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Chapter 1: General Introduction 

1.1 Background 

    

   Inside the earth, the thermal energy that exists in the shallow part, usually within a 

few kilometers from surface of Earth, and can be used by humans is called geothermal 

energy. There is a tremendous amount of thermal energy in the shallow part of the Earth 

that cannot be used up. It is estimated to be about 6000℃ at the depth of 6370km, the 

center of Earth, which is almost the same level as the surface temperature of the sun. 

Also, 99% of the earth's volume is above 1000℃, and the portion below 100℃ is only 

0.1%.  Since the Earth's interior is hot and the Earth's surface is at a low temperature 

of about 15℃, heat naturally flows out of the Earth. However, even heat flows from 

interior of Earth at natural rate, it will take billions of years for the Earth to cool. 

Therefore, it is considered that heat energy stored inside the Earth is inexhaustible. 

   The current technology cannot use the high-temperature heat as described above. 

The rain that has fallen penetrates underground (several kilometers deep), is warmed 

by hot rocks, heated water is called hot water, and is occurred in relatively shallow area. 

It is used by removing steam and hot water from a place (geothermal reservoir) reserved 

in a section (1~3 km deep) by boring. The hot water effuses to the surface naturally is 

called hot spring. Near the volcano, it is hotter than general places in the shallower area. 

That is because high-temperature magma exists in the deep part of the volcano. 

Therefore, some geothermal reservoirs are created in the shallower part of the magma. 

Figure 1 shows the production and reduction wells excavated in the geothermal 

reservoir (natural boiler) heated by the magma chamber and the geothermal power 

generation equipment on the ground.  

 

Figure 1.  Magma power generation using high heat near the magma chamber 
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   Based on a numerical model of underground heat and water flow, it is possible to 

examine how much power generation geothermal can produce. A numerical model can 

be used to calculate how much steam can be produced at specified depth by drilling. 

You can also simulate how the underground changes when steam is produced. Thus, if 

you know the amount of steam produced, you can calculate how much power can be 

generated. As a result, depending on how many production wells are drilled and how 

many reduction wells are drilled, it is possible to determine how much power generation 

scales will produce power stably over the long term.  

   Currently, it is calculated by setting what kind of power generation method to select 

or how many years to extract heat. In many cases, the scale of power generation is 

determined by extracting heat in about 30 years. However, since the heat is not actually 

lost and it is replenished naturally, power generation occurs semi-permanently. 

   With the continuous growth of the world economy, the consumption of energy is 

also increasing, and the large-scale use of fossil fuels not only brings serious 

environmental pollution and ecological damage, but also decreases the amount of 

resources. Therefore, the usage of clean renewable energy meets the urgent needs of 

sustainable development. As one of the alternative energy sources, geothermal energy 

is receiving increasing attention. Geothermal power stations have no fuel transportation 

equipment, no huge boiler equipment, and no environmental pollution caused by slag 

and flue gas, which is relatively clean. Plus, the cost of electricity generation is lower 

than hydropower and thermal power.  

   Coal and oil have been the mainstream energy of the earth for hundreds of years. 

According to estimates of global reserves and consumption speed, It is afraid that oil 

and coal can only serve humanity for another 200 years. Therefore, the transformation 

of energy is imperative. Among many varieties of new energy, the development of 

geothermal technology with huge underground reserves will become one of the key 

technologies to change the world in the process of energy upgrade. 
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1.2 Geothermal Power Generation 

    

   Geothermal power generation is a new power generation technology that uses 

underground hot water and steam as power sources. Its basic principle is similar to that 

of thermal power generation. It is also based on the principle of energy conversion. First 

of all, geothermal energy is converted into mechanical energy, and then mechanical 

energy is converted into electrical energy. Geothermal power generation is actually an 

energy conversion process that converts thermal power underground into mechanical 

energy, and then converts mechanical energy into electrical energy on the surface. 

   Compared to the instable solar and wind energy, geothermal energy is a more 

reliable renewable energy source, which makes people believe that geothermal energy 

can be the best alternative energy source for coal, natural gas and nuclear energy. In 

addition, geothermal energy is indeed an ideal clean energy source. It has abundant 

energy resources and does not generate greenhouse gases during extraction, which does 

not be harmful to the global environment. 

   There are three main types of geothermal power generation currently in use:  

(1) dry steam; (2) flash cycle [single flash cycle, double flash cycle, triple flash cycle]; 

(3) binary cycle.  Besides above three types, there are other 4 geothermal power 

generation types, they are (4) Hot spring power generation; (5) Hot dry rock geothermal 

power [Enhanced Geothermal System; EGS]; (6) Magma power generation; (7) Back 

pressure type and condensing type. 

   In addition, as a future technology, high-temperature rock power generation that 

can generate electricity without hot water or steam resources is also researching and 

developing every day. 

   Another, regarding the handling of steam after usage in a power generation turbine, 

the method that releasing it into the atmosphere is classified as the back pressure 

method, and the method that cooling the steam back to water and recycle to use is 

classified as the condensate method. 

   The first geothermal power plant in the world was tested on natural steam in 

Larderello, Italy, on July 4, 1904, and commercial power generation as a power plant 

began in 1913 (250 kW). In 1942, the total output reached 120,000 kW, but the power 

plant at that time was destroyed by the war. After the World WarⅡ, a new power plant 

was constructed. As of 2010, the power plant has a power generation capacity of 543 
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MW and an annual power generation of approximately 5 billion kWh, Supplying power 

comparable to a medium-scale thermal power plant and one nuclear power plant. The 

total global geothermal power generation capacity in 2005 was 8878.5MW.  

Geothermal power generation accounts for about 0.3% of total power generation 

facilities around the world. 

 

Figure 2.  Total Renewable Power Generation Capacity, 2011-2017   from IRENA 

 

 

Figure 3.  Geothermal Power Generation and Cumulative Capacity by Region, 2017-2023 by IEA 

 

   Here, what we focus is the [Dry hot rock power generation system]. The idea of 

using underground hot dry rock to generate electricity was proposed by Americans 

Morton and Smith in 1970.  In 1972, they drove two 4000m deep inclined wells in 

northern New Mexico, injecting cold water from one well into a dry and hot rock mass, 

and taking out steam generated from the heating of the rock mass from another well, 

with a power of 2300 kilowatts.  Nowadays, Japan, the United Kingdom, France, 

Germany, and Russia have also done research on dry hot rock power generation, but no 

large-scale application and commercial project has been made so far. 
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1.3 Existent Difficulties in Popularizing Geothermal 

 

1.3.1 Initial Cost 

 

   Compared with solar energy and wind energy, the use of geothermal energy is not 

limited by weather conditions. Although exploration and mining require professional 

technical support to avoid risks. Actually the initial cost of geothermal power plant 

construction is relatively high, but the cost consumed during operation is far lower than 

solar energy and wind energy. And geothermal has better stability and efficiency when 

operated, even general geothermal projects can recover costs within a few years. 

   In general, the initial cost of geothermal power generation will require from 7,000 

dollars / kW to 11,000 dollars / kW or more just for the construction cost of power 

generation facilities. Design output facilities that generated electrical energy less than 

15,000 kW will lead to expensive initial cost, and there have been existed cases which 

initial costs are up to 166 million dollars are required. If the amount of power generated 

exceeds 15,000 kW, the unit cost will be relatively low, but it will still cost about 110 

million dollars in initial costs. 

   In addition, a considerable amount of preliminary survey costs and boring costs 

must be added, and as a result of the construction period is usually longer than several 

years, thus it must be not taken a considerable amount of time until starting operation.  

The long-term return of geothermal power is generally calculated to be 12-14%. In the 

case of photovoltaic power generation, it is considered to be about 6-7%, so the yield 

is quite high. However, this estimated yield can be maintained depends on whether the 

cost can be reduced with a short purchase guarantee period of 15 years or not. The 

initial cost of advanced excavation work must be kept at a low level by making full use 

of national subsidies. 

   Geothermal power generation has a tremendous initial investment amount, but due 

to weak power generation output and low thermal efficiency, we cannot expect a 

sufficient amount of power generation or investment effect in a short period of time.  

The big disadvantage is that the amount of investment is so large that it is difficult for 

individual investors to involve, and it is also difficult to introduce without sufficient 

funds even for rich corporates. If someone is planning to invest in geothermal power, 

make sure to consider not only the benefits of geothermal power but also the cost.
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1.3.2 Environment concerns 

 

   Various environmental impacts can occur during operation of a geothermal plant. 

Geothermal fluids such as hot water and steam generally contain gas components such 

as carbon dioxide (CO2), hydrogen sulfide (H2S), ammonia (NH3), methane (CH4). 

And chemical components whose solubility increases with temperature, for example, 

sodium chloride (NaCl), boron (B), arsenic (As), mercury (Hg), etc.  They will bring 

pollution if released into the environment. Although there has be geothermal fluid used 

for district heating in Iceland which is closed to fresh water, this is just a special case. 

On the other hand, the temperature of the wastewater produced by geothermal plant is 

often higher than the surrounding water temperature, which may cause thermal 

wastewater pollution. If the hot water used contains high concentrations of boron, 

fluorine compounds, arsenic, etc., it must be reduced underground after treatment. 

   Ground subsidence may occur along with normal groundwater pumping if a large 

amount of hot water is extracted from the underground. It takes several years until 

subsidence phenomenon becomes apparent, because land subsidence progresses slowly 

over a relatively wide area. Besides subsidence, in some areas, removing or returning 

hot water can cause earthquakes or increase the frequency of earthquakes. However, 

the magnitude of these earthquakes is usually very small and can only be detected by a 

highly sensitive seismometer. It is believed that geothermal use will not trigger a large 

earthquake, and in fact, there has never been such a serious example happened. 

 

As conclusion, the main effects of geothermal power generation on the environment 

states on the following points: 

(1) Hot spring depletion: Hot spring resources are reduced or depleted by pumping; 

(2) Cliffs: Changes due to pumping up or reduction of waste water (returning to the   

   ground); 

(3) Earthquake: An earthquake is triggered by pumping up or reducing unused water; 

(4) Groundwater contamination: Toxic substances dissolved in groundwater which is   

   contaminated by reducing wastewater;  

(5) Air pollution: Air is polluted by toxic vaporizable substances; 

(6) Contamination of surface soil: The earth is polluted by toxic vaporizable substances   

   and solid substances. 
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There are four main factors that cause above problems:  

(1) Pumping of hot water;  

(2) Reduction of waste water;  

(3) Toxicity in hot water and steam; 

(4) Facility construction itself. 
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1.3.3 Induced Seismic Activity 

 

   As mentioned above, seismic occurs at somewhere when satisfy specified 

conditions. Recently, something about earthquake induced by geothermal is the 

magnitude 5.4 Richter scale earthquake on November 15th, 2017 in Pohang may have 

been caused by an experimental geothermal power plant, reported by an investigation 

team from Korean media. This earthquake is the second largest earthquake in South 

Korea and the most destructive earthquake in modern Korean history, injuring 135 

people and an estimated economic loss of 255 million dollars.  

   Unlike traditional geothermal power plants that extract energy directly from hot 

water or rocks underground. A type of Enhanced Geothermal System technology ----   

Pohang Power Plant injects fluids into the ground under high pressure, breaking the 

rocks and releasing heat. The team found that this pressure triggered a small earthquake 

that affected nearby faults, eventually triggering a larger earthquake in 2017. 

   In order to explain the cause and effect of induced earthquake, here we use the 

magnitude 5.4 Richter scale earthquake on 2017 in Pohang as a sample. Geophysicist 

William Ellsworth (Stanford University) and Kang-Kun Lee (Seoul National 

University) and others published an article in Science on May 24, stating the culprit 

that caused the Pohang earthquake for the failure of the Pohang project and pointing 

out the development and utilization of geothermal resources. The seismic activity 

caused by the reservoir excitation activated the previously unknown faults and 

eventually triggered the main earthquake. The occurrence of the Pohang earthquake 

proved that EGS stimulation can cause large earthquakes beyond the stimulated volume, 

thus overturned the assumption that the maximum seismic magnitude is controlled by 

the volume of injected fluid.  Many geothermal, oil and gas projects are also guided 

by the assumption that as long as the fluid injected into the well does not exceed a 

certain volume, the earthquake will not exceed a certain scale. But Pohang's experience 

tells us that this is not all. With this in mind, many projects are managed using so-called 

“Traffic Light Systems”. As long as the earthquake is small, it can be turned on the 

green light and permitted to implement. If the earthquake starts to get bigger, 

adjustments can be made to continue the project. However, if the earthquake is too big, 

a red light will be turned on and the project will be stopped, at least temporarily. 

   In Pohang, water injection causes cracks in the rocks to form channels for absorbing 
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heat from the ground as similar with other enhanced geothermal projects ; otherwise, 

underground heat cannot be exploited for power generation with such low permeability. 

Ellsworth explained why Pohang project failed and analyzed how to reduce risks. This 

is not only related to subsequent geothermal power plants, but also to all hydraulic 

fracturing projects that require similar technologies.  On the other hand, he said that 

despite these risks exist, it is still believed that enhanced geothermal systems can play 

an important role in renewable energy. Understanding Pohang's problems can allow 

other countries or regions to more safely develop and utilize dry hot rock geothermal 

resources effectively. It is known hydrothermal geothermal energy is relatively rare., 

the application of these resources will be unsustainable without good recharge 

measurement. If we can find a better method for safe power generation based on 

enhanced geothermal systems, it could bring us huge benefits and become the best 

choice for the issues of low-carbon economy and power generation. 

