the sum of the
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Table 2.1: Relationship between previous work and this work. “CV” stands for control variates,
“RB” for Rao-Blackwellization, and“IS” for importance sampling. Denote by N the
number of random variables from p(ϵ), and t is an iteration step. “SF”means a score
function, and “RG” stands for a reparameterized gradient. Denote by Nt and ηt the
estimated sample size adaptively and the learning-rate scheduler function in iteration
step t. “SNR” stands for signal-to-noise ratio.

Method Order of variance Gradient estimator Sample size Convergence analysis SNR analysis
Ranganath et al. [68] CV & RB O(N−1) SF Fixed - -
Ruiz et al. [78] IS O(N−1) SF Fixed - -
Roeder et al. [76] Stop Gradient O(N−1) RG Fixed - -
Miller et al. [60] CV O(N−1) RG Fixed - -
Sakaya and Klami [80] IS O(N−1) SF & RG Fixed - -
Li et al. [56] Adaptive IS O(N−1) SF Fixed - -
Buchholz et al. [7] RQMC O(N−2) SF & RG Fixed ✓(fixed learning rate) -
This work MLMC O(η2t−1N

−1
t ) RG Adaptive ✓(learning-rate scheduling) ✓

gradient norms depends on the variance of gradient estimators [7]. Therefore, as the scale of
the variance of gradient estimators is reduced, we can get the results that are closer to the
optimum when the optimization converges. Thus, the variance reduction of the stochastic
gradient is a crucial problem on the performance of MCVI.

2.2 Related Work

In the MCVI context, many techniques have been proposed for variance reduction, such
as control variates [32], Rao-Blackwellization [68], importance sampling [78, 8, 80, 56], and
any others [84, 76]. Furthermore, since Kingma and Welling [48] and Rezende et al. [70] in-
troduced the reparameterization trick, the reparameterized gradient has also been extended
or applied, e.g., the generalized reparameterized gradients [79], control variates on reparam-
eterized gradients [60], and the doubly reparameterized gradient [88]. These methods have
been combined with the classical variance reduction methods in the above.

Here, we introduce the preliminaries and recent works of three major approaches of
variance reduction, i.e., the control variate, importance sampling, and low-variance sampling
approaches. In addition, we define the signal-to-noise ratio and review the related work which
used it. Finally, we summarize the relationship between previous work and our work in Table
2.1.

2.2.1 Control Variates

One of the classic methods to reduce the variance of Monte Carlo sampling is using the
control variates method [32]. When we want to estimate E[f ] and there is a function h which
is correlated to f with a known expectation E[h], we can use an unbiased estimator for E[f ]
based on N i.i.d samples ω(n) as follows:

f̂(ω(n)) = N−1
N∑

n=1

{f(ω(n)) − a(h(ω(n)) − E[h])}. (2.4)

Then, the variance of f̂(ω(n)) is expressed as

V[f̂(ω(n))] = V[f(ω(n))] + a2V[h(ω(n))] − 2aCov(f(ω(n)), h(ω(n))),
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and the optimal value for a is

a∗ = ρ ·

√
V[f ]

V[h]
,

where ρ is the correlation between f and h. Therefore, the variance of this estimator is
reduced by factor 1 − ρ2 (see Giles [26]).

In MCVI context, the function f(ω) is equal to gλ(ϵ) defined in Eq. (2.3). Ranganath
et al. [68] has firstly proposed to use CS methods to MCVI, and it has been extended by
Miller et al. [60] on the basis of the reparameterized gradient estimator.

However, it is difficult to chose a function h which is highly correlated to gλ(ϵ). Moreover,
as Buchholz et al. [7] mentioned, CV methods do not archieve the improvement of the
O(N−1) rate of the variance of gradient estimator.

2.2.2 Importance Sampling (IS)

Importance sampling (IS) [74, 77] is one of bias-correction methods to improve the ac-
curacy of estimators by sampling from a different proposal distribution. When an unbiased
estimator such as Monte Carlo estimator is used, a bias is banished. Therefore, it is only
necessary to consider how to reduce the estimation variance. The accuracy improvement of
an unbiased estimator gets more significant as the number of Monte Carlo samples increases.
However, a huge number of samples are needed to reduce the estimation variance; therefore,
it is not an effective way in practice [7, 30]. Thus, instead, we consider setting a proposal
distribution r(x) as reducing the variance of Monte Carlo estimator. That is, if we want
to calcurate the expectation of some function f(x) over p(x), we can introduce r(x) and
rewritten as,

Ep(x)[f(x)] =

∫
p(x)f(x)dx

=

∫
r(x)

p(x)

r(x)
f(x)dx

= Er(x)

[
p(x)

r(x)
f(x)

]
.

Therefore, we can estimate the expectation by i.i.d. Monte Carlo samples from r(x) as a
substitute for p(x), i.e.,

Ep(x)[f(x)] ≈ 1

N

N∑
i=1

p(xi)

r(xi)
f(xi),

where x1:N
i.i.d.∼ r(x). By doing so, when we set

f̂ IS(x) =
1

N

N∑
i=1

p(xi)

r(xi)
f(xi),

the variance of the importance-sampled Monte Carlo estimator can be expressed as

V[f̂ IS(x)] =
1

N
Er(x)

[
p2(x)

r2(x)
f2(x)

]
− 1

N

(
Er(x)

[
p(x)

r(x)
f(x)

])2

=
1

N
Er(x)

[
p2(x)

r2(x)
f2(x)

]
− 1

N

(
Ep(x)[f(x)]

)2

.
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According to the fact that the variance of Monte Carlo estimator is expressed as

V[f̂(x)] =
1

N
Ep(x)[f

2(x)] − 1

N

(
Ep(x)[f(x)]

)2

,

where

f̂(x) =
1

N

N∑
i=1

f(xi),

the importance-sampled Monte Carlo estimator can reduce the variance if we set r(x) larger
than p(x). In MCVI context, the function f(x) and p(x) is equal to gλ(ϵ) defined in Eq.
(2.3) and p(ϵ).

Ruiz et al. [78] has firstly introduced the IS method to the MCVI context, and it has been
extended by Sakaya and Klami [80] for the reparameterized gradient-based MCVI. Moreover,
Li et al. [56] has investigated the adaptive version of IS by using moment matching.

However, IS methods still have the difficulty of adequately constructing a proposal dis-
tribution r(x) for MCVI. Additionally, as well as CV methods, IS methods can not improve
the O(N−1) rate of variance of gradient estimator, which is equal to that of ordinary Monte
Carlo estimator [7].

2.2.3 Low-Variance Sampling Approach

Although many low-variance-sampling methods have been proposed in the MCMC con-
text such as [58, 24], the idea of using more sophisticated Monte Carlo sampling to reduce
the variance of the estimator in the MCVI framework has only been investigated recently.
The object of this framework is to improve the O(N−1) rate of the variance of the gradient
estimator. Ranganath et al. [68] and Ruiz et al. [78] suggested using quasi-Monte Carlo
(QMC), and Tran et al. [87] applied it to a specific model. Recently, Buchholz et al. [7] pro-
posed a variance reduction method by using randomized QMC (RQMC), which can achieve,
in the best case, the O(N−2) rate of the variance in the MCVI framework (called QMCVI).
However, it is known that the estimations made with the QMC-based method are sometimes
worse than those made with MC methods because of a potentially bad interaction between
the underlying deterministic points and the function to be estimated [54].

2.2.4 Signal-to-Noise Ratio (SNR)

Signal-to-Noise ratio (SNR) is difined as the absolute value of the expected estimator
scaled by its standard derivation. In the MCVI context, it is defined as follows:

Definition 2.1 (Signal-to-Noise Ratio for Gradient Estimator).

SNR(λ) =
∥Ep(ϵ1:N )[ĝλ(ϵ1:N )]∥22√

V[ĝλ(ϵ1:N )]
.

SNR provides a measure of the quality of a gradient estimator. Though a high SNR
does not always indicate a good stochastic optimization scheme (as the target objective
itself might be poorly chosen), a low SNR is always problematic as it indicates that the
gradient estimator is dominated by noise: if SNR → 0, then the estimator become completely
random [67]. Recently, Rainforth et al. [67] analyzed the behavior of an importance-weighted
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stochastic gradient in terms of SNR and revealed the differences in the effect of increasing the
number of importance weights between inference and generative networks in the variational
auto-encorder [48]. In addition, there have been several theoretical and empirical analyses
of stochastic gradient estimators by using SNR [39, 53, 81, 88].

2.3 Notation

Finally, we show the notation and symbols used in the rest of this thesis in Table 2.2.

Table 2.2: List of symbols used in the main text.

Symbol Meaning
x The observed data-point
z The vectors of latent variables or weight variables
λ The parameter of variational distribution
ϵ The random variables from p(ϵ)
ϵ1:N The N set of ϵ: {ϵ1, ϵ2, . . . , ϵN}
T (·) The deterministic transformation function
α0 The initial value of learning-rate
ηt The learning-rate schedular function at the optimization step t
Vt The one-sample variance of gradient estimator at the optimization step t
Ct The one-sample cost of gradient estimator at the optimization step t
p(x, z) The joint distribution of x and z
p(z|x) The posterior of z given x
p(x|z) The likelihood given z
p(x) The marginal distribution
p(z) The prior of z
q(z|λ) The (Gaussian) variational distribution with parameter λ
L(λ) The objective function
∇λL(λ) The gradient of the objective function for λ

∇̂λL(λ) The reparameterized gradient estimator by MC or RQMC samples

∇̂MRG
λ L(λ) The multi-level reparameterized gradient estimator by Monte Carlo samples

gλ(ϵ) The inside of reparameterized gradient of ELBO
R The set of real numbers
N The set of natural numbers
O Landau’s asymptotic notation
S The parameter space
d The number of dimension on parameter space S
KL(q∥p) Kullback-Leibler divergence between q and p
⌈x⌉ The ceil function where ⌈x⌉ = min{k ∈ N|x ≤ k}
⊤ The transpose
∥ · ∥2 The l2 Euclidean norm of vectors
E[·] The expectation
V[·] The variance
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Chapter 3

Multi-level Monte Carlo
Variational Inference

In this chapter, we explain the proposed method, called MLMCVI. First, we summerize
the multi-level Monte Carlo (MLMC) method in Section 3.1. Next, we derive MLMCVI in
Sections 3.2 and 3.3. Finally, we theoretically analyze the proposed method in Section 3.4.

