外乱に応じて弦長を逐次可変とする張弦構造の自動制御

Adaptive automated equilibrium control of a lightweight,

sequential arch-cable structure 学籍番号 47-176745 氏 名 小島 慎平(Shimpei KOJIMA) 指導教員 佐藤 淳 准教授

1. 序論

1.1. 本論の背景

近年、建築設計では、温熱環境や日射条件 に応じて建築の外皮を変形させることによ り、住環境の効率化・維持コストの削減をす る提案が多くなされるようになり、実際の 建築物にも応用されてきている(図 1.1)。

図 1.1 可変建築物の例^{[1][2]}

一方で、構造的指標で与えられた外力に 応じて形態を変化させるような例は少ない。

1.2. 研究の目的

本論では、センサーによる外乱情報取得 と、電子制御による可変機構を用いて、自動 で躯体を構造的に優位な形態に変化させる 張弦構造の提案を目的とする。

1.3. 研究の手法

研究の方法として、図 1.2 に示すような 可変機構を用いた多角形アーチ形状の張弦 構造を対象に、外乱の検出及び変形フロー の構築、可変機構の設計、逐次形態解析ア ルゴリズムの開発、モックアップによる検 証を行う。ケーススタディとして扱う張弦 構造は、6つの部材と5本のワイヤーから 構成される多角形アーチを構築する。ター ンバックル機構をワイヤーの中間に設置 し、弦長を調節することにより、構造躯体 が変形をするシステムとなる(図1.2)。 検証の後、実構造物を想定した荷重条件で 構造最適化を行うことで可変張弦構造の適 用可能性の拡張を試みる。

2. 外乱の定義及び変形フローの構築

2.1. 外乱の定義

本論における外乱とは、重力で安定して いる状態に対して作用する積雪・風荷重と 定義し、本論では特に非対称に作用する場 合に着目して単純のため静的荷重として扱 う。

2.2. 変形フローの構築

図 1.3 に、可変張弦構造の変形フローを 示す。重力で安定している架構の状態を定 常状態とする。外乱によって発生した変位 を取得し、目的関数に応じて最適形状に架 構が変形する操作を繰り返す。

図 1.3 可変機構の変形フロー

3. 可変機構の設計

3.1. 架構形状の取得方法

回転角度センサーをフレーム部材のヒン ジ部に用いて図 3.1 のようにして部材角度 をセンシングし、架構形状を取得する。セン サーのマウントパーツは下の写真のものを 3Dプリントして生成した。

図 3.1 部材回転角度センサー

3.2. ターンバックル機構の設計

ターンバックル機構は、両方向から来る ワイヤーを1つのモーターで巻き取る機能 を基本に設計した。モーターの回転角を検 出するため、リールと連動するように回転 角センサーを付与した。以下にターンバッ クル機構の構成するパーツの3D プリンタ ーで作成した装置を示す。

図 3.2 ターンバックル機構 4. 逐次形態解析コンポーネントの開発 4.1. 概要

Rhinoceros と拡張機能 Grasshopper の環 境で、逐次形態解析のアルゴリズムを格納 した C#コンポーネントを開発した。

4.2. 逐次機構解析コンポーネントの開発 架構形状のポリラインと部材の回転角度を、 アルゴリズムの入力情報とする。2つの情 報を入力することで、機構解析の結果を節 点座標のリストで返す。架構に与える拘束 条件式を図 4.1 に示す。

図 4.1 機構解析の拘束条件の付与 4.3. 逐次構造解析コンポーネントの開発 線材を用いた有限要素法により構造解析 を行うコンポーネントを開発した。前述し た機構解析コンポーネントから部材の節点 座標を受け取りモデル形状の生成から構造 解析までを自動で行う。

図 4.2 開発コンポーネント群の一例

4.4. 最適形状計算コンポーネントの開発

形状計算コンポーネントは、定常状態の 形状に架構形状を復元させる弦長を算出す る形状復元機能と、変形形状から発生して いる外力を推定し、その外力で発生する変 位が小さくなるような架構形状をとる弦長 を算出する変位最小化形状探索機能を持た せる。この外力仕事の最小化には最適化プ ラグイン wallaceiを用いる。荷重ベクトル を{*f*}、変位ベクトルを{*d*}、全体剛性マトリ クスを[*K*]、機構解析の拘束条件式を*C*(*q*)、 変形時の部材の回転角度を{*a_i*}とすると最 適化の定式化は以下のように表現できる。、 角度の調整は±10°の範囲に限定した。

find:
$$\{\alpha_i\}$$

minimize: $f(x) = \{f\}^T \{d\}$
subject to: $[K] \{d\} = \{f\}$
 $C(q) = 0$
 $-10 \le \{\alpha_i\} \le 10$