   In recent years, small earthquakes caused by the European EGS project during the 

drilling or production phase exceeded pre-set safety thresholds, leading to the 

termination of these projects. The problems of hydraulic fracturing and wastewater 

recharge during the development of oil and gas resources will also induce earthquakes. 

Although none of these earthquakes is as large as in Pohang in these cases, it will also 

cause local damage. 

   In the future EGS project, the project team and relevant scientific research 

institutions should conduct comprehensive and continuous monitoring and analysis of 

the evolving earthquake disasters in order to make the greatest contribution to 

mitigating the earthquake risk and the changing seismic risk situation Update 

information to government authorities. At the same time, further work is needed to 

establish physical and statistical models that induce and trigger seismic activity in order 

to provide a theoretical basis for risk assessment.
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1.3.4 Relative Technology Development 

 

   There are many reasons that producing fluid directly from liquid-dominated 

geothermal systems is problematic: 

(1) The produced fluid may contain dissolved chemical components from the rock 

making it corrosive to the well and surface collection pipes;  

(2) Produced fluid may transport chemical species (e.g., acid gases) from the reservoir 

to the surface where they must be handled as hazardous pollutants;  

(3) The produced fluid itself may be hazardous and require special handling or incur 

disposal costs;  

(4) Injected working fluid may react with the rock and lead to formation damage, either 

excessively dissolving the reservoir or plugging it up;  

(5) There may not be sufficient permeability in the geothermal reservoir to inject or 

recover working fluid at sufficient rates. 

 

   Therefore, in order to avoid these problems is to keep reservoir fluids isolated from 

the geothermal energy recovery infrastructure through the use of a closed-loop 

circulation system in which the working fluid never contacts the host rock. On the other 

hands, unlike working fluid leakage in open system, it is sure that the amount of 

working fluid can be extracted with a stable rate.  

   Closed-loop system method has been proposed in the past, but limited to former 

technology and energy construction. However, due to recent developments in reservoir 

stimulation, drilling technology, and the use of novel working fluids, coupled with the 

imperative to lower environmental impacts of geothermal energy, are inspiring renewed 

interest in closed-loop systems. 

   Geothermal energy is the world’s largest source of continuous clean power, but only 

2% has been accessible. Conventional “open loop” geothermal power technology 

cannot access the hot dry rock regions where most geothermal power resides. Further, 

conventional geothermal technology requires high risk, fixed-scale power projects that 

require up to several years to plan and build. It is very unfriendly for investors and 

geothermal supported governments. Therefore, to address those problems, GreenFire 

Energy has developed its patented Green-Loop technology to generate continuous, cost 

competitive, and scalable geothermal power. GreenFire Energy uses advanced drilling 
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and well completion technology that revolutionized the oil and gas industry to 

maximize heat transport from deep in the earth to the surface. Green-Loop technology 

is the most environmentally attractive way of providing large scale renewable power 

generation. 

   GreenFire Energy’s advanced ECO2G™ technology extracts geothermal energy 

unavailable to conventional systems and provides cost competitive, stable, and reliable 

power. The company designs, develops, and builds projects that use a patented closed-

loop architecture to capture heat energy from marginal conventional wells and, 

eventually, large-scale greenfield projects. The GreenFire Energy then retained Baker 

Hughes to help build a drilling cost model to determine the economic viability of 

ECO2G in a wide variety of conditions. More recently, GreenFire and partners at the 

Lawrence Livermore National Laboratory were awarded funding under the Department 

of Energy’s Small Business Voucher program. LBNL will perform research related to 

novel methods of well completion and directional drilling in hot and deep geothermal 

formations. 



 

 

12 

1.4 Enhanced Geothermal System (EGS) 

 

1.4.1 What is EGS ? 

 

   In geothermal power generation, it is a technology that feeds working fluid and 

obtains steam or hot water in poor natural hot water or steam circumstance. EGS injects 

water into underground to hydraulically crush hot rock with low permeability, then 

water becomes steam and hot water are obtained by means of creating a water reservoir. 

It is expected the EGS technology could expand geothermal utilization opportunities 

all over the world. As to the utilization of the produced steam (heat energy) in EGS. It 

is as similar that the method of electric power，which is obtained by turning the steam 

turbine of the generator forced by steam generated mainly through geothermal heat, as 

in the case of conventional geothermal power generation. 

   Geothermal energy is one of the power generation which is not derived from the 

sun. It has been pointed out that the current technology could reduce the cost until 0.08 

dollar / kWh. In 2008, Google invested 10 million dollars in venture companies and 

became a popular topic. On the other hand, “Induction of earthquake” and “Difficulty 

in securing injected water” have been pointed out as main issues. In the case of Basel, 

Switzerland, an earthquake was triggered by water injection, which caused property 

damage up to $ 9 million. Therefore, the project was canceled and the president of the 

development corporation was prosecuted and even brought to trial. The recovery rate 

of injected water is said to have an impact on practical operation unless it is over 80%. 

   EGS demonstration experiments are implemented at some countries, we will make 

use of our hot rock power generation technology (see figure 4, 5) and establish EGS 

technology, which will contribute to the reduction of geothermal development risk and 

power generation cost.  

   In figure 4., when natural hot water supply (rainwater) is insufficient, surface water 

is supplied from other wells to the reservoir. But in figure 5., the steam production will 

be increased by increasing the water permeability of the rock mass around the 

production well due to hydraulic fracturing from the production well and other wells.  

Currently, in figure 6., a reservoir which is created artificially by hydraulic fracturing 

from a drilling well, and then water injected from the surface is produced from 

production wellbore as hot water or steam. 
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Figure 4. Reservoir recharge EGS concept     Figure 5. Water permeability improvement   

                               EGS concept 

             

Figure 6. Reservoir creation EGS concept               

--------電力中央研究所報告 「地熱増産システム(EGS)技術開発の現状と課題」  

   Over the next 20 years, prospect of commercialization in the demonstration plant 

of EGS will be set up. At the same time, conventional geothermal development will be 

carried out in parallel. In addition, a wider scale of geothermal energy must be 

considered, including the heat resource at every depth, low, medium and high 

temperature geothermal resources that have not been used. 

   From now on, widely disseminate know-how on EGS technology to improve 

productivity, resource sustainability and improve health, safety and environmental 

management skills is more and more necessary. Geothermal utilization and power 

generation are easy to develop in the many areas of developing countries. The reason 

why is that it is easy to overcome the economic and non-economic barriers against 

development. Therefore, geothermal (EGS) may be most attractive energy generation 

resources available to those developing countries. 
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1.4.2 Advantages of Using CO2 as Working Fluid 

 

   It aims at creating geothermal field by circulating water through hot rocks at deep 

underground. The power output efficiency is not good because current technology is 

still immature in the preliminary stage. For the purpose of high energy efficiency, we 

choose a new working fluid. Here, we are using supercritical carbon dioxide (SCCO2) 

instead of water as the circulating fluid, and trying to increase the efficiency up to three 

times than conventional ones. 

   A supercritical fluid is a state that has properties between liquid and gas. It shows 

no surface tension even when released as a gas. The CO2 pressure-temperature phase 

diagram is shown in Figure 7. Tc is the critical temperature and Pc is the critical pressure. 

Supercritical carbon dioxide (SCCO2) has a very low viscosity and high buoyancy, 

which can significantly reduce the energy pumped cost compared to what spent with 

water. In addition, supercritical fluids have a high heat extraction rate and are unlikely 

to melt rock in the reservoir. 

 

Figure 7. CO2 pressure-temperature phase diagram 

 

   CO2 has properties between fluid and gas in the supercritical region. In this region, 

a small increase in pressure will result in a significant increase in density. At present, 

critical CO2 is also used in dry cleaning of fabrics as an alternative to conventional 

chlorinated solvents which is extremely harmful to the ozone layer. It is also used to 

extract aroma from spices and caffeine from coffee. As it rises toward the surface due 

to the buoyancy of CO2, the temperature and pressure of SCCO2 decreases, changes to 
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a liquid state, and dissolves into the pore water of the rock. Some of the CO2 crystallizes 

into calcite, effectively forming a lid on the supercritical portion of the reservoir. 

   In any geothermal circulation scheme, to some extent rocks,cracks, unbonded gaps 

and other general imperfections cause the fluid to escape into the formation when 

pumping fluid. Because the time that the fluid contacts the rock could be maximized, 

connected rock fissures form a dense network will be formed, that is the meaning of   

an ideal reservoir. One of the advantages of using CO2 as a working fluid is that it 

works for those with better loss in the formation as described above. The reason why is 

carbon sequestration is becoming a partial solution to greenhouse gas emissions.  
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1.4.3 Current state of EGS development 

 

   As one of conventional geothermal methods, EGS is limited to moderate 

temperature zones where there is sufficient permeability for water to flow to production 

wells and so is limited to use only about 2% of the available geothermal resource. As 

competing technology in using geothermal power, EGS has tried for decades to create 

artificial permeability. However, EGS is still far from commercialization because of the 

difficulty of creating long symmetrical racks in complex and varied terrains.  

   ECO2G is an environmentally advanced renewable power technology designed to 

access the vast unexploited geothermal resources located around the world. Lack of 

subsurface permeability has been the greatest constraint for conventional hydrothermal 

projects. To circumvent the permeability problem, ECO2G circulates SCCO2 in a 

closed-loop pipe system to gather and transfer high temperature heat.  

   Compared with EGS (open system), ECO2G uses oil and gas drilling technology to 

create closed-loop sealed wells. Further, SCCO2 is better than water for heat transfer in 

this system, and thus eliminates the water constraint. This simplified approach reduces 

the complexity and risk of drilling, thus transforming geothermal development from a 

series of wildcatting ventures into an industrial process.  
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Chapter 2: Methodology 

2.1 Introduction 

 

   TOUGH2 is a numerical simulator for non-isothermal flows of multicomponent, 

multiphase fluids in 1, 2, and 3-dimensional porous and fractured media. The main 

applications for which TOUGH2 is developed are in geothermal reservoir engineering, 

nuclear waste disposal, environmental assessment and remediation, and unsaturated 

and saturated zone hydrology. TOUGH2 was first released to the public in 1991; the 

1991 code was updated in 1994 when a set of preconditioned conjugate gradient solvers 

was added to allow a more efficient solution of large problems.    

   TOUGH2 can solve not only mass and energy balance equations that describe fluid 

and heat flow in general multiphase, but also multicomponent systems (Appendix A). 

Fluid advection is described with a multiphase extension of Darcy’s law; additionally, 

there is diffusive mass transport in all phases. Heat flow occurs by conduction and 

convection, the latter including sensible as well as latent heat effects. The description 

of thermodynamic conditions is based on the assumption of local equilibrium of all 

phases. Fluid and formation parameters can be arbitrary nonlinear functions of the 

primary thermodynamic variables.  

   For (1) better understanding of borehole-flow and (2) transport processes and (3) 

improving the design of injection operations, Lawrence Berkeley National Laboratory 

(LBNL) have developed a borehole-flow simulator for CO2 and variable salinity water 

that models transient non-isothermal processes involved with the flow of CO2 in deep 

boreholes and wells including transitions from supercritical to gaseous phases.          

According to T2Well/ECO2N Manual, the new wellbore flow model is based on the 

drift-flux model (DFM) approach and is an extension of TOUGH2/ECO2N, which can 

describe single- and two-phase flows of CO2-water-NaCl mixtures but cannot describe 

three-phase conditions that would include a situation where both liquid and gaseous 

CO2-rich phases coexist. Unlike the earlier coupling approach, the deliver-ability option 

in TOUGH2 is not used and the flow in the wellbore is not assumed to be at steady state. 

Alternatively, the T2Well/ECO2N is an integrated simulator of a wellbore-reservoir 
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system of CO2-brine in which the wellbore and reservoir are two different sub-domains 

where flow is controlled by different physical laws.           

   As mentioned above, the approach LBNL use for describing wellbore flow is based 

on the drift-flux model (DFM) for 1-dimensional transient 2-phase non-isothermal flow 

of CO2-water mixtures. Conservation equations for mass, momentum and energy under 

different flow regimes in the wellbore are solved numerically while heat transmission 

from the wellbore to the surrounding rock is either handled semi-analytically or 

numerically. LBNL implement the DFM in TOUGH2 with the ECO2N equation of state 

module. As to the conventional approach for calculating the mixture velocity in the 

drift- flux model (DFM), is often based on the steady-state pressure loss equation for 

wellbore flow. Therefore, in order to improve simulation performance in wellbore flow 

processes involving high fluxes, LBNL have extended the DFM to include the transient 

terms of the momentum conservation equations in calculating the velocity from the 

pressure gradient.  

   The accuracy of T2Well must be considered, LNBL has been tested by comparison 

with many different analytical and numerical solutions, with results from laboratory 

experiments, and with field observations. However, it should be emphasized that the 

integration of many different modules into a single program structure is a difficult and 

potentially “tough task”. Many different options can be selected in different program 

modules.  
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2.2 Mathematical Formulation 

 

2.2.1 Mass and Energy Conservation Equations 

 

   According to the manual of T2Well/ECO2N Version 1.0 (Multiphase and Non-

Isothermal Model for Coupled Wellbore-Reservoir Flow of Carbon Dioxide and 

Variable Salinity Water), based on mass and energy conservation principles, the 

generalized conservation equation of mass components and energy in wellbore 

governed by T2Well can be written as follows:  

𝜕𝑀𝜅

𝜕𝑡
= 𝑞𝜅 + 𝐹𝜅                           (1) 

   Where superscript 𝜅 is the index for the components, 𝜅 = 1 means H2O, 2 means 

CO2, and 3 (energy, included internal and kinetic energy), 𝑀𝜅 are the accumulation 

terms of the components 𝜅, 𝑞𝜅 are source/sink terms for mass or energy components; 

and 𝐹𝜅 are the mass or energy transport terms along the borehole due to advective 

processes.  