3.1 Multi-level Monte Carlo Method

The multi-level Monte Carlo (MLMC) method was proposed by Heinrich [38]. This
method has been often used in stochastic differential equations for option pricing [26, 11, 71].
In statistics, there are many applications in approximate Bayesian computation [31, 43, 92].

Because of the linearity of expectations, given a sequence P0, P1, . . . , PL−1 which approx-
imates PL with increasing accuracy, we have the simple identity:

E[PL] = E[P0] +

L∑
l=1

E[Pl − Pl−1]. (3.1)

We can thus use the following unbiased estimator for E[PL],

E[PL] ≈ N−1
0

N0∑
n=1

P
(0,n)
0 +

L∑
l=1

{
N−1

l

Nl∑
n=1

(P
(l,n)
l − P

(l,n)
l−1 )

}
, (3.2)

with the inclusion of l in (l, n) indicating that independent samples are used at each level of
correction.

If we define V0, C0 to be the variance and cost of one sample of P0, and Vl, Cl to be the
variance and cost of one sample of Pl − Pl−1, then the total variance and cost of Eq.(3.2)

are
∑L

l=0 N
−1
l Vl and

∑L
l=0 NlCl, respectively. The MLMC method is described in detail in

Heinrich [38] and Giles [26, 28].
Thus, if Y is a multi-level estimator given by

Y =

L∑
l=0

Yl, Yl = N−1
l

Nl∑
n=1

(P
(l,n)
l − P

(l,n)
l−1 ),
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Figure 3.1: Concept of the proposed method.

with P−1 ≡ 0, then

E[Y ] = E[PL], V [Y ] =

L∑
l=0

N−1
l Vl, Vl ≡ V [Pl − Pl−1].

This method is widely used, for example, in the infinite-dimensional integration of stochas-
tic differential equations arising in mathematical finance [26] and the large-cost problem of
solving elliptic partial differential equations with random coefficients [11].

In a Bayesian framework, Giles et al. [31, 30] applied MLMC to stochastic gradient
MCMC algorithms such as the stochastic gradient Langevin dynamics (SGLD), which dis-
cretize the stochastic differential equation (SDE) of a posterior based on the multi-level step
size and couple them.

3.2 Key Idea of Multi-level Monte Carlo Variational In-
ference (MLMCVI)

The key idea of MLMCVI is to construct a low-variance gradient estimator by using the
information we get as the optimization proceeds by “recycling” the parameter and gradient
from the past (see Figure 3.1).

Equation (2.2) implies that a reparameterized gradient can be applied in the MLMC
framework because the expectation always depends on a fixed distribution p(ϵ), and the
linearity of the expectation is available. Moreover, another idea of MLMCVI is that it
regards the level “l” as the number of iterations “t.” Thus, applying these ideas, we can
“recycle” the parameter and the gradient in the past. When we set,

gλt
(ϵ) = ∇λt

log p(x, T (ϵ;λt)) −∇λ log q(T (ϵ;λt)|λt)),

the multi-level reparameterized gradient (MRG) in iteration T is expressed as

∇MRG
λT

L(λT ) = Ep(ϵ)

[
gλ0(ϵ)

]
+

T∑
t=1

(
Ep(ϵ)

[
gλt(ϵ) − gλt−1(ϵ)

])
, (3.3)
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where t ∈ N and T ∈ N. In the MCVI framework, we need an unbiased estimator of the
gradient for stochastic optimization. An unbiased estimator of the MRG in Eq.(3.3) can be
immediately obtained as

∇̂MRG
λT

L(λT ) = N−1
0

N0∑
n=1

gλ0
(ϵ(n,0)) +

T∑
t=1

(
N−1

t

Nt∑
n=1

[
gλt

(ϵ(n,t)) − gλt−1
(ϵ(n,t))

])
, (3.4)

where Nt (t = 0, 1, . . . , T ) is the sample size in each iteration, and the MRG estimator is
unbiased for ∇λT

L(λT ).

3.3 Algorithm Derivation

How should the optimal different sample size Nt be estimated for the MRG estimator?
To answer this question, we derive the optimal sample size to minimize the total variance
of the MRG estimator. To derive the optimal Nt properly, we apply the following definition
and assumption.

Definition 3.1 (One-sample Complexity and Variance). Let Ct and Vt be the one-sample
computational complexity and variance of gλt

(ϵ(n,t))− gλt−1
(ϵ(n,t)) in iteration t ≥ 1, respec-

tively.

Here, if t = 0, we define C0 and V0 as the one-sample computational complexity and
variance of gλ0

(ϵ(n,0)), respectively.

Assumption 3.1 (Computational Complexity of One-sample Gradient Calculation). The
cost of calculating the one-sample gradient is constant, i.e., C0 = c and Ct = 2c (t ≥ 1),
where c is a positive constant.

Then, the overall cost and variance of ∇̂MRG
λT

L(λT ) are
∑T

t=0 NtCt and
∑T

t=0 N
−1
t Vt,

respectively. Assumption 3.1 means that the computational complexity of calculating a
gradient estimator per level is cN0 or 2cNt (t ≥ 1) when including the sampling cost.
From Assumption 3.1, we can establish the following theorem according to standard proof
techniques in Giles [26].

Theorem 3.1 (Optimal Sample Size Nt). Suppose that Assumption 3.1 is satisfied. Then,
the total variance is minimized by choosing the sample size per level as

Nt =


√

V1

2V0
N0 (t = 1),√

Vt

Vt−1
Nt−1 (t = 2, 3, . . . , T ).

(3.5)

Sketch of Proof. This theorem can be proved by solving a constrained optimization problem
that minimizes the overall variance as: minNt

∑T
t=0 N

−1
t Vt s.t.

∑T
t=0 NtCt = M , where M is

a positive constant value for the total sampling cost. The complete proof is given in Section
4.1.

Theorem 3.1 indicates that the optimal sample size can be estimated by the ratio of the
previous one-sample variance to the current one. Therefore, the sample size is determined
as

Nt =

⌈
√

V1

2V0
N0⌉ (t = 1),

⌈
√

Vt

Vt−1
Nt−1⌉ (t = 2, 3, . . . , T ),

(3.6)
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Algorithm 1 Multi-level Monte Carlo Variational Inference

Require: Data x, random variable ϵ ∼ p(ϵ), transform z = T (ϵ;λ), model p(x, z), varia-
tional family q(z|λ)

Ensure: Variational parameter λ∗

1: Initialize: N0, λ0, α0 and hyperparameter of η
2: for t = 0 to T do
3: if t = 0 then
4: ϵn ∼ p(ϵ) (n = 1, 2, . . . , N0) ◁ sampling ϵ

5: ĝλ0
(ϵ1:N0

) = N−1
0

∑N0

n=1 gλ0
(ϵn) ◁ calc. RG estimator

6: λ1 = λ0 − α0ĝλ0(ϵ1:N0) ◁ grad-update
7: else
8: sampling one ϵ for sample-size estimation
9: estimate Nt by Eq.(3.6)

10: ϵn ∼ p(ϵ) (n = 1, 2, . . . , Nt) ◁ sampling ϵ

11: ĝ
′

λt
(ϵ1:Nt) = N−1

t

∑Nt

n=1[gλt(ϵ(n,t)) − gλt−1(ϵ(n,t))] ◁ calc. multi-level term

12: λt+1 = λt + ηt

ηt−1
(λt − λt−1) − αtĝ

′

λt
(ϵ1:Nt

) ◁ grad-update

13: if λt+1 is converged to λ∗ then
14: break
15: end if
16: end if
17: end for
18: return λ∗

where ⌈x⌉ = min{k ∈ N|x ≤ k} because Nt is a natural number.
The magnitude of Vt is a critical issue for sample-size estimation. The behavior of the

estimated sample size is analyzed in Section 3.4.2.
The MRG has a problem in that the total cost can become crucially large as t goes to

infinity. To bypass this problem, we consider another formulation of the MRG estimator and
update-rule on the basis of SGD.

Lemma 3.1 (Another Formulation of MRG Estimator). The MRG estimator in iteration
t ≥ 1 can be represented as

∇̂MRG
λt

L(λt) = ∇̂MRG
λt−1

L(λt−1) + N−1
t

Nt∑
n=1

[
gλt

(ϵ(n,t)) − gλt−1
(ϵ(n,t))

]
,

and the update-rule for this estimator in SGD is

λt+1 = λt +
ηt

ηt−1
(λt − λt−1) − αtN

−1
t

Nt∑
n=1

[
gλt

(ϵ(n,t)) − gλt−1
(ϵ(n,t))

]
.

Proof. See Section 4.2 for the proof.

From Theorem 3.1 and Lemma 3.1, the MLMCVI algorithm is derived as Algorithm 1.

3.4 Theoretical Analysis

In this section, we analyze the estimated sample size and the effect of the proposed
method on the basis of the weighted average norm of the gradient and SNR. In addition, we
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compare the results with sampling-based methods such as MCVI and QMCVI [7].

3.4.1 Assumptions

To analyze this, we set the following assumptions, which are often considered in the
MCVI context [7, 18, 94].

Assumption 3.2 (Diagonal Gaussian Variational Distribution). The variational distribu-
tion, q(T (ϵ;λ)|λ), is the Gaussian distribution with mean vector m and diagonal covariance
matrix Σ = diag(v).

Assumption 3.3 (Lipschitz Continuity on ∇λL(λ)). ELBO L(λ) is a function with Lips-
chitz continuous derivatives, i.e., ∃K1 > 0 s.t. ∀λ, λ̄:

∥∇λL(λ) −∇λ̄L(λ̄)∥22 ≤ K1∥λ− λ̄∥22.

Assumption 3.2 has been extensively used in several VI frameworks with a stochastic
gradient [48, 70]. Assumption 3.3 means that the ELBO value can not change too fast as λ
changes.