5. 可変張弦構造の試作

5.1. 概要

小型架構の試作によるケーススタディを 通して、ターンバックル機構・逐次機構解析 コンポーネントの連携を図り、本提案の可 能性を実証する。以下にケーススタディの 各機能の変形フローを示す。

図 5.1 ケーススタディの変形フロー 5.2. セットアップ

架構のフレーム材には、溝形のアルミニ ウムを、ワイヤー材にはポリ塩化ビニルの ケーブルを、接合部には 3D プリントした ヒンジ部材を使用する。

図 5.2 部材寸法[mm]と材料諸元

5.3. 実践

形状復元機能の実践において定常状態とした形状のモデル寸法と PC の画面キャプチ

ャ・架構の写真を図 5.3 に示す。

図 5.3 形状復元機能の定常状態

図中の矢印の方向に変形を与えた場合のち に除荷したとき、架構が定常状態に戻ろう とする過程を図 5.4 に示す。全ての機構が 目標通り作動し、定常状態の形状に変形す ることが確認できた。

次に、変位最小化形状探索機能における、 定常状態と変形状態の様子を図5.5に示す。 架構にかける荷重は、形状の変形に必要な モーターのトルクを考慮して、図中の矢印 の方向に0.5Nの荷重をかけるものとする。

図 5.5 定常状態と変形状態

上記の二つの状態の変形の差分から推定し た外力と、その外力に対する外力仕事最小 化の最適化から得られた優良形状を図 5.6 に示す。

図 5.7 可変張弦構造の実践

図 5.6 外力の推定と最適化の優良解 実際の荷重は水平方向に一点のみに載荷し たが、推定荷重は誤差が大きく、各節点に発 生し、鉛直成分が含まれ、値が過剰に算出さ れた。図 5.7 に示すように、得られた形状 から算出された値に応じて可変張弦構造が 優良解の形状に変形した。

6. 実大建築物への応用

6.1. 概要

実建築相当の荷重をかけた時の、本提案 の可変張弦構造の性能を試算してみる。こ こでは外力仕事最小化と、部材に発生する 最大応力の最小化の2つを目的関数とした
 多目的最適化を行う。以下のように最適化 の定式化行う。

図 6.1 解析モデル概要

文献[6][7]を参考に、風荷重・等分布雪荷重・ 偏分布雪荷重の3つの荷重条件を設定する。 なお偏分布荷重は、アーチ形状に多く見ら れる雪だまりを仮定し、通常の積雪量と同 量の雪を偏らせて分布したものを扱う。

6.2. 結果と考察

初期形状の架構にかかる荷重と、多目的最 適化の平均優良解を下図に示す。

図 6.2 最適化の結果

2つの目的関数が総合的に最も低いとされ る形状は、架構の形状が変わることによ り、風や雪など、受圧面積の影響が大きい 荷重を減らすような変形をするため、外力 仕事もしくは最大応力の単一の目的関数で あった場合にも似た形状が最優良解として 計算される傾向がある。自重に代表され る、形状によって変動の無い荷重に対して は、2つの目的関数はトレードオフの関係 にある傾向がみられた。

7. 総括

本論では実大可変張弦構造の機構を提案 し、その有用性を示すため、小型モックアッ プでの可変機構の設計、逐次形態解析コン ポーネントの開発、実大建築での試算を行 った。また、これにより外力仕事が 65%程 度、最大応力が51%程度減少することが確 認された。一方で、接合部のあそびやセンシ ングの誤差から過剰な外力の推定が起きる ことや、モーターのトルク不足による変形 可能形状の制限などに代表される課題を解 決し、より大規模・多様な形態に対しても可 変張弦構造の適用・実践をする必要がある。

- 佐藤淳(2010)『佐藤淳構造設計事務所のアイテム』、INAX 出版 [3] [4]
- 藤谷義信(1993)『パソコンで解く骨組みの力学』、丸善出版
- 器合報信(1953)/パンコンで帰く青湖みのガナル、大台山版 岩村誠人(2018)『マルナボディダイナシフス入門』。森北出版 建築研究所(2016)『建築物の構造関係技術基準解説書』全国官報販売協同組合 日本建築学会(2016)『建築物荷重指針- 同解説 2015』日本建築学会

^[1] Al Bahr Towers ONE OCEAN