   The accumulation term 𝑀𝜅  of Eq. (1) for the mass components (H2O, CO2) in 

single- or two- phase system is given by  

 

𝑀𝑘 = 𝜌𝐺𝑆𝐺𝑋𝐺
𝑘 + 𝜌𝐿𝑆𝐿𝑋𝐿

𝑘 (k = 1 and 2) 
(2) 

 

   Where 𝑋𝛽
𝜅 is the mass fraction of component 𝜅 in fluid phase 𝛽 ( 𝛽= G means 

gas; 𝛽= L means liquid), 𝜌𝛽is the density of phase 𝛽; and 𝑆𝛽 is the local saturation 

of phase 𝛽 defined as  

𝑆𝐺 =
𝐴𝐺

𝐴
=

𝐴𝐺

𝐴𝐺 + 𝐴𝐿
 

 (3) 

 

   Where A is the well cross-sectional area; 𝐴𝐺  and 𝐴𝐿 denote the cross-sectional 

areas occupied by gas and liquid over the cross section at a given elevation. And the 

accumulation term for energy is defined as  

 

𝑀3 =  ∑ 𝜌𝛽𝛽 𝑆𝛽 (𝑈𝛽 + 
1

2
𝑢𝛽

2)                   (4) 
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   Where 𝑢𝛽 is the internal energy of phase 𝛽 per unit mass and  
1

2
𝑢𝛽

2 is the kinetic 

energy per unit mass while 𝑢𝛽 is the velocity of phase 𝛽 in the wellbore.  

 

   It is known that working fluid transport along the wellbore is governed by processes 

of advection, diffusion, and dispersion, and is also subject to other processes, for 

example, exchanges with the formation at feed or thief zones. The total advective mass 

transport term for component 𝜅 can be written in one- dimension as  

 

𝐹𝑘  =—
1

𝐴
[
𝜕(𝐴𝜌𝐺𝑋𝐺

𝑘𝑆𝐺𝑢𝐺)

𝜕𝑧
+

𝜕(𝐴𝜌𝐿𝑋𝐿
𝑘𝑆𝐿𝑢𝐿)

𝜕𝑧
] 

(5) 
 

   Where 𝑢𝛽  is the average velocity vector of phase within the wellbore, A is the 

cross-sectional area of wellbore, and z is the coordinate along the wellbore (vertical, 

inclined, or horizontal). The transport terms for energy in the wellbore include follow 

activities: (1) advection, (2) kinetic energy, (3) potential energy, and (4) lateral wellbore 

heat loss/gain. The overall one-dimensional energy transport term can be written as  

𝐹3  = −𝜆
𝜕𝑇

𝜕𝑧
—

1

𝐴
∑

𝜕

𝜕𝑧
𝛽

[𝐴𝜌𝛽𝑆𝛽𝑢𝛽 (ℎ𝛽 + 
𝑢𝛽

2

2
)] − ∑(𝑆𝛽𝜌𝛽𝑢𝛽𝑔 𝑐𝑜𝑠 𝜃) −  𝑞”

𝛽

 

(6) 

 

   Where ℎ𝛽  is specific enthalpy of fluid phase 𝛽 , θ is the incline angle of the 

wellbore, g is the gravitational acceleration, q" is the wellbore heat loss/gain per unit 

length of wellbore, and 𝜌𝑚  is the density of the gas-liquid mixture. T is the 

temperature, and 𝜆 is the average value of thermal conductivity of the wellbore (both 

phases of the fluids and solid).  

   Pay attention to that the mass or energy exchange terms between a perforated 

wellbore section and its surrounding formation are omitted from the above equations 

for simplicity. These terms in above equations are calculated as flow through porous 

media as implemented in normal TOUGH2 except that the nodal distance to the 

interface on the wellbore side is set to zero in the grid.  
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2.2.2 Momentum Conservation (Drift-Flux Model) 

 

   In contrast to flow through porous media in which the flux or the velocity can be 

simply determined from the gradient of pressure and gravity using Darcy’s Law, the 

determination of flow velocity in a wellbore involves solving the appropriate 

momentum conservation equations. In fact, directly solving the momentum equations 

of two phase flow is really difficult and often not practical as it has to be coupled into 

another reservoir simulator. Therefore, LNBL invoke the Drift Flux Model (DFM) to 

describe both single-phase and multiphase flow in wellbores to obtain the advective 

transport terms (𝐹𝛽, 𝑢𝛽).  

   Next, the drift-flux model is limited to one dimensional flow through an open pipe 

or annulus. Therefore, all variables in the development below should be considered as 

area-averaged or assumed to be constant over the cross-section except for those 

explicitly noted otherwise. It is said that the DFM were first developed by Findlay 

(1965) and Wallis (1969). Although various nomenclatures and forms of equations were 

used to describe the DFM in the literature over decades, the basic idea of the DFM is 

to assume that the gas velocity----𝑢𝐺  , can be related to the volumetric flux of the 

mixture----j, and the drift velocity of gas----𝑢𝑑, by the following empirical constitutive 

relationship:  

𝑢𝐺  =  𝐶0𝑗 +  𝑢𝑑                           (7) 

 

   Where 𝐶0 is the profile parameter to account for the effect of local gas saturation 

and velocity profiles over the pipe cross-section. According to definition, the 

volumetric flux 𝑗 is the volumetrically weighted velocity  

𝑗 = 𝑆𝐺𝑢𝐺 + (1 −  𝑆𝐺)𝑢𝐿                     (8) 

 

   For this reason, we can determine the liquid velocity 𝑢𝐿 as  

𝑢𝐿  =  
1 −  𝑆𝐺𝐶0

1 −  𝑆𝐺
𝑗 −  

𝑆𝐺

1 −  𝑆𝐺
𝑢𝑑  

(9) 
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   With the governing equations (7)(8)(9), LNBL simplified the momentum equations 

of two-phase flow in a wellbore into a single equation in terms of the mixture velocity 

𝑢𝑚 and the drift velocity 𝑢𝑑 as follows:  

𝜕

𝜕𝑡
(𝜌𝑚𝑢𝑚) + 

1

𝐴

𝜕

𝜕𝑧
[𝐴(𝜌𝑚𝑢𝑚

2 +  𝛾)] = -
𝜕𝑃

𝜕𝑧
 - 

Γ𝑓𝜌𝑚|𝑢𝑚|𝑢𝑚

2𝐴
 - 𝜌𝑚𝑔 cos 𝜃 

(10) 

   Where the term 𝛾 =
𝑆𝐺

1−𝑆𝐺
 
𝜌𝐺𝜌𝐿𝜌𝑚

𝜌𝑚
∗2  [(𝐶0 − 1)𝑢𝑚 + 𝑢𝑑]2 is caused by slip between 

the two phases. The mixture density, 𝜌𝑚, and the mixture velocity (velocity of mass 

center), 𝑢𝑚, are defined as follows:  

𝜌𝑚 =  𝑆𝐺𝜌𝐺 + (1 − 𝑆𝐺)𝜌𝐿                     (11) 

and                   

𝑢𝑚 =  
𝑆𝐺𝜌𝐺𝑢𝐺  + (1 − 𝑆𝐺)𝜌𝐿𝑢𝐿

𝜌𝑚
 

(12) 

   Then, the profile-adjusted average density is defined as follows: 

𝜌𝑚
∗  = 𝑆𝐺𝐶0𝜌𝐺 + (1 − 𝑆𝐺𝐶0)𝜌𝐿                   (13) 

   Therefore, using the DFM approach to solve the complicated momentum equations 

of two-phase flow becomes an easier task with two steps. First step, LNBL obtain the 

mixture velocity by solving the simplified momentum Equation (10) and the drift 

velocity from some empirical relationships. Second step, LNBL calculate the gas 

velocity and the liquid velocity as a function of um and ud as follows:  

𝑢𝐺 =  𝐶0

𝜌𝑚

𝜌𝑚
∗

𝑢𝑚 +  
𝜌𝐿

𝜌𝑚
∗

𝑢𝑑 

𝑢𝐿 =  
(1−𝑆𝐺𝐶0)𝜌𝑚

(1−𝑆𝐺)𝜌𝑚
∗ 𝑢𝑚 − 

𝑆𝐺𝜌𝐺

(1−𝑆𝐺)𝜌𝑚
∗ 𝑢𝑑                  (14) 
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   In general, it’s difficult to accurately estimate the drift velocity ud and the profile 

parameter C0. Thus, DFM is the effort to try to solve calculate more accurately. As a 

result, such relationships have been proposed to describe by C0 and ud, they could be 

a function of flow regime and many other formulas. The following is a summary of the 

mathematical formulations related to the drift velocity proposed by Shi et al. (2005) 

who is the developer of DFM that are implemented in T2Well.  

   First of the summary, the drift velocity is calculated as a function of gas saturation 

and other fluid properties:  

𝑢𝑑  =  
(1 −  𝐶0𝑆𝐺)𝑢𝑐𝐾(𝑆𝐺 , 𝐾𝑢, 𝐶0)𝑚(𝜃)

𝐶0𝑆𝐺√𝜌𝐺 𝜌𝐿⁄ 
 +  1 −  𝐶0𝑆𝐺

 

(15) 
 

   Where m(𝜃) describes the effect that inclination of the wellbore: 

m(𝜃) = 𝑚0(cos 𝜃)𝑛1(1 + sin 𝜃)𝑛2                  (16) 

   Where m0, n1, n2 are all fitted parameters. 

   Ku is the Kutateladze number, NB is a function of Bond number: 

𝐾𝑢 = [
𝐶𝑘𝑢

√𝑁𝐵
(√1 +

𝑁𝐵

𝐶𝑘𝑢
2 𝐶𝑤

− 1)]
1

2 

(17) 

   Where 𝐶𝑤 (in the T2Well code, 𝐶𝑤 was assumed to be a constant of 0.008) is a 

wall friction factor and the Bond number is defined as:  

𝑁𝐵 = 𝑑2[
𝑔(𝜌𝐿−𝜌𝐺)

𝜎𝐺𝐿
] 

(18) 

   Where 𝑑 is the wellbore diameter and 𝐶𝑘𝑢 was 75 in Richter’s original formula, 

which resulted in overestimation of 𝐾𝑢 in the range of smaller dimensionless diameter 

(Richter, 1981), is used in T2Well.  
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   The “characteristic velocity”, 𝑢𝑐, is a measure of the velocity of bubble rise in a 

liquid column, given by  

𝑢𝑐 = [
𝑔𝜎𝐺𝐿(𝜌𝐿 − 𝜌𝐺)

𝜌𝐿
2 ]

1
4 

 (19) 

   Where 𝜎𝐺𝐿 is the surface tension between gas and liquid phases.  

   The function 𝐾(α) in Equation (16) is used to make a smooth transition of drift 

velocity between the bubble rise stage and the film flooding stage. Different from the 

linear interpolation suggested by Shi et al. (2005), LNBL use the following smooth 

function:  

𝐾 =  {

 1.53

1.53 +
𝐶0𝐾𝑢−1.53

2
[1 − cos (𝜋

𝑆𝐺−𝑎1

𝑎2−𝑎1
)]

𝐶0𝐾𝑢

           

𝑆𝐺 ≤ 𝑎1

𝑎1 ≤ 𝑆𝐺 ≤ 𝑎2

𝑆𝐺 ≥ 𝑎2

     （20） 

   Where 𝑎1 and 𝑎2 are two transition points of gas saturation as suggested by Shi 

et al. (2005). Because 𝐾 is independent of the gas saturation for 𝑆𝐺 ≤ 𝑎1 and 𝑆𝐺 ≥ 

𝑎2, the function 𝐾 is constructed such that dK/d𝑆𝐺= 0 in the neighborhoods of 𝑎1 

and 𝑎2, making this derivative continuous over the entire range of 𝑆𝐺. The fitting 

parameters, 𝑚0, 𝑛1, 𝑛2, 𝑎1, and 𝑎2 are all hardwired in the code and the values are 

obtained from the case of water/gas in Shi et al. (2005) depending on 𝐶𝑚𝑎𝑥 (a user-

specified maximum profile parameter between 1.0 and 1.5) as follows: 

 

 

 

 

 

 



 

 

25 

Table 1. Empirical parameters of DFM used in T2Well.  

Fitting Parameter Value for 𝑪𝒎𝒂𝒙 = 1.0 Value for 𝑪𝒎𝒂𝒙 = 1.2 

𝑎1 0.06 0.06 

𝑎2 0.21 0.12 

𝑚0 1.85 1.27 

𝑛1 0.21 0.24 

𝑛2 0.95 1.08 

Source: Shi et al., 2005.  

 

   Second of summary, the profile parameter C0 is calculated using the same 

formulas suggested by Shi et al. (2005) as listed below (with different symbols) for 

completeness:  

𝐶0 =  
𝐶𝑚𝑎𝑥

1 + (𝐶𝑚𝑎𝑥 − 1)𝜂2
 

  (21) 

   Where 𝜂 is a parameter reflecting the effects of the flow status on the profile 

parameter and is calculated as follows:  

𝜂 =  
𝛽 − 𝐵

1 − 𝐵
 

(0 ≤  𝛽 ≤ 1)        (22) 

   Where 𝐵 is the threshold parameter above which 𝐶0 starts to drop below 𝐶𝑚𝑎𝑥 

and 𝛽 is calculated as follows:  
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𝛽 = 𝑚𝑎𝑥[𝑆𝐺 , 𝐹𝑉

𝑆𝐺|𝑢𝑚|

𝑢𝑠𝑔𝑓
] 

(23) 

   Slightly different from Shi et al. (2005), LNBL tied the threshold parameter B as a 

function of 𝐶 𝑚𝑎𝑥:  

B = 
2

𝐶𝑚𝑎𝑥
− 1.0667                     (24) 

   Equation (25) provides B = 0.6 for 𝐶𝑚𝑎𝑥 = 1.2, which is consistent with the values 

of (𝑎1=0.06) and (𝑎2=0.12) (Shi et al., 2005). B varies from 0.9333 (𝐶𝑚𝑎𝑥 = 1.0) to 

0.2666 (𝐶𝑚𝑎𝑥 = 1.5). Note that if 𝐶𝑚𝑎𝑥 = 1.0 (the optimal value for water/gas system 

as suggested by Shi et al., 2005), 𝐶0 would be independent of gas saturation or velocity 

and the profile effect disappears.  