Furthermore, we assume that the boundedness of T (ϵ;λ).

Assumption 3.4 (Boundedness of T (ϵ;λ)). The reparameterized random variable T (ϵ;λ)
is bounded, i.e., ∃K2 > 0 s.t. ∀λ :

∥T (ϵ;λ)∥22 ≤ K2.

Of course, Assumption 3.4 does not always hold. However, we can make it hold by
truncating T (ϵ;λ) to a particular value. One way to truncate T (ϵ;λ) is to use the proximal
operator [61]. The details are described in Section 3.5.

In addition, we focus on the SGD update-rule with decreasing learning rate αt, which is
expressed as λt+1 = λt−αtĝλt

(ϵ1:N ) where αt = α0ηt and ηt is a learning-rate scheduler. The
learning-rate scheduling is essential to guarantee the convergence of stochastic optimization
when the gradient estimator is noisy [5]. Moreover, we often assume the following condition
on αt [73].

Assumption 3.5 (Robbins-Monro Condition). The learning rate αt satisfies the following
conditions:

∑∞
t=0 αt = ∞ and

∑∞
t=0 α

2
t < ∞.

3.4.2 Sample-size Analysis

Here, we theoretically investigate the behavior of the estimated sample size. We first give
the following proposition for the one-sample gradient variance under certain assumptions.

Proposition 3.1 (Order of One-sample Gradient Variance). Suppose that Assumptions 3.2,
3.4 and 3.5 are hold. Then, the expectation of the l2-norm of gλt(ϵ) − gλt−1(ϵ) in iteration
t (t ≥ 1) is bounded:

Ep(ϵ)

[
∥gλt

(ϵ) − gλt−1
(ϵ)∥22

]
≤ α2

t−1N
−1K2(C1 + dδC2),

where δ, C1, C2 are positive constants and N is the sample size for gradient estimation.

Proof. See Section 4.3 for the proof.
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According to Proposition 3.1, the order of the one-sample variance Vt is O(η2t−1); there-

fore, Vt
t→∞→ 0. Thus, it seems that fewer samples are required to estimate Ep(ϵ)[gλt

(ϵ) −
gλt−1

(ϵ)] at finer levels. The following lemma shows that the sample size decreases as opti-
mization proceeds.

Lemma 3.2 (Behavior of Sample Size). Suppose that Assumptions 3.1, 3.2, 3.4 and 3.5
hold. Then, the estimated sample size Nt goes to 1 as t → ∞.

Proof. See Section 4.4 for the proof.

3.4.3 Convergence Analysis

Next, we theoretically analyze convergence. Here, we focus on the case in which the
number of iteration t is t ≥ 1 because the MRG estimator appears after the first optimization
step.

Before the analysis, we first investigate the order of V[∇̂MRG
λt

L(λt)].

Lemma 3.3 (Variance of ∇̂MRG
λt

L(λt)). Suppose that Assumptions 3.1, 3.2, and 3.4 hold.

Then, the order of V[∇̂MRG
λt

L(λt)] is O(η2t−1N
−1
t ).

Proof. See Section 4.5 for the proof.

From Lemma 3.2, the estimated sample size Nt goes to 1 as optimization proceeds;
therefore V[∇̂MRG

λt
L(λt)] goes to 0 because ηt → 0 as t → ∞.

In the stochastic optimization literature, Bottou et al. [5] provided comprehensive the-
orems on the basis of SGD. With the help of those theorems, we can prove the following
upper bounds on the norm of the gradient and use them to analyze the effect of the pro-
posed method. We can also compare the upper bounds with those for the MC, RQMC, and
MLMC-based methods.

Theorem 3.2 (Weighted Average Norm of Gradient (MC, RQMC)). Suppose that Assump-
tions 3.1 and 3.2-3.5 are satisfied. Then, ∀λt, V[ĝλt ] ≤ κN−1 (MC) or V[ĝλt ] ≤ κN−2

(RQMC), where κ < ∞ is a positive constant, an upper bound on the norm of the gradient
in SGD at iteration t(= 1, . . . , T ) is given as

1

AT

T∑
t=1

αtE
[
||∇λt

L(λt)||22
]
≤


GT +

α2
0K1

2AT

∑T
t=1 η

2
t

(
E[||∇λtL(λt)||22] + κ

N

)
(MC),

GT +
α2

0K1

2AT

∑T
t=1 η

2
t

(
E[||∇λt

L(λt)||22] + κ
N2

)
(RQMC),

where AT =
∑T

t=1 αt, GT = 1
AT

[L(λ1) − L(λ∗)], λt is iteratively defined in the SGD-update
rule, and λ∗ is the optimal parameter.

Proof. See Section 4.6 for the proof.

Theorem 3.3 (Weighted Average Norm of Gradient (MLMC)). Suppose that Assumptions

3.1 and 3.2-3.5 hold. Then, ∀λt, V[∇̂MRG
λt

L(λt)] ≤ κηt−1N
−1
t , where κ is a positive constant,

κ < ∞ and t ≥ 1, an upper bound on the norm of the gradient in SGD given as

1

AT

T∑
t=1

αtE[||∇λtL(λt)||22] ≤ GT +
α2
0K1

2AT

T∑
t=1

η2t

(
E
[
||∇λtL(λt)||22

]
+

κ

Nt
η2t−1

)
,
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where AT =
∑T

t=1 αt, GT = 1
AT

[L(λ1) − L(λ∗)], λt is iteratively defined in the SGD-update
rule, and λ∗ is the optimal parameter.

Proof. See Section 4.7 for the proof.

Theorems 3.2 and 3.3 state that the weighted average norm of the squared gradients
converges to zero because of AT =

∑T
t=1 αt = ∞ and Assumption 3.5 even if the gradient

estimator is noisy. This fact can guarantee that the expectation of the gradient norms of
the MC-based, RQMC-based, and MLMC-based methods asymptotically stays around zero.
In addition, the difference in convergence speed between these methods depends on the last
term in each of these bounds. While the convergence of the MC and RQMC-based methods
can be accelerated only by increasing the number of samples, that of the proposed method
seems to be accelerated by N−1

t η2t−1.

3.4.4 SNR Analysis

Finally, we prove a lower bound on the SNR to evaluate the quality of the MC, RQMC,
and MLMC-based gradient estimators. The SNR of the gradient estimator is defined in
Definition 2.2.4. This indicates that, if SNR → 0, the gradient estimator is dominated by
random noise, causing problems with the accuracy of estimation.

Theorem 3.4 (Signal-to-Noise Ratio Bound). Suppose that Assumptions 3.1 and 3.2-3.5
hold, and that the expectation of the gradient estimator, the variance of the gradient estima-
tor, and the variances of ĝλ(ϵ1:N ) are non-zero. Then, we have ∀λt, V[ĝλt ] ≤ κN−1 (MC),

V[ĝλt
] ≤ κN−2 (RQMC) or V[∇̂MRG

λt
L(λt)] ≤ κη2t−1N

−1
t (MLMC) the upper bound on the

SNR in iteration t for each method is given by

SNR(λt) ≥


∥∇λtL(λt)∥2

2√
κ

·
√
N (MC),

∥∇λtL(λt)∥2
2√

κ
·N (RQMC),

∥∇λtL(λt)∥2
2√

κ
·
√
Nt

ηt−1
(MLMC),

where κ is a positive constant.

Proof. See Section 4.8 for the proof.

The above theorem implies that, for the MC and RQMC-based methods, the SNR can
be increased only by increasing the initial sample size. It also shows that the SNR value
gradually decreases and the gradient estimator is dominated by random noise as the opti-
mization proceeds; that is, the quality of the gradient estimator gradually gets worse because
||∇λt

L(λt)||22 approaches 0. In contrast, in our method, the SNR value can be controlled by
not only the sample size but also a factor of the learning-rate scheduler function ηt−1.

3.5 Non-Bounded Case in Assumption 3.4

Assumption 3.4 does not always hold because T (ϵ;λ) itself is not bounded. To overcome
this situation, the proximal operator [61] is useful. It is an operator associated with a closed
convex function f from a Hilbert space X to [−∞,∞], and is defined as follows:

proxf (x) = argmin
u∈X

(
f(u) +

1

2
∥u− x∥22

)
.
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In optimization, the proximal operator has several useful properties such as firmly nonex-
pansiveness:

∥proxf (x) − proxf (y)∥22 ≤ (proxf (x) − proxf (y))⊤(x− y),

where ∀x, y ∈ X .
In the MLMCVI framework, we want to truncate T (ϵ;λ) when it becomes too large values

to fulfill Assumption 3.4. Thus, we set f as the following indicator function for a some set
S,

IS(T (ϵ;λ)) =

{
0 (T (ϵ;λ) ∈ S),

+∞ (otherwise),

where IS(T (ϵ;λ)) is closed and convex if S is a closed convex set. From this setting, the
proximal operator f = IS is the Euclidian projection P (·) on S:

proxIS (T (ϵ;λ)) = argmin
u∈S

∥u− T (ϵ;λ)∥22

= PS(T (ϵ;λ)).

From the above and firmly nonexpansiveness in the proximal operator, if T +(ϵ;λ) = proxIS (T (ϵ;λ))
and T +(ϵ; λ̄) = proxIS (T (ϵ; λ̄)), then,

∥T +(ϵ;λ) − T +(ϵ; λ̄)∥22 ≤ (T +(ϵ;λ) − T +(ϵ; λ̄))⊤(T (ϵ;λ) − T (ϵ; λ̄)),

is fulfilled. It implies,

∥T +(ϵ;λ) − T +(ϵ; λ̄)∥22 ≤ ∥T (ϵ;λ) − T +(ϵ; λ̄)∥22,

from the Cauchy-Schwarz inequality. It means that T +(ϵ;λ) is 1-Lipschitz continuous and
therefore bounded.

By making use of the proximal operator, we can obtain the samples which do not vi-
olate Assumption 3.4. Therefore, all of the theorems and lemmas in this thesis hold in a
non-bounded case of T (ϵ;λ). The MLMCVI algorithm in a non-bounded case is shown in
Algorithm 2.