   Profile flattening can be made more or less sensitive to the gas velocity by adjusting 

the value of 𝐹𝑉(default =1) in Equation (23) whereas the “flooding” gas superficial 

velocity, 𝑢𝑠𝑔𝑓, is calculated as follows:  

𝑢𝑠𝑔𝑓 =  𝐾𝑢 (
𝜌𝐿

𝜌𝐺
)

1
2

𝑢𝑐 

                   (25) 
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2.2.3 Discretized Equations 

 

   As an extension to standard TOUGH2/ECO2N, T2Well has the same framework 

with TOUGH2, when the mass and energy flux terms are calculated at each Newtonian 

iteration from the most recently updated primary variables (usually pressure, mass 

fractions, and temperature). At each iteration in the wellbores, LNBL calculate the 

mixture velocity (Eq. 10) first, then calculate drift velocity (Eq. 15) and finally calculate 

the gas velocity and the liquid velocity (Eq. 14). As for marching in time, the 

momentum conservation equation (Eq. 10) is solved semi-explicitly at interfaces of the 

neighbouring wellbore cells as  

𝑢𝑚
𝑛+1 = 

𝐷𝑅𝑛+1 + 1
𝛥𝑡

𝜌𝑚
𝑛 𝑢𝑚

𝑛 − [
1
𝐴

𝜕
𝜕𝑧

(𝐴 ∑ 𝜌𝛽𝑆𝛽𝑢𝛽
2

𝛽 )]  𝑛

𝜌𝑚
𝑛+1

∆𝑡
+

𝑓
𝑛
Г𝜌𝑚

𝑛+1| 𝑢𝑚
𝑛  |

2𝐴

 

                                                              (26) 

   At Eq. 26, the superscripts n and n+1 denote the previous and current time steps, 

respectively; Δ𝑡 is the time-step size, and DR is the total driving force given by  

DR = −
𝜕𝑃

𝜕𝑧
−  𝜌𝑚𝑔 cos 𝜃 

(27) 

   Commonly, there are many reasons caused pressure loss, such as elevation change 

which contributes from 80% to 95%, and the friction represents 5% to 20%, however 

the acceleration loss is usually negligible and can become significant only if a 

compressible phase happens at relatively low pressures (Brill, 1999) or DR becomes 

very small (e.g., near hydrostatic state).  Therefore, this method is more similar to the 

implicit formula considering the normal pressure loss partition described above. Here, 

because the spatial acceleration term is entered as an explicit term in the equation, the 

original formula of the sum of two additions can be used directly, regardless of the 

mixture velocity and an additional term due to drift velocity. If the change of spatial 

acceleration over Δ𝑡 is negligible compared to the driving force, Eq. 26 should provide 

an accurate solution for Eq. 10. When the system reaches steady state, the solution is 

an exact numerical solution of the Eq. 10 and the accuracy depends only on grid 

resolution. 
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   Mass and energy balance equations for the components of Eq. 1 are discretized in 

space using the traditional integrated finite difference scheme of TOUGH2 for well 

system. Apart from the special treatment of the momentum equation (Eq. 26), the time 

discretization is performed using an inverse first-order fully implicit finite difference 

scheme. Discrete nonlinear equations for H2O, CO2, and energy conservation at node i 

(well block) can be described in general form: 

[𝑀𝑖
𝜅,𝑛+1 − 𝑀𝑖

𝜅,𝑛]
𝑉𝑖

Δ𝑡
=  𝐹𝑖,𝑖+1/2

𝜅,𝑛+1 − 𝐹
𝑖,𝑖−

1
2

𝜅,𝑛+1 + 𝑄𝑖
𝜅,𝑛+1(𝜅 = 1,2, 𝑎𝑛𝑑 3) 

(28) 

   Where the superscript n indicates the previous time level, and n + 1 is the current 

time level to be resolved. The subscript i refers to the index of wellbore grid cell; ∆t 

is the time step size. Vi is the volume of wellbore cell i (wellbore diameter may vary).  

Flows terms in Eq. 28 are general and involves mass fluxes and heat transfer through 

both phases. The mass flow term is  

𝐹𝑖𝑗
𝜅 =  𝐴𝑖𝑗 ∑  𝛽

(𝜌𝛽𝑆𝛽𝑋𝛽
𝜅)𝑖𝑗+1/2𝑢𝛽,𝑖𝑗 

(29) 

   The total heat flux along the connection of nodes i and j may be estimated by 

𝐹𝑖𝑗
3 =  𝐴𝑖𝑗{−𝜆

𝜕𝑇

𝜕𝑧
+ ∑[(𝜌𝛽𝑆𝛽(ℎ𝛽 +

𝑢𝛽
2

2
))𝑖𝑗+1/2𝑢𝛽,𝑖𝑗]}

𝛽

 

(30) 

   Where 𝜆 is the area-averaged thermal conductivity of the wellbore (both phases 

of the fluids and possible solid portion).  

   The heat exchange between the wellbore and the surrounding formation is 

calculated as the "normal" heat flow term in standard TOUGH2 if the surrounding 

formation is explicitly represented by a numerical grid, or Calculated (optionally) semi-

analytically if there is a grid block of surrounding formation. In the latter case, 𝑄𝑖
3, 

which includes both heat loss/gain due to heat transfer in the horizontal well and 
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potential energy gain (friction energy loss converts to heat and does not affect the 

overall energy balance) are described by 

𝑄𝑖
3 =  −𝐴𝑤𝑖(𝐾𝑤𝑖) [

𝑇𝑖 − 𝑇∞(𝑧)

𝑟𝑓(𝑡)
] + ∑(𝜌𝛽𝑢𝛽𝑔 cos 𝜃)𝑖

𝛽

 

(31) 

   Awi is the lateral area between the wellbore and the surrounding formation; Kwi 

is the thermal conductivity (or overall heat transfer coefficient) of the 

wellbore/formation. Ti is the temperature of the ith wellbore node and T∞(z) is the 

ambient temperature; r is the wellbore's radium and f (t) is Ramey's heat loss function 

(Ramey 1962): 

f(t) = 
1

−ln(
𝑟

2√𝛼𝑡
)−0.29

                         

(32) 

   Where α is the thermal dispersion of the surrounding stratum. The term 𝑢𝑖 is the 

nodal velocity obtained by averaging the velocity at the interfaces. Second term of Eq.  

31 reflects the net energy gain or loss per unit time due to gravity and is calculated as a 

sum of the net potential energy gain rate in both phases of grid cell i.  Again, for 

simplicity, the above equations omit the specified energy source/sink terms, or the 

mass/energy exchange terms between the perforated well and the surrounding 

formation. 

   When evaluating the flow term from Eq.29 to Eq. 31, the subscript ij+1/2 is used to 

indicate an appropriate average or weighting of the advection mass transport or heat 

transfer characteristics along the interface or connection between two blocks or nodes 

i and j ( j = i-1 or i+1) . In addition, the Eq.29 and Eq.20 must use completely upstream 

weights for numerical stability. In a leaking/supplying zone of the wellbore, the mass 

or energy inflow/outflow terms are calculated as in standard TOUGH2 (i.e., flow 

through porous media). 
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   The standard TOUGH2 fully implicit residual-based method is used to solve 

discrete nonlinear equations using Newton iteration. In general, it’s needed to solve 

four major variables of ECO2N (pressure, saturation, or mass fraction of H2O, CO2, 

and NaCl in the fluids depending on phase conditions and temperature) at each node. 

The remaining variables, such as viscosities, densities, and thermal conductivities, etc. 

are secondary variables that can be calculated from the selected primary variables. 

Newton's iterative process continues until the residuals fall below a preset convergence 

level. The sparse Jacobi matrices generated by Newton's method are solved by the user-

selected conjugate gradient provided by TOUGH2. The time step sizes tend to be much 

smaller than the TOUGH2 problems for typical all-porous media because of the higher 

flow rates and sensitivity to the time step size associated with wellbore flow. Besides 

the explicit spatial acceleration terms used in solving the momentum equation, all the 

velocities used in calculation of kinetic and potential energy in the energy balance 

equations are also explicit to avoid unnecessarily slow convergence.  
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2.3 Space and Time Discretization 

    

   The continuum Eq.33 are discretized in space using the integral finite difference 

method (IFD; Edwards, 1972; Narasimhan and Witherspoon, 1976). Introducing 

appropriate volume averages, 

∫ 𝑀
 

𝑉𝑛
𝑑𝑉 =  𝑉𝑛𝑀𝑛                    (33) 

   Where M is a volume-normalized extensive quantity, and 𝑀𝑛 is the average value 

of M over 𝑉𝑛. Surface integrals are approximated as a discrete sum of averages over 

surface segments 𝐴𝑚𝑛:  

∫ 𝐅𝜅・
 

Γ𝑛
𝐧 dΓ = ∑ 𝐴𝑛𝑚𝐹𝑛𝑚𝑚               (34) 

 

   Where 𝐹𝑛𝑚  is the average value of the F (inner) normal component on the surface 

segment 𝐴𝑛𝑚  between the volume elements 𝑉𝑛  and 𝑉𝑚 . Figure 8 shows the 

discretization approach and the definition of the geometric parameters used in the 

integral finite difference method. 

 

Figure 7. Space discretization and geometry data in the integral finite difference method.  
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   The discretized flux is expressed in terms of averages over parameters for elements 

𝑉𝑛 and 𝑉𝑚.  For the individual phase fluxes are given by a multiphase version of 

Darcy’s law: 

𝐅𝛽 =  𝜌𝛽𝒖β =  −k
k𝑟𝛽𝜌𝛽

𝜇𝛽
(∇P𝛽 − 𝜌𝛽𝐠)                  (35) 

   For the basic Darcy flux term LNBL uses 

F𝛽,𝑛𝑚 =  −K𝑛𝑚[
k𝑟𝛽 ρ𝛽

𝜇𝛽
]𝑛𝑚[

P𝛽,𝑛 − P𝛽,𝑚

D𝑛𝑚
− 𝛒𝛽,𝑛𝑚g𝑚𝑛] 

                                                   (36) 

   Where the subscripts (nm) denote a suitable averaging at the interface between grid 

blocks n and m (interpolation, harmonic weighting, upstream weighting). D𝑛𝑚  =   

D𝑛  + D𝑚  is the distance between the nodal points n and m, and g𝑛𝑚  is the 

component of gravitational acceleration in the direction from m to n. Substituting Eq.33 

and Eq.34 into the governing Eq.37, a set of first-order ordinary differential equations 

in time is obtained.  

𝑑

𝑑𝑡
∫ M𝜅 

V𝑛
dV𝑛 =  ∫ 𝐅𝜅 

Γ𝑛
・𝐧𝐝Γ𝑛 +  ∫ q𝜅dV𝑛

 

V𝑛
             (37) 

d𝑀𝑛
𝜅

dt
=  

1

V𝑛
∑ Α𝑛𝑚F𝑛𝑚

𝜅
𝑚 + q𝑛

𝜅               (38) 

   Time is discretized as a first-order finite difference, and the flux and sink and source 

terms on the right-hand side of Eq.38 are evaluated at the new time level, 𝑡𝜅+1= 𝑡𝑘 + 

∆t, to obtain the numerical stability needed for an efficient calculation of multiphase 

flow. This treatment of flux terms is known as “fully implicit,” because the fluxes are 

expressed in terms of the unknown thermodynamic parameters at time level tk+1, so 

that these unknowns are only implicitly defined in the resulting equations (e.g., 

Peaceman, 1977). The time discretization results in the following set of coupled non-

linear, algebraic equations  
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𝑅𝑛
𝜅,k+1 =  𝑀𝑛

𝜅,Κ+1 − 𝑀𝑛
𝜅,Κ −

Δt

V𝑛
{∑ A𝑛𝑚F𝑛𝑚

𝜅,Κ+1
𝑚 + V𝑛q𝑛

𝜅,Κ+1} = 0    (39) 

   Where LNBL have introduced residuals R𝑛
𝜅,Κ+1

 . For each volume element (grid 

block) V𝑛, there are NEQ equations (𝜅 = 1, 2, ...., NEQ; usually, NEQ = NK + 1), so 

that for a flow system with NEL grid blocks (39) represents a total of NEL x NEQ 

coupled non-linear equations. The unknowns are the NEL x NEQ independent primary 

variables {x𝑖; i = 1, ..., NEL x NEQ} which completely define the state of the flow 

system at time level 𝑡Κ+1. These equations are solved by Newton/Raphson iteration, 

which is implemented as follows. We introduce an iteration index p and expand the 

residuals R𝑛
𝜅,Κ+1

 in Eq. 39 at iteration step p+1 in a Taylor series in terms of those at 

index p.  