3.6 Another Expression of the Estimated Sample Size

From Algorithm 1, we can estimate the number of samples Nt by using Eq. (3.6).
However, it is sometimes hard to compute for a high-dimensional model because we have to
calculate the variance of two gradients: gλt

(ϵ) and gλt−1
(ϵ).

One of the ways to bypass this problem is using an upper-bounded value of Nt. From
the proof of Theorem 3.1, the optimal Nt can be expressed as

Nt =
1

µ

√
Vt

Ct
.

From Proposition 3.1, the order of the one-sample variance Vt is O(η2t−1). Thus, the optimal
Nt can be bounded as

Nt =
1

µ

√
Vt

Ct
≤ 1

µ

ηt−1√
Ct

< ∞.
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Algorithm 2 Multi-level Monte Carlo Variational Inference in Non-bounded Case of T (ϵ;λ)

Require: Data x, random variable ϵ ∼ p(ϵ), transform z = T (ϵ;λ), model p(x, z), varia-
tional family q(z|λ)

Ensure: Variational parameter λ∗

1: Initialize: N0, λ0, α0, the hyperparameter of η, and a convex set S
2: for t = 0 to T do
3: if t = 0 then
4: ϵn ∼ p(ϵ) (n = 1, 2, . . . , N0) ◁ sampling ϵ
5: T +(ϵn;λ0) = proxIS (T (ϵn;λ0)) ◁ check T (ϵ;λ0) value

6: ĝλ0
(ϵ1:N0

) = N−1
0

∑N0

n=1 gλ0
(ϵn) ◁ calc. RG estimator

7: λ1 = λ0 − α0ĝλ0
(ϵ1:N0

) ◁ grad-update
8: else
9: sampling one ϵ for sample-size estimation

10: estimate Nt by Eq.(3.6)
11: ϵn ∼ p(ϵ) (n = 1, 2, . . . , Nt) ◁ sampling ϵ
12: T +(ϵn;λt) = proxIS (T (ϵn;λt)) ◁ check T (ϵ;λt) value

13: ĝ
′

λt
(ϵ1:Nt

) = N−1
t

∑Nt

n=1[gλt
(ϵ(n,t)) − gλt−1

(ϵ(n,t))] ◁ calc. multi-level term

14: λt+1 = λt + ηt

ηt−1
(λt − λt−1) − αtĝ

′

λt
(ϵ1:Nt

) ◁ grad-update

15: if λt+1 is converged to λ∗ then
16: break
17: end if
18: end if
19: end for
20: return λ∗

If we use this upper-bounded value instead of Nt, i.e.

N∗
t =

1

µ

ηt−1√
Ct

,

the ratio of N∗
t and N∗

t−1 is,

N∗
t

N∗
t−1

=
1

µ

ηt−1√
Ct

· µ
√
Ct−1

ηt−2

=
ηt−1

ηt−2
,

when t = 2, . . . , T . Therefore,

N∗
t =

ηt−1

ηt−2
N∗

t−1.

When t = 1,

N∗
1

N∗
0

=
1

µ

η0√
C1

· µ
√

C0

V0

=
η0√
V0

·
√

C0

C1

=
η0√
2V0

.
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Therefore,

N∗
1 =

η0√
2V0

N∗
0

=
1√
2V0

N∗
0 (∵ η0 = 1).

Thus, the sample size is estimated by,

N∗
t =

{
⌈ 1√

2V0
N∗

0 ⌉ (t = 1),

⌈ηt−1

ηt−2
N∗

t−1⌉ (t = 2, 3, . . . , T ).
(3.7)

There are three major learning-rate schedulers: time-based decay, step-based decay, and
exponential decay defined as follows [2].

Definition 3.2 (Time-based Decay Function). Time-based decay function ηt is defined as

ηt =
1

1 + βt
,

where β is the parameter of the degree of decay.

Definition 3.3 (Step-based Decay Function). Step-based decay function ηt is defined as

ηt = β⌈ t
r ⌉,

where β is the parameter of the degree of decay, and r is the drop-rate parameter.

Definition 3.4 (Exponential Decay Function). Time-based decay function ηt is defined as

ηt = exp(−βt),

where β is the parameter of the degree of decay.

In these functions, Nt for t ≥ 2 is estimated as follows:

• Time-based decay: N∗
t = ⌈ 1+β(t−2)

1+β(t−1)N
∗
t−1⌉,

• Step-based decay: N∗
t = ⌈β⌈ 1

r ⌋N∗
t−1⌉,

• Exponential decay: N∗
t = ⌈exp(−β)N∗

t−1⌉,

where β and r are the decay and drop-rate parameters.
In this context, we can get another algorithm shown in Algorithm 3. We use this algo-

rithm for experiments in Chapter 5.
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Algorithm 3 Multi-level Monte Carlo Variational Inference in Another Expression of N∗
t

Require: Data x, random variable ϵ ∼ p(ϵ), transform z = T (ϵ;λ), model p(x, z), varia-
tional family q(z|λ)

Ensure: Variational parameter λ∗

1: Initialize: N∗
0 , λ0, α0 and hyperparameter of η

2: for t = 0 to T do
3: if t = 0 then
4: ϵn ∼ p(ϵ) (n = 1, 2, . . . , N∗

0 ) ◁ sampling ϵ

5: ĝλ0
(ϵ1:N∗

0
) = N∗−1

0

∑N∗
0

n=1 gλ0
(ϵn) ◁ calc. RG estimator

6: pick up one-sample gλ0
(ϵ) from ĝλ0

(ϵ1:N∗
0
) and calc. V0

7: λ1 = λ0 − α0ĝλ0(ϵ1:N∗
0
) ◁ grad-update

8: else
9: estimate N∗

t by Eq. (3.7)
10: ϵn ∼ p(ϵ) (n = 1, 2, . . . , N∗

t ) ◁ sampling ϵ

11: ĝ
′

λt
(ϵ1:N∗

t
) = N∗−1

t

∑N∗
t

n=1[gλt
(ϵ(n,t)) − gλt−1

(ϵ(n,t))] ◁ calc. multi-level term

12: λt+1 = λt + ηt

ηt−1
(λt − λt−1) − αtĝ

′

λt
(ϵ1:N∗

t
) ◁ grad-update

13: if λt+1 is converged to λ∗ then
14: break
15: end if
16: end if
17: end for
18: return λ∗
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Chapter 4

Proofs

In this chapter, we show the proof of theorems, lemmas and propositions introduced in
this thesis.

4.1 Proof of Theorem 3.1

Proof. Now we consider the constrained minimization problem as follow:

min
Nt

T∑
t=0

N−1
t Vt s.t.

T∑
t=0

NtCt = M,

where M is constant.
For a fixed cost, the variance is minimized by choosing Nt to minimize

f(Nt) =

T∑
t=0

N−1
t Vt + µ2

( T∑
t=0

NtCt −M

)
, (4.1)

for some value of the Lagrange multiplier µ2 (µ > 0). Thus,

∂f(Nt)

∂Nt
= −N−2

t Vt + µ2Ct = 0.

Then, we obtain

Nt =
1

µ

√
Vt

Ct
(∵ µ > 0, Ct > 0,Vt > 0). (4.2)

Now, we substitute (4.2) for (4.1),

f(Nt) =

T∑
t=0

µ
√
VtCt +

T∑
t=0

µ
√

VtCt − µ2M

= 2µ

T∑
t=0

√
VtCt − µ2M. (4.3)
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We differentiate f(Nt) in Eq. (4.3) by respect to µ,

∂f

∂µ
= 2

T∑
t=0

√
VtCt − 2µM = 0.

Therefore,

µ =
1

M

T∑
t=0

√
VtCt. (4.4)

Thus, we substitute (4.4) for (4.2),

Nt =
M∑T

t=0

√
VtCt

√
Vt

Ct
. (4.5)

Now we consider the ratio of Nt to Nt−1,
(i) if t = 2, . . . , T ,

Nt

Nt−1
=

M∑T
t=0

√
VtCt

√
Vt

Ct
·
∑T

t=0

√
VtCt

M

√
Ct−1

Vt−1

=

√
Vt/Ct

Vt−1/Ct−1

=

√
Vt/2c

Vt−1/2c

=

√
Vt

Vt−1
.

(ii) If t = 1,

N1

N0
=

M∑T
t=0

√
VtCt

√
V1

C1
·
∑T

t=0

√
VtCt

M

√
C0

V0

=

√
V1/C1

V0/C0

=

√
V1/2c

V0/c

=

√
V1

2V0
.

According to these results, the optimal sample size Nt (t = 2, . . . , T − 1) is

Nt =

√
Vt

Vt−1
Nt−1,

and

N1 =

√
V1

2V0
N0.
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Therefore, we obtain

Nt =


√

V1

2V0
N0 (t = 1),√

Vt

Vt−1
Nt−1 (t = 2, 3, . . . , T ),

and the claim is proved.

4.2 Proof of Lemma 3.1

Proof. MRG in iteration T can be rewritten as

∇MRG
λT

L(λT ) = Ep(ϵ)[gλ0(ϵ)] +

T∑
t=1

(
Ep(ϵ)

[
gλt(ϵ) − gλt−1(ϵ)

])

= Ep(ϵ)[gλ0
(ϵ)] +

T−1∑
t=1

(
Ep(ϵ)

[
gλt

(ϵ) − gλt−1
(ϵ)

])
+ Ep(ϵ)

[
gλT

(ϵ) − gλT−1
(ϵ)

]
= ∇MRG

λT−1
L(λT−1) + Ep(ϵ)

[
gλT

(ϵ) − gλT−1
(ϵ)

]
.

By constructing the unbiased estimator in the above ∇MRG
λT

L(λT ),

∇̂MRG
λT

L(λT ) = ∇̂MRG
λT−1

L(λT−1) + N−1
T

NT∑
n=1

[
gλT

(ϵ(n,T )) − gλT−1
(ϵ(n,T ))

]
.

Further, according to the SGD update-rule, we have

λT+1 = λT − αT ∇̂MRG
λT

L(λT )

= λT − αT

(
∇̂MRG

λT−1
L(λT−1) + N−1

T

NT∑
n=1

[
gλT

(ϵ(n,T )) − gλT−1
(ϵ(n,T ))

])

= λT − αT ∇̂MRG
λT−1

L(λT−1) − αtN
−1
T

NT∑
n=1

[
gλT

(ϵ(n,T )) − gλT−1
(ϵ(n,T ))

]

= λT − α0ηT ∇̂MRG
λT−1

L(λT−1) − αTN
−1
T

NT∑
n=1

[
gλT

(ϵ(n,T )) − gλT−1
(ϵ(n,T ))

]

= λT − ηT
ηT−1

α0ηT−1∇̂MRG
λT−1

L(λT−1) − αTN
−1
T

NT∑
n=1

[
gλT

(ϵ(n,T )) − gλT−1
(ϵ(n,T ))

]

= λT +
ηT

ηT−1
(λT − λT−1) − αTN

−1
T

NT∑
n=1

[
gλT

(ϵ(n,T )) − gλT−1
(ϵ(n,T ))

]
.

If we change T to t, the claim is proved.

4.3 Proof of Proposition 3.1

Proof. According to Assumption 3.4, we obtain the Lipshitzs condition given by

||gλt
(ϵ) − gλt−1

(ϵ)||22 ≤ K2||T (ϵ;λt) − T (ϵ;λt−1)||22.
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Now, the all of variational parameters is a single vector λ = (m,v). Therefore, according to
Assumption 3.2, the tranceformation T (ϵ;λt) can be written as

T (ϵ;λt) = mt + vt · ϵ.

Thus, we obtain

||gλt
(ϵ) − gλt−1

(ϵ)||22 ≤ K2||T (ϵ;λt) − T (ϵ;λt−1)||22
= K2∥(mt + vt · ϵ) − (mt−1 + vt−1 · ϵ)∥22
= K2∥(mt −mt−1) + (vt − vt−1) · ϵ∥22. (4.6)

Because of the SGD update-rule with decreasing learning-rate,

K2∥(mt −mt−1) + (vt − vt−1) · ϵ∥22 = K2∥ − αt−1ĝmt−1(ϵ1:N ) − αt−1ĝvt−1(ϵ1:N ) · ϵ∥22
= α2

t−1K2∥ĝmt−1(ϵ1:N ) + ĝvt−1(ϵ1:N ) · ϵ∥22.

By plugging the above in Eq.(4.6) and taking the expectation, we obtain

Ep(ϵ)

[
||gλt(ϵ) − gλt−1(ϵ)||22

]
≤ α2

t−1K2Ep(ϵ)

[
∥ĝmt−1(ϵ1:N ) + ĝvt−1(ϵ1:N ) · ϵ∥22

]
≤ α2

t−1K2Ep(ϵ)

[
∥ĝmt−1(ϵ1:N )∥22 + ∥ĝvt−1(ϵ1:N ) · ϵ∥22

]
(triangle inequality)

≤ α2
t−1K2Ep(ϵ)

[
∥ĝmt−1(ϵ1:N )∥22 + ∥ĝvt−1(ϵ1:N )∥22 · ∥ϵ∥22

]
(Cauchy-Schwarz inequality).

Since ϵ
i.i.d.∼ p(ϵ) ∈ Rd, the expectation of ∥ϵ∥22 is obtained as

Ep(ϵ)

[
∥ϵ∥22

]
= Ep(ϵ)[ϵ

2
(1) + ϵ2(2) + · · · + ϵ2(d)]

= Ep(ϵ)[ϵ
2
(1)] + Ep(ϵ)[ϵ

2
(2)] + · · · + Ep(ϵ)[ϵ

2
(d)]

= dEp(ϵ)[ϵ
2
(1)].

Therefore, if we consider Ep(ϵ)[ϵ
2
(1)] ≤ δ(≥ 0),

Ep(ϵ)

[
||gλt(ϵ) − gλt−1(ϵ)||22

]
≤ α2

t−1K2

(
Ep(ϵ)

[
∥ĝmt−1(ϵ1:N )∥22

]
+ dEp(ϵ)[ϵ

2
(1)]Ep(ϵ)

[
∥ĝvt−1(ϵ1:N )∥22

])
(4.7)

≤ α2
t−1K2

(
Ep(ϵ)

[
∥ĝmt−1(ϵ1:N )∥22

]
+ dδEp(ϵ)

[
∥ĝvt−1(ϵ1:N )∥22

])
.

(4.8)

Here, if we use N samples for gradient estimation,

Ep(ϵ)

[
∥ĝmt−1(ϵ1:N )∥22

]
= Ep(ϵ)

[
∥ 1

N

N∑
n=1

gmt−1(ϵn)∥
2
2

]

=
1

N2
·NEp(ϵ)

[
∥gmt−1

(ϵ1)∥22
]

=
1

N
Ep(ϵ)

[
∥gmt−1

(ϵ1)∥22
]

= O(N−1).
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The same results are obtained for the term Ep(ϵ)[∥ĝvt−1(ϵ1:N )∥22]).
According to this, Eq.(4.7) can be rewritten as

Ep(ϵ)

[
||gλt(ϵ) − gλt−1(ϵ)||22

]
≤ α2

t−1K2(N−1C1 + dEp(ϵ)[ϵ
2
(1)]N

−1C2)

≤ α2
t−1N

−1K2(C1 + dδC2)

= α0η
2
t−1N

−1K2(C1 + dδC2)

= O(η2t−1N
−1),

where C1, C2 are positive constances.
Thus, as t → ∞, we can see that Ep(ϵ)[||gλt

(ϵ)−gλt−1
(ϵ)||22] = O(η2t−1N

−1). Furthermore,
Vt is typically similar in the magnitude to Ep(ϵ)[||gλt

(ϵ) − gλt−1
(ϵ)||22] [28] because

V[gλt
(ϵ) − gλt−1

(ϵ)] = Ep(ϵ)

[ ∥∥gλt
(ϵ) − gλt−1

(ϵ)
∥∥2
2

]
−

∥∥∥∥Ep(ϵ)

[
gλt

(ϵ) − gλt−1
(ϵ)

]∥∥∥∥2
2

≤ Ep(ϵ)

[ ∥∥gλt
(ϵ) − gλt−1

(ϵ)
∥∥2
2

]
.

Therefore, we obtain the fact that V[gλt(ϵ) − gλt−1(ϵ)] = O(η2t−1N
−1) (as t → ∞). Thus, if

we use one-sample to estimate the gradient estimator, the order of Vt is O(η2t−1).

According the fact that αt
t→∞→ 0, the one sample variance Vt goes to 0 asymptotically

as iteration proceeds.
Thus, the claim is proved.

4.4 Proof of Lemma 3.2

Proof. According to Theorem 3.1,

NT =

⌈√
VT

VT−1
NT−1

⌉

=

⌈√
VT

VT−1
·

√
VT−1

VT−2
·

√
VT−2

VT−3
· · · ·

√
V2

V1
N1

⌉

=

⌈√
VT

VT−1
·

√
VT−1

VT−2
·

√
VT−2

VT−3
· · · ·

√
V2

V1
·
√

V1

2V0
N0

⌉
=

⌈√
VT

2V0
N0

⌉
.

Remembering the result of Proposition 3.1, the order of VT is O(η2T−1). Therefore, VT ≤
cη2T−1 where c is a positive constant and

NT ≤
⌈√

cη2T−1

2V0
N0

⌉
=

⌈
ηT−1

√
c

2V0
N0

⌉
.

V0 < ∞ and ηT−1 → 0; therefore NT goes to 1 as T → ∞. Because of 0 ≤ t ≤ T , the claim
is proved.
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4.5 Proof of Lemma 3.3

Proof. According to Proposition 3.1, the order of Vt is O(η2t−1). Therefore,

Vt ≤ κtη
2
t−1,

where κt is a positive constant at the iteration t.
Then, we obtain the following inequality:

V[∇̂MRG
λt

L(λt)] = α−2
t V[−αt∇̂λtL(λt)]

= α−2
t V

[
ηt

ηt−1
(λt − λt−1) − αtN

−1
t

Nt∑
n=1

[
gλt

(ϵ(n,t)) − gλt−1
(ϵ(n,t))

]]

= α−2
t V

[
− αtN

−1
t

Nt∑
n=1

[
gλt(ϵ(n,t)) − gλt−1(ϵ(n,t))

]]

= V
[
N−1

t

Nt∑
n=1

[
gλt(ϵ(n,t)) − gλt−1(ϵ(n,t))

]]

= N−2
t V

[ Nt∑
n=1

[
gλt

(ϵ(n,t)) − gλt−1
(ϵ(n,t))

]]
= N−2

t NtV
[
gλt(ϵ(1,t)) − gλt−1(ϵ(1,t))

]
= N−1

t V
[
gλt

(ϵ(1,t)) − gλt−1
(ϵ(1,t))

]
≤ N−1

t κtη
2
t−1.

Therefore,

V[∇̂MRG
λt

L(λt)] ≤ N−1
t κtη

2
t−1

= κt · η2t−1N
−1
t

= O(η2t−1N
−1
t ).

and the claim is proved.

4.6 Proof of Theorem 3.2

Proof. By Assumption 3.3, we have that L(λ) ≤ L(λ̄)+∇λ̄L(λ̄)⊤(λ−λ̄)+ 1
2K1||λ−λ̄||22,∀λ, λ̄.

By using the SGD-update rule, we obtain λt+1 − λt = −αtĝλt
(ϵ1:N ). Thus, when we set

λ = λt+1 and λ̄ = λt, this assumption can be expressed as

L(λt+1) − L(λt) ≤ ∇λtL(λt)
⊤(λt+1 − λt) +

1

2
K1||λt+1 − λt||22

= −αt∇λt
L(λt)

⊤ĝλt
(ϵ1:Nt

) +
α2
tK1

2
||ĝλt

(ϵ1:N )||22.