𝑅𝑛
𝜅,k+1(x𝑖, p + 1) =  𝑅𝑛

𝜅,Κ+1(x𝑖,p) + ∑
𝜕𝑅𝑛

𝜅,k+1

𝜕x𝑖
 |p(x𝑖,p+1 − x𝑖,p)𝑖 + ⋯ = 0   (40) 

   Retaining only terms up to first order, LNBL obtain a set of NEL x NEQ linear 

equations for the increments (x𝑖,p+1 − x𝑖,p):  

− ∑
𝜕𝑅𝑛

𝜅,Κ+1

𝜕x𝑖
𝑖  |p(x𝑖,p+1 − x𝑖,p) =  𝑅𝑛

𝜅,Κ+1(x𝑖,p)             (41) 

   All terms ∂𝑅𝑛/∂x𝑖 in the Jacobian matrix are evaluated by numerical differentiation. 

Eq. 41 is solved by sparse direct matrix methods (Duff, 1977) or iteratively by means 

of preconditioned conjugate gradients (Moridis and Pruess, 1995, 1998). Iteration is 

continued until the residuals 𝑅𝑛
𝜅,Κ+1

 are reduced below a preset convergence tolerance.  

|
𝑅n,P+1

κ,k+1

𝑀n,P+1
κ,k+1

|  ≤  𝜀1 

      (42) 



 

 

34 

   The default (relative) convergence criterion is 𝜀1=10−5(TOUGH2 input parameter 

RE1). When the accumulation terms are smaller than 𝜀2 (TOUGH2 input parameter 

RE2, default 𝜀2 = 1), an absolute convergence criterion is imposed,  

|𝑅𝑛
𝜅,Κ+1|  ≤  𝜀1・𝜀2                        (43) 

   Convergence is usually attained in 3 ~ 4 iterations. If convergence cannot be 

achieved within a certain number of iterations (default 8), the time step size ∆t is 

reduced and a new iteration process is started.  

   It is appropriate to add some comments about our space discretization technique. 

The entire geometric information of the space discretization in Eq. 39 is provided in the 

form of a list of grid block volumes V𝑛, interface areas A𝑛𝑚, nodal distances D𝑛𝑚 

and components g𝑛𝑚  of gravitational acceleration along nodal lines. There is no 

reference whatsoever to a global system of coordinates, or to the dimensionality of a 

particular flow problem. The discretized equations are in fact valid for arbitrary 

irregular discretizations in one, two or three dimensions, and for porous as well as for 

fractured media. This flexibility should be used with caution, however, because the 

accuracy of solutions depends upon the accuracy with which the various interface 

parameters in equations such as Eq.37 can be expressed in terms of average conditions 

in grid blocks. A general requirement is that there exists approximate thermodynamic 

equilibrium in almost all grid blocks at almost all times (Pruess and Narasimhan, 1985). 

For systems of regular grid blocks referenced to global coordinates (such as r-z, x-y-z), 

Eq.39 is identical to a conventional finite difference formulation (e.g., Peaceman, 1977;  

Moridis and Pruess, 1992).  
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2.4 Closed-Loop Heat Exchange Method 

 

2.4.1 Various Configurations of Closed Loop System (CLS) 

 

   There are many reasons that producing fluid directly from liquid-dominated 

geothermal systems is problematic, whether this is native fluid or a working fluid that 

is injected and produced for heat recovery, for example:                       (1) 

the produced fluid may contain dissolved chemical components from the rock making 

it corrosive to the well and surface collection pipes;                     (2) 

produced fluid may transport chemical species (e.g., acid gases) from the reservoir to 

the surface where they must be handled as hazardous pollutants;               (3) 

the produced fluid itself may be hazardous and require special handling or incur 

disposal costs;                                                        (4) 

injected working fluid may react with the rock and lead to formation damage, either 

excessively dissolving the reservoir or plugging it up;                     (5) 

there may not be sufficient permeability in the geothermal reservoir to inject or recover 

working fluid at sufficient rates.  

   One way to avoid these problems is to keep reservoir fluids isolated from the 

geothermal energy recovery infrastructure through the use of a closed-loop circulation 

system in which the working fluid never contacts the host rock. For solving it, various 

configurations of systems exist to isolate the host rock and native geothermal fluids 

from working fluids for energy recovery. In the first class of designs, the circulation 

system is installed in a single vertical borehole. For example, ① one such downhole 

heat exchanger design has U-shaped tubing emplaced in boreholes with perforated 

casings (e.g., Lund, 2003); ② Another kind of device in a single borehole is the 

wellbore heat exchanger that includes open-hole sections for limited rock-fluid 

interaction in low-permeability host rock (e.g., Nalla et al., 2005); ③ Another single 

wellbore configuration is the coaxial or tube-in-tube design (e.g., Horne, 1980; Wang 

et al., 2009) with insulated central tubing.  

   Prior study of single-well closed-loop heat exchange systems using water as 

working fluid have concluded that the limitations of thermal conduction through the 
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pipe and into the working fluid, combined with local thermal depletion of the reservoir 

around the pipe, limit the heat extraction capability of these systems (e.g., Nalla et al., 

2005). However, recent developments in reservoir stimulation, drilling technology, and 

the use of novel working fluids, coupled with the imperative to lower environmental 

impacts of geothermal energy, are inspiring renewed interest in closed-loop systems.  
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2.4.2 ECO2G 

 

   GreenFire Energy prepared to execute the first demonstration project for 

ECO2GTM –––– “Geothermal Power Generation Using Supercritical CO2 in a Closed-

loop System” (see Figure 8.). ECO2G is a dramatically different geothermal power 

generation technology that will enable thousands of megawatts of new carbon-free 

power plants in California and other markets. This innovative technology utilizes 

commercially-proven, off-the-shelf components to produce clean, grid-scale baseload 

and flexible power at competitive prices without water consumption process. Compared 

to conventional hydrothermal projects, ECO2G uses SCCO2 instead of water to extract 

thermal energy through the system. A successful demonstration project is the crucial 

next step needed to commercialize ECO2G.  

 

Figure 8. Conceptual Diagram of an ECO2G System 

   GreenFire has designed, built, and operated an ECO2G demonstration plant using 

an underperforming hydrothermal well at the Coso KGRA in Inyo County California. 
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This project would be the first field-scale demonstration of ECO2G technology for 

geothermal power production. The project is expected to prove that ECO2G can both 

make utility scale power in large, co-located or greenfield projects or make power from 

currently unproductive wells. It is anticipated that the project would generate sufficient 

data to guide the development of commercial projects ranging from 20 MW to 1000 

MW.  

   Although the rare field scale experiment shown at Figure.9 introduced here is not 

the pattern what we modeled ---- “a wide U-shaped configuration with two vertical 

sections and a horizontal portion” (see Figure.10), the project involves plugging an 

existing well above the perforated production liner, and co-axially inserting an insulated 

pipe to a depth just above the plug. Process fluids, such as supercritical CO2 will then 

be injected into the smaller center pipe, and flow downward to the bottom of the well, 

then return to the surface through the annulus between the two pipes. As the fluid 

returns to the surface, it will absorb heat and expand, creating the thermosiphon. The 

fluid then passes through a radial inflow expander/generator set to produce power. To 

complete the cycle, the process fluid will be cooled before being returning to the well 

in a closed loop. Along the process pathway, the temperature, pressure, and flow rate of 

the fluid will be measured. 

   At this co-axial project, per the plan submitted to the California Energy Commission, 

would require seven tasks:  

① General management issues, such as creating reports and permissions.    

Preparing the well for the project; 

② Designing and constructing of ground equipment, including methods for fluid 

handling as well as actual or simulated power production; 

③ Preparation for system operations, including system completion and all tests 

components; 

④ System operations, including SCCO2 and water test execution matrices. 

⑤ Shutdown and site recovery; 
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⑥ Public relations and technology transfer activities. 

 

Figure 9.  Closed-loop geothermal power system with Co-axial insulated tube 

provided by GreenLoopTM Technology. 

    

   GreenFire’s core technology was developed with significant involvement by the US 

Department of Energy. which has awarded a $2 million grant to research SCCO2 power 

generation in an open system. Extensive early modeling with Lawrence Berkeley 

National Laboratory (LBNL) indicated that ECO2G can produce commercial scale 

power without premature depletion of the heat resource. The company then retained 

Baker Hughes to help build a drilling cost model to determine the economic viability 

of ECO2G in a wide variety of conditions. More recently, GreenFire and their partners 

at the Lawrence Livermore National Laboratory were awarded funding under the 

Department of Energy’s Small Business Voucher program. LLNL will perform research 



 

 

40 

related to novel methods of well completion and directional drilling in hot and deep 

geothermal formations.  
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2.4.3 ECO2G versus Conventional Geothermal 

 

   There are many existing geothermal fields suffering from reduced production, and 

the risks and costs of finding and characterizing new areas are hindering investment. 

Engineering and financial modeling performed by Lawrence Berkeley National 

Laboratory, Baker Hughes, and GreenFire Energy show that developed technology can 

make a significant contribution to meeting the criteria for renewable portfolios in the 

competitive California renewable energy market. Substantial recent advances in deep 

and directional drilling technologies from the oil and gas industry can be applied to 

extracting geothermal energy from previously inaccessible depths. ECO2G harnesses 

these technologies to access high-temperature (above 350°C) geothermal resources that 

cannot be exploited with existing geothermal technology. Many such areas exist in 

active geothermal regions around the globe.  

   From written above, ECO2G is very different from conventional hydrothermal 

projects. The key differentiators are:  

① ECO2G utilizes SCCO2 rather than water as the working fluid to carry enthalpy 

from the resource back to the surface for power production; 

② The SCCO2 is circulated through a closed loop well system;  

③ The ultimate depth of the well system is typically deeper in the geologic formation 

than the permeable region where water circulates;  

④ ECO2G’s modular architecture and variable-speed turbo expanders allow for both 

flexible and baseload power generation.  

 

   Taken all shown together, the advantages of ECO2G technology overcome the 

critical barriers that currently limit the ability of conventional geothermal technology 

to reduce fossil-based energy sources written as follows:  

① Additional renewable power can be added to the clean energy supply with far less 

risk, time, and expense than finding and developing new geothermal areas; 
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② ECO2G projects can provide flexible or baseload power on short notice as grid 

needs and economic returns requirement;  

③ Existing hydrothermal projects can be useful and made productive for longer 

periods;  

④ Existing but unproductive geothermal wells can be rehabilitated and made 

profitable;  

⑤ ECO2G provides water-free geothermal power generation when using air-to-air 

heat rejection.  

 

Figure 10.  U-shaped configuration geothermal power generation system with two vertical sections 

and a horizontal portion provided by GreenLoopTM Technology. 
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2.4.4 Example problems as demonstration for reliability of T2Well 

 

  T2Well extends the existing numerical reservoir simulator TOUGH2 by introducing 

a special wellbore sub-domain in the numerical grid. Wellbore flow is simulated by 

solving the one-dimensional momentum equation. In the case of two-phase wellbore 

flow, the Drift Flux Model (Shi et al., 2005; Zuber and Findlay, 1965) combines two 

momentum equations of two phases to create a single momentum equation of the 

mixture. As TOUGH2, T2Well also can be used with different EOS to describe different 

fluid mixtures. Therefore, so far T2Well has been used with ECO2N (Pruess, 2005) for 

applications related to CO2 sequestration, with ECO2H (Pan et al., 2011, 2015) for 

enhanced geothermal system simulations. The heat exchanges between wellbore and 

the surrounding formation can be numerically simulated, or optionally calculated with 

Ramey’s analytical method (Ramey, 1962) or Zhang’s convolution method (Zhang et 

al., 2011). Details of T2Well characteristics and numerical formulation can be found in 

Pan and Oldenburg (2013).  

   The EOS module what we choose to apply at our research is EWASG EOS module, 

EWASG (Equation-of-state for WAter, Salt and Gas) is a TOUGH2 EOS module 

developed primarily to model hydrothermal systems containing dissolved solids and 

one non-condensable gas (NCG) such as CO2, CH4, H2S, H2 or N2 (Battistelli et al., 

1997). EWASG can handle phase equilibria and fluid property calculations up to 350 °C 

and 100 MPa for H2O-NaCl-NCG mixtures found in low and high enthalpy geothermal 

reservoirs, with the limitation of low to moderate NCG partial pressures. However, it is 

known that EWASG EOS module mainly serves a function in Open-Loop system, what 

we simulate is Closed-Loop system, where the working fluid never contacts the host 

rock. In the other word, even the reservoir is governed by H2O-NaCl-NCG mixtures 

system, it will be little interaction between H2O-NaCl-NCG mixtures and closed casing. 

But, considering the heat conduction, advection and convection at different EOS 

controlled reservoir have different effect, we still adopted EWASG EOS module in 

geothermal power generation system.  

   Here, in order to inspect and verify the reliability of T2Well, there are 3 example  

problems which simulated by T2Well and some general questions are demonstrated so 
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that the reliability of T2Well is checked to some extent. 

   First, it did the validation of wellbore flow in geothermal wells, using the example 

called “Steady-state two-phase flow upward (comparison against analytical solutions)”. 