Taking the expectation by ϵ1:N ∼ p(ϵ), we obtain

Ep(ϵ1:N )[L(λt+1) − L(λt)] ≤ −αt∇λt
L(λt)

⊤Ep(ϵ1:N )[ĝλt
(ϵ1:N )] +

α2
tK1

2
Ep(ϵ1:N )

[
∥ĝλt

(ϵ1:N )∥22

]
.
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Using the fact that Ep(ϵ1:N )[||ĝλt
(ϵ1:N )||22] = V[ĝλt

(ϵ1:N )]+||Ep(ϵ1:N )[ĝλt
(ϵ1:N )]||22 and Ep(ϵ1:N )[ĝλt

(ϵ1:N )] =
∇λt

L(λt), we obtain

Ep(ϵ1:N )[L(λt+1) − L(λt)] ≤ −αt||∇λt
L(λt)||22 +

α2
tK1

2

(
V[ĝλt

(ϵ1:N )] +
∥∥Ep(ϵ1:N )[ĝλt

(ϵ1:N )]
∥∥2
2

)
.

Further, re-using the fact that Ep(ϵ1:N )[ĝλt
(ϵ1:N )] = ∇λt

L(λt), the above equation can be
rewritten as

Ep(ϵ1:N )[L(λt+1) − L(λt)] ≤
α2
tK1

2
V[ĝλt(ϵ1:N )] +

(
α2
tK1

2
− αt

)
||∇λtL(λt)||22.

Summing for t = 1, 2, . . . , T and taking the total expectation,

E[L(λT ) − L(λ1)] ≤ K1

2

T∑
t=1

α2
tE

[
V[ĝλt(ϵ1:N )]

]
+

T∑
t=1

(
α2
tK1

2
− αt

)
E
[
||∇λtL(λt)||22

]
.

From the fact that L(λ∗) − L(λ1) ≤ E[L(λT ) − L(λ1)], where λ1 is determinitic and λ∗

is the optimal parameter, we have the following inequality by dividing the inequality by
AT =

∑T
t=1 αt:

1

AT
[L(λ∗) − L(λ1)] ≤ K1

2AT

T∑
t=1

α2
tE

[
V[ĝλt

(ϵ1:N )]

]
+

1

AT

T∑
t=1

(
α2
tK1

2
− αt

)
E
[
||∇λt

L(λt)||22
]
.

Therefore, we can obtain

1

AT

T∑
t=1

αtE
[
||∇λt

L(λt)||22
]
≤ 1

AT
[L(λ1) − L(λ∗)] +

K1

2AT

T∑
t=1

α2
tE

[
||∇λt

L(λt)||22
]

+
K1

2AT

T∑
t=1

α2
tE

[
V[ĝλt

(ϵ1:N )]

]
.

If we estimate the gradient values by MC samples, we can see V[ĝλt
(ϵ1:N )] ≤ κN−1.

Therefore,

1

AT

T∑
t=1

αtE
[
||∇λt

L(λt)||22
]
≤ 1

AT
[L(λ1) − L(λ∗)] +

K1

2AT

T∑
t=1

α2
tE

[
||∇λt

L(λt)||22
]

+
K1

2AT

T∑
t=1

α2
tE

[
V[ĝλt

(ϵ1:N )]

]

≤ 1

AT
[L(λ1) − L(λ∗)] +

K1

2AT

T∑
t=1

α2
tE

[
||∇λtL(λt)||22

]
+

κ ·K1

2ATN

T∑
t=1

α2
t

=
1

AT
[L(λ1) − L(λ∗)] +

K1

2AT

T∑
t=1

α2
t

(
E[||∇λt

L(λt)||22] +
κ

N

)

=
1

AT
[L(λ1) − L(λ∗)] +

α2
0K1

2AT

T∑
t=1

η2t

(
E
[
||∇λt

L(λt)||22
]

+
κ

N

)
(∵ αt = α0 · ηt).

If we estimate the gradient values by RQMC samples, as with the above, we obtain

1

AT

T∑
t=1

αtE
[
||∇λtL(λt)||22

]
≤ 1

AT
[L(λ1) − L(λ∗)] +

α2
0K1

2AT

T∑
t=1

η2t

(
E
[
||∇λtL(λt)||22

]
+

κ

N2

)
.

Thus, the claim is proved.
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4.7 Proof of Theorem 3.3

Proof. By taking the same result from the proof of Theorem 3.2, we obtain

L(λt+1) − L(λt) ≤ −αt∇λt
L(λt)

⊤ĝλt
(ϵ1:Nt

) +
K1

2
|| − αtĝλt

(ϵ1:Nt
)||22.

Taking expectation by ϵ1:N ∼ p(ϵ), we obtain

Ep(ϵ1:Nt )
[L(λt+1) − L(λt)] ≤ −αt∇λt

L(λt)
⊤Ep(ϵ1:Nt )

[ĝλt
(ϵ1:Nt

)] +
K1

2
Ep(ϵ1:N )

[
|| − αtĝλt

(ϵ1:Nt
)||22

]
.

Using the fact that Ep(ϵ1:N )[||−αtĝλt
(ϵ1:N )||22] = V[−αtĝλt

(ϵ1:N )]+ ||Ep(ϵ1:N )[−αtĝλt
(ϵ1:N )]||22

and Ep(ϵ1:Nt )
[ĝλt(ϵ1:Nt)] = ∇λtL(λt), we obtain

Ep(ϵ1:Nt )
[L(λt+1) − L(λt)] ≤ −αt||∇λt

L(λt)||22 +
K1

2

(
V[−αtĝλt

(ϵ1:Nt
)] + α2

t ||Ep(ϵ1:Nt )
[ĝλt

(ϵ1:Nt
)]||22

)
.

(4.9)

According to Lemma 3.1 and the proof of this,

−αtĝλt
(ϵ1:Nt

) =
ηt

ηt−1
(λt − λt−1) − αtĝ

′
λt

(ϵ1:Nt
),

where ĝ′λt
(ϵ1:Nt

) = N−1
t

∑Nt

n=1[gλt
(ϵ(n,t)) − gλt−1

(ϵ(n,t))]. Therefore,

V[−αtĝλt(ϵ1:Nt)] = V
[

ηt
ηt−1

(λt − λt−1) − αtĝ
′
λt

(ϵ1:Nt)

]
= α2

tV[ĝ′λt
(ϵ1:Nt

)]

≤ α2
t · κη2t−1N

−1
t .

Thus, Eq.(4.9) can be rewritten as

Ep(ϵ1:Nt )
[L(λt+1) − L(λt)] ≤ −αt||∇λt

L(λt)||22 +
K1

2

(
V[−αtĝλt

(ϵ1:Nt
)] + α2

t ||Ep(ϵ1:Nt )
[ĝλt

(ϵ1:Nt
)]||22

)
≤ −αt||∇λtL(λt)||22 +

K1

2

(
α2
t · κη2t−1N

−1
t + α2

t ||Ep(ϵ1:Nt )
[ĝλt(ϵ1:Nt)]||22

)
= −αt||∇λtL(λt)||22 +

α2
tK1

2

(
κη2t−1N

−1
t + ||Ep(ϵ1:Nt )

[ĝλt(ϵ1:Nt)]||22
)
.

Further, re-using the fact that Ep(ϵ1:N )[ĝλt
(ϵ1:N )] = ∇λt

L(λt), the above equation can be
rewritten as

Ep(ϵ1:Nt )
[L(λt+1) − L(λt)] ≤

κK1α
2
t

2Nt
· η2t−1 +

(
α2
tK1

2
− αt

)
||∇λtL(λt)||22.

Summing for t = 1, 2, . . . , T and taking the total expectation,

E[L(λT ) − L(λ1)] ≤ κK1

2

T∑
t=1

α2
t

Nt
η2t−1 +

T∑
t=1

(
α2
tK1

2
− αt

)
E
[
||∇λt

L(λt)||22
]
.
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From the fact that L(λ∗) − L(λ1) ≤ E[L(λT ) − L(λ1)], we have the following inequality by

dividing the inequality by AT =
∑T

t=1 αt:

1

AT
[L(λ∗) − L(λ1)] ≤ κK1

2AT

T∑
t=1

α2
t

Nt
η2t−1 +

1

AT

T∑
t=1

(
α2
tK1

2
− αt

)
E
[
||∇λt

L(λt)||22
]
.

Therefore, we can obtain

1

AT

T∑
t=1

αt||∇λt
L(λt)||22 ≤ 1

AT
[L(λ1) − L(λ∗)] +

K1

2AT

T∑
t=1

α2
tE

[
||∇λt

L(λt)||22
]

+
κK1

2AT

T∑
t=1

α2
t

Nt
η2t−1

=
1

AT
[L(λ1) − L(λ∗)] +

K1

2AT

T∑
t=1

α2
t

(
E
[
||∇λt

L(λt)||22
]

+
κ

Nt
η2t−1

)
.

=
1

AT
[L(λ1) − L(λ∗)] +

α2
0K1

2AT

T∑
t=1

η2t

(
E
[
||∇λtL(λt)||22

]
+

κ

Nt
η2t−1

)
.

Thus, the claim is proved.

4.8 Proof of Theorem 3.4

Proof. Firstly, we focus on the MC and RQMC-based methods. Because of the definition of
SNR and the fact that Ep(ϵ)[ĝλ(ϵ1:N )] = ∇λtL(λt), we obtain

SNR(λ) =
∥Ep(ϵ1:N )[ĝλ(ϵ1:N )]∥22√

V[ĝλ(ϵ1:N )]

=
∥∇λL(λ)∥22√
V[ĝλ(ϵ1:N )]

.

By using the order of gradient variance in each methods, we obtain the following lower
bounds:

SNR(λt) =
∥∇λt

L(λt)∥22√
V[ĝλt(ϵ1:N )]

≥


∥∇λtL(λt)∥2

2√
κN−1

(MC),
∥∇λtL(λt)∥2

2√
κN−2

(RQMC),

=


∥∇λtL(λt)∥2

2√
κ

·
√
N (MC),

∥∇λtL(λt)∥2
2√

κ
·N (RQMC).

Secondly, we show the SNR bound of our method. SNR can be expressed as

SNR(λt) =
∥Ep(ϵ1:N )[ĝλ(ϵ1:N )]∥22√

V[ĝλ(ϵ1:N )]

=
∥∇λtL(λt)∥22√

α−2
t V[αtĝλ(ϵ1:N )]

.
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According to the proof of Theorem 3.3,

V[αtĝλ(ϵ1:N )] = V[−αtĝλ(ϵ1:N )]

≤ α2
t · κη2t−1N

−1
t .

Therefore, we obtain

SNR(λt) =
∥∇λt

L(λt)∥22√
α−2
t V[αtĝλ(ϵ1:N )]

≥ ∥∇λt
L(λt)∥22√

α−2
t α2

t · κη2t−1N
−1
t

=
∥∇λt

L(λt)∥22√
κη2t−1N

−1
t

=
∥∇λt

L(λt)∥22√
κ

·
√
Nt

ηt−1
.

Theorem 3.4 holds.



CHAPTER 5. EXPERIMENTS 35

Chapter 5

Experiments

We experimentally analyzed the performance of the proposed method by using three
different models: hierarchical linear regression, Bayesian logistic regression, and Bayesian
neural network (BNN) regression.

We compared the proposed method with baseline methods in terms of the performance
of optimization and prediction by using the ELBO and the log-likelihood on the training
and test data sets.

In addition, we used the empirical gradient variance to compare the performance of
variance reduction. Finally, we checked the quality of the gradient estimator on the basis of
the empirical SNR.

5.1 Experimental Settings

The model setting and data were as follows.

5.1.1 Hierarchical Linear Regression

We applied hierarchical linear regression to toy data generated from the same generating
process of this model. Here, we set a Gaussian hyperprior on µ′, and lognormal hyperpriors
on the variance of intercepts σ′ and the noise ϵ.

The generative process of this model is as follows.

µ′ ∼ N (0, 102), weight hyper prior

σ′ ∼ LogNormal(0.5), weight hyper prior

ϵ ∼ LogNormal(0.5), noise

bi ∼ N (µ′, σ′), weights

yi ∼ N (x⊤
i bi, ϵ). output distribution

We set I = 100 and k = 10, where k denotes the dimension of the data xi and I is
the number of observations. In this setting, the dimension of the whole parameter space is
d = I×k+k+2 = 1012, and this model is approximated by a variational diagonal Gaussian
distribution.

We optimized the ELBO of the MC-based and the RQMC-based method by using the
Adam optimizer [47] and of the MLMC-based by using the SGD optimizer with learning-
rate scheduler η. To compare the performance of the baseline methods with that of the
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proposed method, we used 100 initial MC or RQMC samples. Furthermore, we compared
the empirical variance and SNR of these methods by using 100 or 10 initial MC or RQMC
samples for inference. In the optimization step, we used η as the step-decay function and
set the hyperparameter {β, r} for sample size estimation to {0.5, 100}. Finally, we set the
initial learning rate as 0.01.

5.1.2 Bayesian Logistic Regression

We applied it to the brest cancer data set in the UCI repository1. Here, we set a standard
Gaussian hyper prior on µ′, and an inverse gamma hyper prior (weak information prior) on
the variance of weights σ′.

The generative process of this model is as follows.

σ′ ∼ Gamma(0.5, 0.5), weight hyper prior

µ′ ∼ N (0, 1), weight hyper prior

zi ∼ N (µ′, 1/σ′), weights

σ(x) =
1

1 + exp(−x)
, Sigmoid function

yi ∼ Bernoulli(σ(x⊤
i zi)). output distributions

In these settings, the dimension of the whole parameter space is d = 11, and this model
is also approximated by a variational diagonal Gaussian distribution.

To optimize the ELBO, we used the Adam optimizer for the MC and the RQMC-based
methods and the SGD optimizer with learning-rate scheduler η for the MLMC-based method.

To compare the performance of the baseline methods with that of the proposed method,
we used 100 initial MC or RQMC samples. Furthermore, we compared the empirical variance
and SNR of these methods by using 100 or 10 initial MC or RQMC samples for inference.
In the optimization step, we used η as the step-decay function and set the hyperparameter
{β, r} for sample size estimation to {0.5, 100}. Finally, we set the initial learning rate as
0.001.

5.1.3 Bayesian Neural Network Regression

We applied a bayesian neural network regression (BNN-regression) model to the wine-
quality-red data set, which are included the wine-quality data set in the UCI repository2.

The network consists of a 50-unit hidden layer with ReLU activations. In addition, we set
a normal prior over each weight and placed an inverse Gamma hyperprior over each weight
prior, and also set an inverse Gamma prior to the observed variance.

The generate process of this model is as follows.

α ∼ Gamma(1., 0.1), weight hyper prior

τ ∼ Gamma(1., 0.1), noise hyper prior

wi ∼ N (0, 1/α), weights

y ∼ N (ϕ(x,w), 1/τ). output distributions

In this settings, ϕ(x,w) is a multi-layer perceptron which maps input data x to output
y by using the set of weights w, and the set of parameters are expressed as θ := (w, α, τ).

1https://archive.ics.uci.edu/ml/data sets/Breast+Cancer
2https://archive.ics.uci.edu/ml/data sets/Wine+Quality
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The model exhibits a posterior of dimension d = 653 and was applied to a 100-row data set
subsampled from the wine-red data set.

We approximated the posterior of this model by using a variational diagonal Gaussian
distribution, and we used the learning-rate scheduler η as the step-decay function and set
the hyperparameter {β, r} for sample size estimation to {0.5, 100}.

To optimize the ELBO, we used the Adam optimizer for the MC and the RQMC-based
methods and the SGD optimizer with learning-rate scheduler η for the MLMC-based method.

To compare the performance of the baseline methods with that of the proposed method,
we used 100 initial MC or RQMC samples. Furthermore, we compared the empirical variance
and SNR of these methods by using 100 or 10 initial MC or RQMC samples for inference.
Finally, we set the initial learning rate to 0.001.

5.2 Results

The all of experimental results are shown in from Figure 5.1 to 5.6. From these results,
we found that the proposed method (solid blue lines) converged faster than the baseline
methods did in all settings. Furthermore, the proposed method sometimes obtained values
closer to the optimal ELBO and log-likelihood for the test data set as shown in Figure 5.4.
In addition, the empirical gradient variance and SNR of the proposed method (dashed and
solid blue lines, respectively) exhibited lower values than the baseline methods do.

Moreover, as stated in regard to Lemma 3.2, the proposed method performed well even
when the sample size was reduced as the optimization proceeded (see Figure 5.7). It shows
that the proposed method is able to optimize the ELBO efficiently while saving the compu-
tational cost.
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Figure 5.1: Experimental results of a hierarchical linear regression. On the first row, test ELBO
(higher is better) and traning ELBO (higher is better) is lined up. On the second row,
empirical gradient variance (lower is better) and empirical SNR (lower is better) is
lined up.

Figure 5.2: Experimental results of log-likelihood on test data set in a hierarchical linear regression
(higher is better).
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Figure 5.3: Experimental results of a bayesian logistic regression. On the first row, test ELBO
(higher is better) and traning ELBO (higher is better) is lined up. On the second row,
empirical gradient variance (lower is better) and empirical SNR (lower is better) is
lined up.

Figure 5.4: Experimental results of log-likelihood on test data set in a bayesian logistic regression
(higher is better).
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Figure 5.5: Experimental results of a bayesian neural network regression. On the first row, test
ELBO (higher is better) and traning ELBO (higher is better) is lined up. On the
second row, empirical gradient variance (lower is better) and empirical SNR (lower is
better) is lined up.

Figure 5.6: Experimental results of log-likelihood on test data set in a bayesian neural network
regression (higher is better).
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Figure 5.7: Reduction results of random variable samples for a gradient estimation, when β =
0.5, r = 100.
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Chapter 6

Conclusion and Future Work

We have proposed multi-level Monte Carlo variational inference (MLMCVI), a novel
framework of variance and sample-size reduction for MCVI with a reparameterized gradient
estimator. In the MLMCVI framework, the optimal number of samples and update schemes
are naturally derived, and they provide the minimum total variance per optimization step.
The proposed method is easily integrated into automated inference libraries with an auto-
differential tool.

Furthermore, we showed theoretical properties of the proposed method that the conver-
gence of the weighted-average gradient norm is accelerated and that the deterioration of the
quality of the MRG estimator can be controlled by factor ηt−1. Through three experiments,
we also confirmed that the proposed method achieves better or competitive performance in
terms of the speed of convergence, variance reduction, and SNR when compared with base-
line methods. Moreover, we found that the proposed method sometimes yields values closer
to the optimum in terms of the log-likelihood on a test data set.

Because of using pure MC samples, the proposed method can be combined with vari-
ance reduction techniques such as control variates and importance sampling based on the
reparameterization trick. Moreover, it may be possible to use the RQMC sampling in the
proposed method by extending the studies by Giles and Waterhouse [29] and Gerstner and
Noll [25]. Also, the current proposed method focuses on the SGD-based update rules; we
will extend it to other optimizers (e.g., Adam) in our future study.

In this work, we focused on the Gaussian variational distribution and analyzed the pro-
posed method. However, it could be easily extended to a broader class of distributions by
using the generalized reparameterization gradient [79]. We thus plan to extend the proposed
method to more general variational distributions and to elucidate additional theoretical
properties.
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son Westin, Matthais Ritgen, Sebastian Böttcher, Anton Langerak, Mark Roschewski,
Wyndham Wilson, Gianluca Gaidano, Davide Rossi, Jasmin Bahlo, and Ash Alizadeh.
Dynamic risk profiling using serial tumor biomarkers for personalized outcome predic-
tion. Cell, 178, 07 2019.

[52] Pierre L’Ecuyer and Christiane Lemieux. Recent advances in randomized quasi-monte
carlo methods. Modeling uncertainty, pages 419–474, 2005.

[53] Cheolhyoung Lee, Kyunghyun Cho, and Wanmo Kang. Directional analysis of stochastic
gradient descent via von mises-fisher distributions in deep learning. arXiv preprint
arXiv:1810.00150, 2018.

[54] Christian Lemieux. Monte Carlo and Quasi-Monte Carlo Sampling. Springer, New
York, NY, USA, 2009.