To verify the wellbore flow solution approach, LBNL simulated a case (Case 1) of 

steady-state, isothermal, two-phase (CO2 as gas and water as liquid) flow through a 

vertical wellbore of 1000 m length. The details of the problem are described below 

(Table 2):  

Table 2. Parameters of the two-phase wellbore flow problem  

Parameter Value Note 

Length 1000 m Vertical wellbore  

Diameter 0.1 m Circular  

Total (upward)      

mass flux (G) 

50 kg/m
2
/s Gas + Liquid  

Gas mass fraction 0.5 𝑆𝐺𝜌𝐺𝑢𝐺 𝐺⁄  

Temperature 40 °C Isothermal  

Wellhead Pressure 10
5
 Pa  

 

 The specifications of the one-dimensional numerical solution (T2Well/ECO2N) are:  

1. 1000 m wellbore with a diameter of 0.1 m  

2. Grid resolution 10 m  

3. Injection mass rate at bottom:  CO2: 0.19625 kg/s; water: 0.19625 kg/s (Each = 

25 kg/m
2
/s with a cross sectional area of 7.8500E-03 m

2
)  

4. Isothermal simulation with a uniform temperature of 40°C throughout the well 

5. Top boundary (outlet) pressure is 10
5
 Pa  

6. Wall roughness 2.4e-5 m  
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   The steady state problem is actually solved as a transient problem with adaptive 

time steps. The ending simulation time is 0.456869E+09 seconds (4100 steps), at which 

the average pressure loss due to temporal acceleration is about 3.80E-16 (Pa/m). 

Therefore, the steady state is considered can be reached.  

   As shown in Figure 11, the numerical solutions are almost identical to the analytical 

solutions (Pan et al., 2010), thereby verifying the numerical wellbore code 

(T2Well/EOS3) for this particular problem. Note that the mixing between the CO2 and 

the water phases is allowed in the numerical simulation but no mixing is assumed for 

the analytical solution. However, the almost perfect match between analytical solutions 

and the numerical solutions implies that the effects of the mixing between the two 

phases (<2%) on the two phase flow are negligible. 

 

Figure 11.  Case 1: Distribution of pressure, gas saturation, gas-phase velocity, and drift velocity 

under steady-state, isothermal, two-phase (CO2/water) flow conditions in a vertical 

 wellbore showing excellent agreement between the two approaches.  
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   In this system, although the mass fraction (CO2 : H2O) is constant (X =0.5) 

throughout the wellbore, the gas (CO2-rich phase) saturation decreases with depth due 

to pressure increase because of the low density of gas phase at the given pressure range 

(Figure 11). Meanwhile, the drift velocity (of the gas phase relative to the mean 

volumetric velocity) increases with depth from about 0.28 m/s to 0.72 m/s. However, 

the gas-phase velocity decreases with depth by about 11 times over 1000 meters. The 

results of Case 1 show us T2Well can work well and accurately in vertical wellbore part. 

  

   Next, the Case 2 titled “Non-isothermal CO2 flow through a wellbore initially full 

of water” was be simulated. This problem is a case of two-phase flow up an open well 

bore. The scenario envisioned is the tip of a migrating CO2 plume at 10% gas saturation 

encountering an open well initially filled with water. what focus here is on flow in the 

wellbore. The reservoir is assumed to be able to maintain the constant pressure, 

temperature, and gas saturation during the process. Starting from hydrostatic conditions 

and a geothermal temperature gradient in the well, an overpressure of 0.1 MPa (1 bar) 

is applied to the reservoir to mimic an injection-induced overpressure. Wellbore heat 

transmission to the formation is calculated with the analytical solution. Figure 12 shows 

part of the input file for Case 2 (with brine in reservoir).  
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Figure 12.  Input file (portion) of Case 2.  Note X2 (mass fraction of NaCl in liquid phase) = 0.12 

for the reservoir cell “bba 1”, indicating the brine aquifer. For no salt case, this X2 = 0.0. 

 

   In Figure 13., it shows gas saturation, gas density, pressure, and temperature 

throughout the well as a function of time. As shown, the well is initially filled with 

water and gas enters progressively from the bottom up. After 10 minutes (600 s), gas is 

fairly evenly distributed throughout the well from 10% at the bottom to nearly all gas 

at the top. The reason for this increase in gas saturation is the exsolution of gas from 

the liquid as pressure drops and the large expansion that CO2 undergoes as it transitions 

from supercritical to gaseous conditions. This transition occurs around the critical 

pressure (7.4 MPa) at a depth of approximately 755 m. The gas density plot shows the 

sharp decrease in gas density in that region. Temperature also affects CO2 solubility, 

but temperature becomes relatively constant as the steady flow develops resulting in 
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decreasing CO2 mass fractions being controlled mostly by pressure. The temperature 

contour shows the evolution from a conductive profile controlled by the geothermal 

gradient to an advective profile controlled by upward fluid flow. In between the initial 

and steady states, there are some local maxima arising from the expansion of CO2 as 

gas phase rises upwards and transitions to gaseous conditions.  

 

 

 Figure 13.  Case 2: Profiles of gas saturation, gas density, pressure,  

and temperature in the wellbore as a function of time.  

 

   Figure 14 shows the CO2 leakage rates at wellhead from a no-salt aquifer and a 

brine aquifer under the same conditions. The final flow rate is reduced from 2.33 kg/s 

of no-salt case to 1.63 kg/s of brine case with slightly delay in the breakthrough of CO2 

too. This is simply because, in this two phase flow situation, heavier brine means more 
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hydrostatic pressure loss so that there is less energy could be used to move CO2 upward 

in the brine case than in the no-salt case, for the same injection-induced overpressure.  

 

Figure 14.  Case 2: The effect of brine on CO2 leakage rate through wellhead.  

Mass fraction of salt in the brine is 0.12. All other conditions are the same.  

 

 

   Last, the Case 3 titled as “Injection of CO2 into a depleted gas field”. The problem 

is a case of injection of CO2 into a depleted gas field through a wellbore at a depth of 

3000m below surface. The focus here is to investigate if the lower pressure in the 

reservoir could cause a “choke” in wellbore flow due to the down-hole transition to 

subcritical (gaseous) conditions. The reservoir is assumed to have a thickness of 100m 

and an area of 1 km by 1 km. It is fully perforated by a wellbore of 0.18m in diameter. 

The initial pore pressure in the reservoir is <= 3.4 MPa. The initial temperature in the 

reservoir is 90°C whereas the temperature in the wellbore gradually reduces to 35°C as 

it approaches the surface. An impermeable layer with a constant temperature of 90°C 

is under the reservoir. The formation permeability of the reservoir is 10
-13 

m
2
.     
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   The injection rate is 100 kg/s at a temperature of 60°C. A 2D radially symmetry grid 

with 416 cells (31 well cells) is used.  

 

Figure 15. Sketch of injection into a depleted gas field.  

 

   As shown in Figure 16, the lower pressure in the wellbore quickly disappears with 

the injection of CO2. Within one day of injection, most of the wellbore reaches the 

supercritical condition (Figure 16c) and the entire wellbore is in the supercritical 

condition after about 240 days of injection (Figure 16a). Meanwhile, the temperature 

profile also quickly transforms from a geothermal gradient dominated one into a 

convection dominated one within 1 day (Figure 16d) and then becomes relatively 

uniform (Figure 16b).  
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Figure 16. Case 3: Profiles of pressure and temperature in the injection wellbore as a function of time.  

(c) and (d) are short time (the 1st day) plots of (a) and (b). 

 

   The wellhead pressure quickly (within 1 day) reach above 9 MPa and stay there 

until the front hits the lateral boundary of the reservoir so that the pressure in the entire 

reservoir rises to above the critical pressure (Figure 17).  Although the low-pressure 

at reservoir does keep the lower portion of the wellbore under subcritical condition for 

a significant period, it does not cause a persistent “choke” in the vertical wellbore. In 

other words, an extremely high wellhead pressure is not needed to maintain the given 

injection rate.  
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Figure 17.  Case 3: Pressure responses to the injection at wellhead, well bottom,  

and two locations in the reservoir.  

 

 

   By the introduction of these three typical example cases, it indicates the T2Well can 

be used in many kinds of systems with a relatively high reliability and precision.   

Currently, because there is extremely few field-scale experiment of EGS geothermal 

power generation system and ECO2G system, the simulation method become a main 

research means to do the new concept geothermal projects. 

   Therefore, here we decided to use T2Well developed by LBNL as research tool to 

simulate a Closed-Loop geothermal power generation system using SCCO2 as working 

fluid referring the ECO2G
TM 

Technology promoted by GreenFire Energy.
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Chapter 3 : Model Information 

3.1 Introduction for Construction of model  

 

   Consider observing how a typical Closed-Loop geothermal power generation 

system works, here we adopted a relatively ideal geological information model from 

Imperial Valley with a regular thermal gradient and without fault that was applied in 

Curtis M. Oldenburg, Lehua Pan and Mark P. Muir (2016).  The reservoir is assumed 

to be a liquid-dominated geothermal reservoir in permeable sediments at a depth of 

approximately 2500m with hydrostatic pressure of 25MPa and initial temperature of 

250℃.  The discretized domain and the vertical sections of the well (red lines) are 

shown in Figure 18a.   

 

Figure 18:  Discretization of the reservoir part of the closed-loop model 3D domain  

(blue = overburden, red = underburden, green = reservoir region)  

including the vertical legs (red lines) of the closed-loop well. 

    

   GreenFire Energy’s GreenLoop changes all of this by using a variety of refrigerants 

(H2O, CO2) that have been optimized to circulate in a sealed, closed-loop system that 

penetrates geothermal regions. Creating a closed-loop system requires many of the 

same advanced drilling and completion technologies that revolutionized the oil and gas 
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industry. A closed-loop system has the twin benefits of preventing the loss of refrigerant, 

and of keeping the refrigerant stream from interacting with water and minerals that 

would otherwise result in scaling and corrosion. 

   As shown above, we model one-half of the system due to mirror plane symmetry 

characteristic along the axial direction of the horizontal section of the well and assume 

no heat or fluid flow occurs out of the lateral boundary, such as might be appropriate if 

there were a series of these U-shaped wells installed parallel to each other 100 m apart 

in the reservoir.  

   In Figure 19a, it shows a vertical cross section through the horizontal section of the 

well showing the graded discretization with refinement around the well. Note the    

40 m x 40 m region around the well that will be modeled as a stimulated region. The 

details of the refinement around the well are shown in Figure 19b.  

 

(a)                                            (b) 

Figure 19. Discretization of the reservoir part of the closed-loop model showing 

(a) cross section of the horizontal well region;  (b) closeup of the well region. 
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   We have carried out mixed convective-conductive fluid-flow modeling using a 

wellbore flow model for TOUGH2 called T2Well to investigate the critical factors that 

control closed-loop geothermal energy recovery. T2Well solves a mixed explicit-

implicit set of momentum equations for flow in the pipe with full coupling to the 

implicit three-dimensional integral finite difference equations for Darcy flow in the 

porous medium. T2Well has the option of modeling conductive heat flow from the 

porous medium to the pipe by means of a semi-analytical solution, which makes the 

computation very efficient because the porous medium does not have to be discretized. 

Here, the fully three-dimensional option is chosen, thus the porous medium is 

discretized and heat flow to the pipe is by conduction and convection, depending on 

reservoir permeability and other factors. Simulations of the closed-loop system for a 

variety of parameter values have been carried out to explain the heat recovery process. 

To the extent that convection may occur to aid in heat delivery to the pipe, the 

permeability of the geothermal reservoir, no matter what natural or stimulated, is an 

important property in heat extraction.  

   Besides reservoir, wellbore is also a very important factor in all system. In this 

closed-loop system, unlike conventional EGS consisted by vertical wellbores only, 

there is horizontal wellbore existed in the system. In fact, in our closed-loop system, 

there is a U-shaped well consists of a long (1 km) horizontal wellbore within the 

reservoir connected to two 2.5 km-long vertical injection and production sections. 

Base-case properties of the well and CO2-injection and production conditions are 

shown in Table 3. The total length of the wellbore is 6.1 km. The working fluid (CO2) 

is introduced at the inlet side (left-hand side in Figure 18) and produced out of the outlet 

on the right-hand side. Thermal conductivity of steel is 50.2 W/ (m K), much higher 

than that of the reservoir rock and can therefore be ignored in the model.  
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Table 3. Properties of the wellbore.  

 Horizontal 

Wellbore 

Vertical 

Wellbores 

Parameter value 

Length 1100m 2500m (lateral) 

Diameter 0.168m 0.168m 

Material  steel steel 

Tube 0.154m 0.154m 

Roughness 4.57e-5 4.57e-5 
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3.2 Preparation of Input Data 

 

3.2.1 Initial Condition 

 

   The properties of various specific regions in the closed-loop model is relatively 

different, and even a little change in one region will affect the overall energy gain very 

much.  As shown in Table 4., 4 main governing regions have been set by thickness, 

porosity and so on. Especially, We pointed out the set of simulations presented here 

assume a reservoir under liquid-saturated conditions whose thermal conductivity is 4 

W/(m ℃), consistent with measurements of sandstone (e.g., Zimmerman, 1989).  

 

Table 4. Properties of various regions in the closed-loop reservoir model.  

Zone Overburden Reservoir Underlying 
High-k zone 
around well 

Thickness 

(m) 
155 158 55 40 

Porosity 

(vol%) 
5 25.4 5 25.4 

Rock grain 

Density 

(kg m
-3

) 

2700 2700 2700 2700 

Rock grain  

specific heat 

(J/(kg℃)) 

1000 1000 1000 1000 

Thermal 

conduction 

(W/(m℃)) 

4.0 4.0 4.0 4.0 

Pore 

Compression 

(Pa
-1

) 
7.25 × 10

-12
 7.25 × 10

-12
 7.25 × 10

-12
 7.25 × 10

-12
 

K (m
2
) 10

-15
 10

-12
 10

-15
 10

-10
 

  

   In T2Well of the closed-loop geothermal system, there are 4 mian governing 

regions — “Overburden, Underlying, Reservoir, Stimulated zone”. The spatial 

relationship is seen at Figure 18., and how many elements in each region respectively 

will be written at Table 5.  
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Table 5. The numbers and volume range of reservoir system. 