[55] Gunther Leobacher and Friedrich Pillichshammer. Introduction to quasi-Monte Carlo
integration and applications. Compact Textbooks in Mathematics. Springer, 2014.

[56] Ximing Li, Changchun Li, Jinjin Chi, and Jihong Ouyang. Variance reduction in
black-box variational inference by adaptive importance sampling. In Proceedings of
the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJICAI),
pages 2404–2410, 2018.



BIBLIOGRAPHY 47

[57] Qiang Liu, Jian Peng, and Alexander T Ihler. Variational inference for crowdsourcing.
In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems 25 (NeurIPS), pages 692–700, 2012.

[58] Anne-Marie Lyne, Mark Girolami, Yves Atchadé, Heiko Strathmann, and Daniel Simp-
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Appendix A

Additional Information on
MLMC

We introduce the additional information on MLMC to help understand the background,
the proposed method, algorithm, and theoretical analysis.

A.1 Sampling Method andMulti-level Monte Carlo (MLMC)

When we approximate posterior distributions, Monte Carlo methods are often used for es-
timating expectation of intractable objects with several random samples. The mean squared
error (MSE) of approximation with random samples is a rate of O(N−1), and an accuracy
of ϵ requires N = O(ϵ−2) samples. This rate can be too high for application. One approach
to addressing this high cost is the use of the QMC or RQMC methods, in which the samples
are not chosen randomly and independently, instead of being selected very carefully to re-
duce the error [28]. In the best cases, the error rate is O(N−2 logN2d−2). There are many
reviews about the QMC approach provided by Niederreiter [62], L’Ecuyer and Lemieux [52]
and Leobacher and Pillichshammer [55].

Another approach to improving the computational efficiency is the MLMC method pro-
posed by Heinrich [38]. This method has been often used in stochastic differential equations
for options pricing [26, 11, 71]. In statistics, there are many applications in approximate
Bayesian computation [31, 43, 92]. In a Bayesian framework, Giles et al. [31, 30] applied
MLMC to stochastic gradient MCMC algorithms such as the stochastic gradient Langevin
dynamics (SGLD), which discretize the posterior of SDE based on the multi-level step size
and couple them.

Because of the linearity of expectations, given a sequence P0, P1, . . . , PL−1 which approx-
imates PL with increasing accuracy, we have the simple identity:

E[PL] = E[P0] +

L∑
l=1

E[Pl − Pl−1]. (A.1)

We can thus use the following unbiased estimator for E[PL],

E[PL] ≈ N−1
0

N0∑
n=1

P
(0,n)
0 +

L∑
l=1

{
N−1

l

Nl∑
l=1

(P
(l,n)
l − P

(l,n)
l−1 )

}
, (A.2)
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with the inclusion of l in (l, n) indicating that independent samples are used at each level of
correction.

If we define V0, C0 to be the variance and cost of one sample of P0, and Vl, Cl to be the
variance and cost of one sample of Pl − Pl−1, then the total variance and cost of Eq.(A.2)

are
∑L

l=0 N
−1
l Vl and

∑L
l=0 NlCl, respectively.

Thus, if Y is a multi-level estimator given by

Y =

L∑
l=0

Yl, Yl = N−1
l

Nl∑
n=1

(P
(l,n)
l − P

(l,n)
l−1 ),

with P−1 ≡ 0, then

E[Y ] = E[PL], V [Y ] =

L∑
l=0

N−1
l Vl, Vl ≡ V [Pl − Pl−1].

A.2 Control Variates and Relationship to Two-Level MLMC

One of the classic methods to reduce the variance of Monte Carlo samples is the control
variates method [32]. When we want to estimate E[f ] and there is a function h which is high
correlated to f with a known expectation E[h], we can use the unbiased estimator for E[f ]
which are consisted from N i.i.d. samples ω(n) as follows,

f̂(ω(n)) = N−1
N∑

n=1

{f(ω(n)) − a(h(ω(n)) − E[h])}. (A.3)

Then, the variance of f̂(ω(n)) is expressed as

V[f̂(ω(n))] = V[f(ω(n))] + a2V[h(ω(n))] − 2aCov(f(ω(n)), h(ω(n))),

and the optimal value for a is ρ
√

V [f ]/V [h], where ρ is the correlation between f and h. So,
the variance of this estimator is reduced by a factor of 1 − ρ2 (see Giles [26]).

Two-level MLMC method is similar to this method. According to Giles [27], if we want
to estimate E[P1] but it is much cheaper to simulate P0 which approximates P1, then since

E[P1] = E[P0] + E[P1 − P0], (A.4)

we can use the unbiased two-level estimator given by

N−1
0

N0∑
n=1

P
(n)
0 + N−1

1

N1∑
n=1

(
P

(n)
1 − P

(n)
0

)
. (A.5)

There are two different points from control variates methods: the value of E[P0] is unknown
and a takes one.
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Appendix B

Additional Experimental
Results on Various Initial
Learning-rate

In this part, we show the additional experimental results of the ELBO and log-likelihood
values on test dataset. Here, we set the various initial learning-rate to confirm the affection
of our variance reduction method.

From these results, we found that the proposed method archived better performances on
every α0.

B.1 Hierarchical Linear Regression

B.1.1 α0 = 0.1

Figure B.1: Experimental results when the initial learning rate α0 = 0.1. Test ELBO (higher is
better) and test log-likelihood (higher is better) are lined up from left.



APPENDIX B. ADDITIONAL EXPERIMENTAL RESULTS ON VARIOUS INITIAL
LEARNING-RATE 53

B.1.2 α0 = 0.01

Figure B.2: Experimental results when the initial learning rate α0 = 0.01. Test ELBO (higher is
better) and test log-likelihood (higher is better) are lined up from left.

B.1.3 α0 = 0.05

Figure B.3: Experimental results when the initial learning rate α0 = 0.05. Test ELBO (higher is
better) and test log-likelihood (higher is better) are lined up from left.
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B.2 Bayesian Logistic Regression

B.2.1 α0 = 0.1

Figure B.4: Experimental results when the initial learning rate α0 = 0.1. Test ELBO (higher is
better) and test log-likelihood (higher is better) are lined up from left.

B.2.2 α0 = 0.01

Figure B.5: Experimental results when the initial learning rate α0 = 0.01. Test ELBO (higher is
better) and test log-likelihood (higher is better) are lined up from left.
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B.2.3 α0 = 0.05

Figure B.6: Experimental results when the initial learning rate α0 = 0.05. Test ELBO (higher is
better) and test log-likelihood (higher is better) are lined up from left.

B.3 Bayesian Neural Network Regression

B.3.1 α0 = 0.05

Figure B.7: Experimental results when the initial learning rate α0 = 0.05. Test ELBO (higher is
better) and test log-likelihood (higher is better) are lined up from left.
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B.3.2 α0 = 0.001

Figure B.8: Experimental results when the initial learning rate α0 = 0.001. Test ELBO (higher is
better) and test log-likelihood (higher is better) are lined up from left.

B.3.3 α0 = 0.0001

Figure B.9: Experimental results when the initial learning rate α0 = 0.0001. Test ELBO (higher
is better) and test log-likelihood (higher is better) are lined up from left.
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Appendix C

Experiment on Image Dataset

In this chapter, we show the experimental results on the large image data to confirm the
predictive performance on the basis of the test log-likelihood. We use a bayesian logistic
regression for the Fashion-MNIST data set.

C.1 Details of Model and Experimental Results on Im-
age Dataset

Here, we set a standard Gaussian hyper prior on µ′, and an inverse gamma hyper prior
(weak information prior) on the variance of weights σ′. Thus, the generate process of this
model is:

σ′ ∼ Gamma(0.5, 0.5), weight hyper prior

µ′ ∼ N (0, 1), weight hyper prior

zi ∼ N (µ′, 1/σ′), weights

σ(xi) =
exp(xi)∑
j exp(xj)

, Softmax function

y ∼ Categorical(σ(ϕ(x⊤
i zi))). output distributions

In these settings, the dimension of the whole parameter space is d = 786, and this model
is also approximated by a variational diagonal Gaussian distribution.

We optimized the ELBO of the MC-, the RQMC-, and the MLMC-based methods by
using the SGD optimizer with a learning-rate scheduler η. To compare the performance
of the baseline methods with that of the proposed method, we used 100 initial MC or
RQMC samples. In the optimization step, we used η as the step-decay function and set the
hyperparameter {β, r} for sample size estimation to {0.5, 100}. Finally, we set the initial
learning rate as 0.01, 0.005, or 0.001.

From the results in Figure C.1, we find that, even if we use large-scale image-data sets
such as Fashion-MNIST, the proposed method achieves to yield values closer to the optimum
in terms of the log-likelihood on the test data set.
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Figure C.1: Experimental results when the initial learning rate α0 = 0.01. Test log-likelihood
(higher is better) and traning ELBO (higher is better) are lined up from left.

Figure C.2: Experimental results when the initial learning rate α0 = 0.005. Test log-likelihood
(higher is better) and traning ELBO (higher is better) are lined up from left.

Figure C.3: Experimental results when the initial learning rate α0 = 0.001. Test log-likelihood
(higher is better) and traning ELBO (higher is better) are lined up from left.
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C.1.1 Experimental Results on Data-size Change

From the experimental results, we can see that the proposed method sometimes obtain a
better optimum in sight of the log-likelihood on the test dataset. Then, how much training
data is needed to achieve a better performance than that of the benchmark method? To
confirm this, we conduct the following experiments.

Firstly, we use the same settings on the bayesian logistic regression experiments in Chap-
ter 5 and Appendix 5.1.2. Secondly, we split 80% of data as a training dataset and the rest
as a test dataset. In addition, we also divided training data into 10%, 20%, 40%, 60%, and
80%, and calculated each test log-likelihood values.

The results are shown in Figure C.4. From this, we can see that, even if 20% training
data is reduced, our method achieves almost equal performance compared to that of the
benchmark method on full training data.

Figure C.4: Experimental results when the size of training data changes. Test log-likelihood
(higher is better) and the converged value of it (higher is better) per each percentages
are lined up from left.
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