 Elements  Volume range (m
3
) 

Overburden 520 3380～500000 

Reservoir 4836 312～15000 

Stimulated Zone 4916 0.118～625 

Underlying 520 3380～500000 

 

   There are 10792 reservoir elements as surrounding formation and 67 wellbore 

elements for working fluid circulating to extract heat from ground. Therefore, the 

closed-loop geothermal system model consists of totally 10859 elements. The specific 

volume for elements of different regions are shown at Table 6 as follows:  

 

Table 6_1. The numbers and volume of reservoir domain. 

Volume(m
3
) 312 313 469 625 938 1020 1210 1250 1410 

Elements 13 26 26 767 211 260 26 78 26 

Volume(m
3
) 1880 2420 2460 2500 2880 3750 4060 4130 4840 

Elements 26 221 52 1235 26 221 260 26 26 

Volume(m
3
) 5630 5750 8250 8630 9690 9840 10000 12400 15000 

Elements 26 208 208 26 221 52 364 26 169 

 

Table 6_2. The numbers and volume of overburden or underlying domain. 

Volume(m
3
) 3380 4620 6750 7000 9250 10100 

Elements 13 13 104 13 104 13 

Volume(m
3
) 13900 14000 21000 100000 150000 500000 

Elements 13 104 13 104 13 13 
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Table6_3. The numbers and volume of stimulated zone domain. 

Vol.(m
3
) Elem. Vol.(m

3
) Elem. Vol.(m

3
) Elem. Vol.(m

3
) Elem. 

0.118 39 11.600 13 37.585 13 100.000 2119 

0.235 91 11.700 13 42.300 13 175.000 65 

0.268 26 12.000 13 42.548 13 180.000 208 

0.536 91 12.103 13 42.700 39 192.000 208 

0.629 26 12.660 13 42.937 13 301.000 26 

0.940 2 13.200 13 50.000 182 306.000 26 

1.260 91 13.300 13 66.296 13 313.000 65 

1.450 26 13.759 13 87.500 26 603.000 65 

2.830 26 30.764 13 92.300 13 604.000 104 

2.900 91 31.686 13 92.700 13 614.000 52 

5.650 91 34.605 13 94.960 13 625.000 767 

8.540 91 36.913 13 96.342 13   

 

 

   After setting for reservoir formation model, regardless of whether extra 

compression is needed or not, as CO2 flows down the well into hot regions of the 

subsurface, its energy changes as it loses gravitational potential, heats up by 

compression and by absorbing heat through the hot pipe wall, and as its velocity 

changes. These four forms of energy, pressure-volume, thermal, kinetic, and 

gravitational potential are all accounted for in T2Well in the output energy gain (MW) 

that we will calculate and report below. We observe that because mass is conserved in 

the pipe, and the inlet is at the same elevation as the outlet, the gravitational potential 

energy difference across the system is always zero.  

   We set 3 cases to observe how injection mass flow rate will affect overall energy 

gain (MW), and each case set three sub-case to observe how injection temperature will 

affect overall energy gain (MW). Meanwhile, whether thermosiphon will give a 

positive effect to energy gain and cost saving for pump or not. Case input information 

written at Table 7 as follows:   
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Table 7. Input information for 3 cases.  

 Mass flow rate (kg/s) Tinj (℃) Pinj (MPa) Pout (MPa) 

Case 1_1 40  30  7  6.9 

Case 1_2 40 40  7  6.9 

Case 1_3 40 50  7  6.9 

Case 2_1 60  30  7  6.9 

Case 2_2 60  40  7  6.9 

Case 2_3 60 50  7  6.9 

Case 3_1 80 30  7  6.9 

Case 3_2 80 40  7  6.9 

Case 3_3 80 50  7  6.9 
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3.2.2 Boundary Condition 

 

   we model one-half of the system (mirror plane symmetry) along the axial direction 

of the horizontal section of the well and assume no heat or fluid flow occurs out of the 

lateral boundary. Besides, the model system has a constant-temperature boundary 

condition at the bottom and top that serves to replenish heat.  

   The diagram of closed-loop geothermal system model with boundary is shown in 

Figure 20 as follows: 

 

Figure 20.   Diagram of the closed-loop geothermal system model with boundary.  
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Chapter 4 : Results and Analysis 

4.1 Temperature 

 

   We mainly simulated 10-day operation of closed-loop geothermal power generation 

system for all 9 subcases. First, results of temperature profile through the pipe-reservoir 

system for Cases 1, 2, and 3 for the full-reservoir (3D) system are shown in Figure 21. 

(a)  

(b)  
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(c)  

          

Figure 21. Temperature profile within 10 days with different injection conditions. 

 

   As to Case 1 and Case 2, the low mass flow rate (40kg/s) and middle mass flow rate 

(60kg/s) produce about 1.27~2.11 MW and 2.01~3.11 MW respectively at nearly 

steady state. Under setting condition, no matter how mass flow rate changes, the low 

injection temperature always reach the high temperature at outlet, and the highest 

injection temperature (50℃) subcase always reach the lowest output temperature,  

   We note also in Figure 21(a)(b)(c) that CaseX_1 starts from 30℃, as the lowest 

injection temperature, CaseX_1 always can reach the highest output temperature among 

the same flow rate Case. Along injection wellbore, the Cases of the same flow rate and 

different injection temperature almost keep the similar increasing rate. However, the 

decreasing rates along production wellbore become different, compared to CaseX_2 

and CaseX_3, CaseX_1 has a lower temperature decreasing rate. The reason why only 

CaseX_1 can decrease slower than other cases is related to density profile and the state 

of CO2 at inlet. 
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4.2 Density and Phase Transition 

    

  We found there exists a few relationship between temperature and density profile 

diagrams. When the fierce density change occurs at someone depth along injection 

wellbore, there must be a corresponding wave motion occurs in temperature profile (see 

Figure 22).  

(a)  

 

(b)  
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Figure 22. Simulation results of the effect of different CO2 injection temperature  

on density change in closed loop under different mass flow rate.  

Mass flow rate: (1) 40kg/s; (2)60kg/s; (3)80kg/s. 

    

   All 9 subcases have the quick density change along injection wellbore, it indicates 

working fluid CO2 has a phase change from subcritical to supercritical state and some 

marked change occur on the term of density. Even it’s said that liquid CO2 and 

supercritical CO2 have the similar density property, but there still exists an obvious 

difference on density between these two phase. And the property of subcritical CO2 is 

close to gas, thus there is sufficient evidence to speculate that the fierce density change 

caused by phase transition from subcritical to supercritical completely. Take Case3_1 

as an example, the temperature (heat) circulation cycle as shown in Figure 23.  
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Figure 23. Thermal cycle from inlet to outlet in the CO2 phase diagram  

under 80kg/s mass flow rate (Case3_1).  

 

   From Figure 23, we can observe the temperature profile along injection wellbore 

almost be around the boundary of two areas (supercritical and subcritical), and it’s 

unclear that how to judge the boundary between subcritical phase and supercritical 

phase. Plus, the density of supercritical CO2 is close to liquid and the density of 

subcritical CO2 is close to gas. Therefore, there must be a huge density change occurs 

at the point that subcritical phase become to supercritical phase completely (like the red 

cycles marked in Figure 22. which indicate phase transition).  

   Also, it is clear that density profile of CaseX_1 are always higher than CaseX_2 

and CaseX_3 from 0 m nearly until 5800 m (Finally, the CaseX_1 reach the lowest 

density at outlet among other cases), which means the density difference (∆𝐷1) of 

CaseX_1 is much high than ∆𝐷2 of CaseX_2 and ∆𝐷3 of CaseX_3 (see Figure22. (c) 

as an example). In the other words, CaseX_1 has the biggest density difference in the 

production wellbore, which means CaseX_1 has the biggest natural driving force. 

Therefore, the mass flow rate of CaseX_1 along production wellbore is the highest 

among all cases. It is considered that the CO2 ascending of CaseX_1 along production 

wellbore will spend shorter time than other cases. That’s mean heat loss time of 
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CaseX_1 in production wellbore is less than other cases. That’s the reason why 

temperature decreasing rate of CaseX_1 is less than CaseX_2 and CaseX_3. 

   As to pressure profile, although the pressure at inlet and outlet are set to constant, 

pressure values from 0 m to 6100 m of CaseX_1 are always higher than other two cases. 

In CaseX_2 and CaseX_3, CO2 is injected in subcritical phase, and the property of 

them is close to gas. However, in CaseX_1 CO2 at inlet is still in liquid phase, compared 

to gas phase of CaseX_2 and CaseX_3, CaseX_1 can keep higher pressure profile 

throughout 6100 m wellbore until decreasing to the same pressure value at outlet with 

other cases. Combine density profile (Figure 22) and pressure profile (Figure 24), they 

show high density is related to high pressure because density of CaseX_1 keep bigger 

than CaseX_2 and CaseX_3. Therefore, pressure profile of CaseX_1 shows the similar 

trend that higher than other cases throughout 6100 m length and converge to almost 

equal value at outlet.  

（a）  
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(b)  

   (c)  

Figure 24.  Simulation results of the effect of different CO2 injection temperature 

on pressure change in closed loop under different mass flow rate.  

Mass flow rate: (1) 40kg/s; (2)60kg/s; (3)80kg/s.  Injection temperature: (1) 30℃; (2) 40℃; (3) 50℃. 

 

   In order to show there actually CO2 in production wellbore has different velocity 

when it flows up, we show the velocity of 9 subcases along production wellbore in 

Figure 25.  In Figure 25(a) and Figure 25(c), it is obvious that velocity of Case1_1 and 

Case3_1 are higher than other subcases, and although velocity of Case2_2 is higher 

than Case2_1 temporarily at the beginning in Figure25(b), Case2_1 exceed Case2_2 at 

4400 m and widen the gap persistently.  Therefore, short ascending time in wellbore 

due to high velocity can be explained as one of the important reasons, because it brings 
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the amount of heat loss down when CO2 flow up to outlet.  

(a)  

(b)  

(c)  

Figure 25. Simulation results of the effect of different CO2 injection temperature 

on pressure change in closed loop under different mass flow rate.  
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4.3 Energy Gain 

    

   We have used a detailed coupled pipe-reservoir model T2Well to investigate the 

effects of mass flow rate and injection temperature on the energy gain of CO2 flowing 

in a U-shaped well through a geothermal reservoir. Whether the condition of CO2 at 

inlet is critical (super- or sub-) phase or not is a primary control on energy gain by the 

working fluid, with natural convection strongly favoring heat transfer to fluid in the 

pipe. Because of compressibility, the energy gain by flowing CO2 in the wellbore is a 

complicated function of initial temperature, pressure and mass flow rate in our 

simulation.  

   From Figure 26, We can find the flow rate of 80 kg/s (Case 3) is the most that can 

achieve energy at outlet, and injection temperature of 30℃ is the most effective among 

Case3. Here, we can conclude that high mass flow rate will produce more energy and 

low injection temperature will gain more heat from reservoir within a certain range. 

However, variables considered included pipe diameter, well depth, horizontal well 

length, temperature gradients, flow rates, pressures and so on. We should fix several 

parameters and test the characteristic of rest important parameters, thus we can optimize 

a range of parameters to gain the most energy under fixed condition.   

 

(a)  
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(b)  

(c)  

(d)  

Figure 26.  Simulation results of energy gain for various CO2 flow rates and  

injection temperature under the same injection pressure.   

 



 

 

72 

4.4 Sustainability 

   

  we have known that closed loop geothermal system can provide nearly steady energy 

output during 10 days. However, considering the indicators that affect sustainability 

of power generation and plant operation, which usually will be based upon 

environmental and societal impacts, greenhouse gas emissions, resource 

depletion, availability of the energy sources, and the value that they add to the 

economy. Here, we focus on resource depletion and the value can be contributed 

to economy because this is a closed loop system rather than open system which 

has the concerns about environmental problems (issues like seismic, toxic 

pollutants and GHG emissions).  

   First, for resource depletion we choose “energy output” as key indicator, see 

profile of temperature, pressure, density as significant indicators to investigate 

whether energy output can keep or not which is no less than average value of 

energy gain during initial 10 days. 

   As seen in Figure 27a, compared to temperature profile of 10th days, all the 

temperature value until the point around the bottom of production wellbore in 

later operation has low value than 10th days’. But finally the temperature at outlet 

(6100 m) of longer time simulation all become bigger than 10th day’s result. 

Then as shown in Figure 27b, pressure values of long-time simulation are nearly 

almost bigger than 10th days’ from 0 m to 6100 m until become same at outlet 

since pressure at outlet has been set to the fixed. Next, as to density term, density 

values of long-time simulation are always bigger than 10th days’ values before 

about 5000 m and forms larger density difference between inlet and outlet than 

10th days’ results. By the way, there is something interesting occurs that when 

the phase transition takes places at deeper and deeper evaluation along injection 

wellbore, the density values are higher according to Figure 27c. At last, in 

Case2_2 we find the value (about 2.58WM) of energy gain in geothermal 

operation after 1 year is higher than the value (2.25MW) of energy gain after 10 

days, which indicates there is no resource depletion occurred in the closed loop 

system within a year. 
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（a）  

 

   (b)  
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(c)  

 

 (d)  

Figure 27.  Four significant parameters simulated for 1 year to demonstrate the sustainability of 

steady geothermal energy output. (All results come from the Case2_2) 

(a) Temperature change profile within 1 year;  (b) Pressure change profile within 1 year; 

(c) Density change profile within 1 year;  (d) Energy change profile within 1 year. 
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4.5 Cost and Profit 

    

   In this study, we know low injection temperature (especially in liquid phase) 

will extract more energy within certain range and high mass flow rate can lead 

to more energy gain under practicable range. However, even though we master 

this kind of applicable law, it can’t be commercialized as soon as possible if the 

balance between cost and profit is not calculated (estimated). Therefore, here we 

need to do a cost estimation and give a specific range of profit that the closed 

loop geothermal system gives. 

   In general, the CO2-based system is found to be very sensitive to both 

assumptions in the pricing model (particularly well costs), and to process 

operational parameters. We use an Economic/Costing Methodology provided by 

The Queensland Geothermal Energy Centre of Excellence. Economic analysis of the 

project is conducted based on standard process engineering cost methodologies. Where 

appropriate, upper and lower bounds for cost estimates are used to provide insight into 

costing results. Upper bounds represent a range where all uncertainties in cost 

estimation are taken as the unfavorable. Lower bounds represent the favorable end of 

cost uncertainties. Here, the Total Capital cost includes three main factors ---- “Heat 

Exchanger Costs, Turbine Costs and Well Costs”.
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4.5.1 Heat Exchanger Costs 

 

   The base costs of the heat exchangers are estimated from standard costing methods 

(Turton, Bailie et al. c2003). The approach is reproduced here for clarity. Costing is 

based on air-cooled heat exchangers and in some cases water cooling will be available. 

In this cases, the cost of cooling systems will be significantly reduced. The cost of heat 

exchangers is estimated from:  

CBM,HX = (B1 + B2FMFP)CP
0                 (45) 

   Where CBM,HX is the bare module cost, B1 , and B2  are constants for an 

equipment type, FM is the material factor, FP is the pressure factor, and CP
0 is 

the cost for the same equipment made from carbon steel operating at ambient 

pressure. The constants used in this cost analysis (Stainless steel equipment) are 

given in Table 9.  

Table 9: Constants for heat exchanger costs  

Exchanger Type B1 B2 FM 

Air-Cooled 0.96 1.21 2.9 

 

   In this study, we adopt shell and tube heat exchanger to exchange heat between hot 

CO2 and clean process fluid which is shown as follows (Figure 28): 

 

 

Figure 28. Shell and tube heat exchanger  
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   And the parameters of heat exchanger are written in Table 10: 

Table 10. Typical values of the variables for the shell and tube heat exchangers in 

ORC application.  

 

 

The base cost for carbon steel equipment is given by:  

𝐶𝑝
0 = 10(𝐾1+𝐾2𝑙𝑜𝑔𝐴+𝐾3log [𝐴]2)               (46) 

   where K1, K2 and K3 are constants for the heat exchanger type, and A is the 

area of the heat exchanger. The constants are given in Table 11.  

 

Table 11: Constants for heat exchanger base costs  

Exchanger Type K1 K2 K3 

Air-Cooled 4.0336 0.2341 0.0497 

 

   Area for these estimations is limited to 10,000 m2 for the air-cooled heat 

exchanger. Above these sizes of equipment, costs will be linearly extrapolated 

from an equipment size of 10,000 m2. Pressure factors are given by the equation:  

𝐹𝑃 = 10(𝐶1+𝐶2𝑙𝑜𝑔𝑃+𝐾3log [𝑃]2)                (47) 

   Where C1, C2 and C3 are constants for the heat exchanger type, and P is the 

design pressure (bar) of the equipment. The values of these constants are given 

in Table 12.  
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Table 12: Constants for heat exchanger pressure factors  

Exchanger Type C1 C2 C3 

Air-Cooled -0.1250 0.15361 -0.02861 

 

   The range of pressure factor estimation is specified as limited to below 1000 

MPa for air-cooled heat exchangers. As some design pressures for the CO2 

thermosiphon may be slightly above this range, a small extrapolation of these 

pressure factors is used. The extrapolation is derived from the fit of a power law 

to the higher-pressure region (i.e. 500~1000 MPa) of the pressure-factor 

calculation, which is then extrapolated. The resulting equation for the 

extrapolation is:  

𝐹𝑃 = 0.9396𝑃0.04759                 （48） 

   Therefore, we calculate the heat exchanger costs according to the formula 

prompted above. First, because injection pressure by pump is 0.7 bar:  

         𝐹𝑃 = 0.9396𝑃0.04759=0.9396× 0.70.04759= 0.9396×0.9832 = 0.9238 

Second,      

𝐶𝑝
0 =10(𝐾1+𝐾2𝑙𝑜𝑔𝐴+𝐾3log [𝐴]2)=10(4.0336+0.2341𝒍𝒐𝒈10000+0.0497𝒍𝒐𝒈 [10000]2)  

= 10(4.0336+0.9364+0.3976) =233130.986 

Then,  

𝐶𝐵𝑀,𝐻𝑋 = (𝐵1 + 𝐵2𝐹𝑀𝐹𝑃)𝐶𝑃
0 = (0.96 + 1.21×2.9× 0.9238) ×233130.986 

       = 4.2016 × 233130.986 = 979523.151 USD 
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4.5.2 Turbine Costs 

   A method of estimating the costs of CO2 turbines was formulated in an earlier work 

(Atrens, Gurgenci et al. 2009). That method accounted for the higher density of CO2 

under the thermodynamic conditions within the turbine, leading to lower equipment 

size. To apply the results of that method directly in an easy-to-calculate manner, the 

following equation for the turbine cost was formulated:  

𝐶𝐵𝑀,𝑇 = 𝛼𝑊𝑇𝐹𝑆 = 𝛼𝑊𝑇
𝛽

𝜌𝑜𝑢𝑡
𝛾

                  (49) 

   where C is the bare module cost of the turbine, WT is the turbine work output, α 

and β and γ are constants, and FS is the size factor, and is dependent on turbine outlet 

density (𝜌). This equation was fitted to the costs of steam turbines and CO2 turbines 

estimated in the previous work (Atrens, Gurgenci et al. 2009). The quality of the fit is 

presented in Figure 29.  

 

Figure 29. Turbine costs estimated from equation 49  

 

   The minimization of least squares to provide this fit of data resulted in constants 

for equation 49 as given in Table 13.  
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Table 13: Turbine cost equation constants  

𝜶 𝜷 𝜸 

1.066 0.5439 -0.1472 

 

   This provides an estimate for the cost of CO2 turbines that fits reasonably with the 

understanding of the equipment and the fluid conditions involved.  

   However, in this study, the turbine work output is estimated by relatively new 

model of geothermal turbine and based on binary plants which are closed cycles that 

converts heat from the geothermal fluid into electricity by transferring the heat to an 

organic working fluid, and then produces vapor to generate electricity. According to 

Department of Engineering Science, University of Auckland, the title named 

“Efficiency of Geothermal Power Plants: A Worldwide Review”, it is calculated that 

turbine efficiency is 54%~62%. Therefore, here we use Case3_1 which has the highest 

output energy as an example to demonstrate how to operate.  

𝐶𝐵𝑀,𝑇 = 𝛼𝑊𝑇𝐹𝑆 = 𝛼𝑊𝑇
𝛽

𝜌𝑜𝑢𝑡
𝛾

= 1.066×(4000000 ×54%)0.5439 × 100−0.1472 

     = 1.066×2788.1067×0.1837× 103=545.9788× 103 USD 
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4.5.3 Well Costs 

   GreenFire Energy’s Well Retrofit Solution generates power from existing 

hydrothermal wells that are idle or underproductive. Globally, over 20% of geothermal 

wells are underproductive either from inception or due to degradation over time. Well 

Retrofits comprise a flexible system of components and processes that can be employed 

in a variety of configurations to optimize geothermal power production from a wide 

spectrum of well conditions without the risk and cost of drilling. GreenFire Energy 

Inc.’s innovative ECO2G™ geothermal well retrofit technology will enable geothermal 

project owners to generate power from idle or marginal wells at low risk and attractive 

cost per MWh. Success in geothermal well retrofits will eventually enable GreenFire 

to develop large-scale ECO2G projects in more locations. 

   ECO2G technology harnesses recent advances in deep and directional drilling 

technologies from the oil and gas industry to access geothermal resources that cannot 

be developed with existing geothermal technology. The demonstration project involves 

inserting a co-axial closed-loop tube into an existing geothermal well that lacks 

sufficient pressure and permeability to generate power. Various refrigerants including 

supercritical carbon dioxide (SCCO2) will then be circulated to transfer heat to the 

surface and generate power from a small turbo expander. 

   The cost of well is calculated with 

Cwell =  Kebz(1 −  ξ) + (
D

D0
)  2ξKebz               (16) 

where Cwell is the cost of the well, z is the well depth, D is the well diameter, D0 is 

a standard dimeter used as a baseline, ξ is the fraction of time spent drilling out of total 

time, and K and b are constants from the relationship between cost and depth. 

 

 

 

http://www.greenfireenergy.com/about-eco2gtrade.html
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Table 14: Well cost equation constants 

K b 𝜁 

0.554 0.000613 0.25 

 

   ζ is of course variable, and depends on the characteristics of the rock, amount 

of difficulties, etc. For this analysis, it is kept at a base value of 25%, as this is 

similar to estimates for geothermal wells (Polsky, Mansure et al. 2009).  

  Therefore, we can see it take almost $15~17 million USD to build the 6100m 

wellbore from Figure 30. 

 

Figure 30.  Well cost (2003 $M) versus depth (m), with fit line  
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4.5.4 Total Capital cost 

 

   This work provides a starting point for optimization of CO2-based ECO2G 

for economic performance. The total capital cost of the power plant is estimated from 

the equation: 

CTOT = ω(CBM ,HX + λCBM,T) + ∑ Cwell,i
n
i            (44) 

   Where CON is the total capital cost, ω is a constant to take into account the cost 

increase of building a green-fields facility, λ is a constant to scale up the turbine cost 

with additional piping, control, freight, labor, and other overheads, and n is the number 

of wells. The values of the two constants are given in Table 8. Well costs are increased 

by a factor of 1.093 to account for inflation from 2003 to 2006 (due to lack of a 

geothermal drilling cost index for 2006).  

Table 15: Constants used in overall cost estimation  

𝜔 𝜆 

1.8 2.4 

 

   In this study, the most efficient case is Case3_1 which almost has the 4MW energy 

output, and converts into 1MWe according to 25% general thermoelectric conversion 

rate.  The unit price of electricity from geothermal power generation is $0.3/kW (plant 

scale under 15MW) or $0.2/kW (plant scale beyond 15MW) with all equipment 

renewal type replacement under the FIT System.  

   However, here we haven’t sufficient data (eg. new model equipment models, local 

tax rate and the numbers of wellbore) so that accurate initial cost and operational cost 

can’t be calculated in this study. Furthermore, more specific and comprehensive cost 

for a long time need to be included to calculate in next step. 
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Figure 31. Projected 2020 Average Levelized Cost of Electricity of Major Power Sources from  

US Energy Information Administration, 2016 

 

   From above calculation according to The University of Queensland, The 

Queensland Geothermal Energy Centre of Excellence, we find it is perhaps not in 

accordance with actual ECO2G situation. As a result, we choose to adopt projected 

2020 average levelized cost of electricity of major power sources from US Energy 

Information Administration as the basis of calculation. 

   As shown in Figure 31, we know it will take $0.065~0.075 per KWH. Compared 

with conventional unit price of electricity ($0.2~0.3 per KW), the unit price of 

electricity by ECO2G method is much lower, which can show economic advantages 

that ECO2G has.  

   We need to consider more possible cost that will be necessary for long-time 

operation (eg. Operating years, maintenance, equipment renewal fee, tax, 

environmental improvement costs and so on), which are full of uncertainty. Therefore, 

in order to give more appropriate and accurate cost estimation, we must consider more 

critical and significant factors to complete a long-time calculation. 
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Chapter 5: Conclusion 

  We have used a detailed coupled pipe-reservoir model to investigate the effects of 

various parameters on the energy gain of CO2 flowing and the sustainability of steady 

energy output in a U-shaped well through a geothermal reservoir. Although we know 

there are many factors strongly control the performance of geothermal system, it shows 

injection temperature and mass flow rate are primary control on energy gain by the 

working fluid in this study, with CO2’s phase transition strongly favoring heat gain due 

to energy conversion (pressure energy to thermal energy) and high velocity in the pipe. 

Because of phase transition, the energy gain by flowing CO2 in the pipe is becoming 

more efficient, but how to control phase transition for best energy gain is tested in this 

study. We found there are always phase transition occurs in our cases, especially the 

cases that CO2 were injected into wellbore in liquid state.  Rather than injection 

condition supercritical/subcritical whose state is close to gas, injection in liquid phase 

(under critical point) can cause greater density difference between inlet and outlet as a 

result of stronger driving force which is explicitly expressed as high velocity that can 

decrease heat loss time in production wellbore, and in spite of pressure values in inlet 

and outlet have been fixed for all cases, it can keep higher pressure profile from inlet 

to outlet, which is considered energy conversion exists, pressure energy converts into 

thermal energy, so that liquid injection cases have more energy gain than other cases. 

  As a conclusion, low injection temperature (under critical point with injection 

pressure) and high mass flow rate can bring more benefit to energy gain. Especially, 

liquid injection condition is better for heat extraction. Meanwhile, we tried to 

investigate whether the energy output in such a closed loop geothermal system steady 

or not by simulating 1-year system operation, the results are even there actually slight 

fluctuation for the values of the energy output occur over time, but it is nearly approach 

to the steady curve. Furthermore, we need to do more investigation in order to 

understand why fluctuations occur.    

   Finally, we tried to do some calculation/estimation for cost and profit, but    

specific values for cost and profit didn’t get from our estimation due to lack of 

equipment data and other empirical parameters.  Therefore, we will do further 

calculation in future work.
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