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Abstract: In structural health monitoring (SHM), the relationship between dynamic properties of structures and 
environmental/operational conditions is frequently explored to understand the source of variability, quantify variability under 
nominal conditions, etc. Such relationship can be complicated and not amenable to analytical modelling. One promising approach is 
via ‘data-driven models’. One typical assumption is that the training data is precisely known, although this need not be the case in 
SHM when the training data involves dynamic properties that are inevitably identified/derived from vibration measurements, 
therefore carrying imprecision or identification uncertainty. When the structural response data is measured under working conditions 
that cannot be directly controlled, the resulting identification uncertainty can be significant and may also vary among different sets 
of measurements. To address these uncertainties associated with training data, a Bayesian data driven model has been proposed 
where the identification uncertainty is incorporated via Bayes’ rules through the posterior distributions of parameters of interest 
given the measured response data. This paper focuses on applying the proposed method to SHM of a tall building under a typhoon 
event, illustrating its feasibility in real applications. A Gaussian process model is used for inferring the relationship between the 
dynamic properties of the structure identified using operational modal analysis and intensity of wind excitation.  
Keywords: Bayesian data driven model, BAYOMA, Structural health monitoring, Gaussian process, Posterior Uncertainty.

 

1. Introduction 
Structural health monitoring (SHM) focuses on assessing 
the physical conditions of structures based on measured 
structural response data. It has become an indispensable 
tool for damage detection and maintenance management, 
etc. Thanks to the state-of-art SHM systems built into 
modern structures such as tall buildings and long-span 
bridges (Chang et al. 2003; Sohn et al. 2003), the 
serviceability and reliability of structures can be tracked 
throughout their whole life-cycle. Among others, 
operational modal analysis (OMA) has become a popular 
SHM technique where the dynamic properties of structure 
are identified from vibration response data (Au 2017; 
Wenzel and Pichler 2005). The health conditions of 
structures can then be assessed by investigating the 
relationship dynamic properties of structures and 
environmental/ operational conditions.  

One common way of understanding dynamic behavior 
of structures under different conditions is to apply 
‘data-driven’ models, which aim at expressing the 
relationship between the identified dynamic properties 
and environmental or operational variables based on some 
training data. Different models have been used in the 
literature, including Polynomial Chaos Expansions 
(Spiridonakos et al. 2016); Functionally Pooled model 
(Kopsaftopoulos et al. 2018) and Kernel Principal 
Component Analysis (Reynders et al. 2014). Among 
others, Gaussian Process (GP) has been found to offer an 
effective means for constructing data driven models 
(Rasmussen and Williams 2005).  

A typical assumption of conventional data driven 
model is that the training data are known as precious 
values without uncertainty. This is usually not the case in 
SHM. Both the dynamic properties of structures and 
environmental/operational conditions may not be directly 
measured but are rather identified from measured SHM 
data, which inevitably carry imprecision. The associated 

uncertainty depends on the test configurations such as 
sensor noise and measurement duration, which can also 
vary among the identified training data points. 

To address the forgoing concern, a Bayesian 
framework has been proposed by the authors (Zhu and Au 
2020) which encapsulates the identification uncertainty of 
training data through its posterior distribution given the 
measured data when training the data-driven model. 
Theoretical issues have been investigated in detail and the 
resulting formula is intuitive and conducive to analysis 
and computation. In this paper, the framework is applied 
to OMA data with GP adopted as data driven models. The 
resulting algorithm is applied to SHM of a tall building 
under a typhoon event. The dynamic properties exhibiting 
amplitude dependence in natural frequency and damping 
ratio under the typhoon event is investigated. 

2. Bayesian Data Driven Model for Uncertain 
Parameters 
Conventional data driven models assume that the training 
data are known precisely. Given the input and output 
training data { },i ix y  ( 1,..., si n= where sn  is the number 
of training points), the hyper parameter ψ  associated 
with the data driven model describing the functional 
behaviour between input and output are inferred directly. 
This is usually not the case in SHM, however. Both the 
input and output training data may not be directly 
measured but are rather identified based on observations 
or response measurements from the system; and different 
training points may have different precision arising from 
different identification uncertainties. Fig. 1 shows the 
schematic diagram of the problem described above. The 
input and output training data { },i ix y  are both identified 
from system measurements iD . Acknowledging limited 
data and imperfect model, the ‘exact’ value of the 
quantity used as training data is unknown. Only the 
posterior distribution of the input and output data given 
the measurement D  and in the context of identification 
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model, i.e., ( ),p X Y D  is available. Inferring the 
data-driven model now requires maximizing the posterior 
distribution of hyperparameters ψ  given the measured 
data D , i.e., ( )p ψ D . A Bayesian data driven model for 
uncertain training data proposed by the authors (Zhu and 
Au 2020) has been used in this paper to infer ( )p ψ D , 
which is briefly reviewed in this section. 
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Figure 1. Schematic diagram of proposed framework 

Let θ  be a set of parameters identified from the 
measured data set D , which contains three groups, i.e., 

[ ], ,=θ X Y Z . Here, X  and Y  are used as input and 
output training data for inferring the data driven model, 
respectively; Z  contains the remaining parameters 
identified from D  but not related to the data driven 
model. Using the theorem of total probability, the 
marginal distribution of ψ  given D  can be expressed 
as  

 ( ) ( ),p p d= ∫ψ D ψ θ D θ  (1) 

Using Bayes’ theorem, 

 ( ) ( ) ( )
( )

, ,
,

p p
p

p
=

D ψ θ ψ θ
ψ θ D

D
 (2) 

Substituting Eq. 2 into Eq. 1 gives 

 ( ) ( ) ( ) ( )1 , ,p p p p d−= ∫ψ D D D ψ θ ψ θ θ  (3) 

Given θ , the probability distribution of D  can be fully 
determined via ( )p D θ . The additional information from 
ψ  is therefore redundant, i.e.,  

 ( ) ( ),p p=D ψ θ D θ  (4) 

Further applying Bayes’ theorem gives, 

 ( ) ( ) ( )
( )

p p
p

p
=

θ D D
D θ

θ
 (5) 

Substituting Eq. 4 and Eq. 5 into Eq. 3 gives 

 ( ) ( ) ( ) ( ) 1,p p p p d−= ∫ψ D θ D ψ θ θ θ  (6) 

The marginal distribution ( )p ψ D  is now expressed in 
terms of the posterior distribution of θ  given D , i.e. 

( )p θ D , which encapsulates the posterior uncertainty of 
θ . However, the equation still contains information 
about Z  (inside θ ), which is redundant when making 
inference about ψ . It is also necessary to rewrite ( ),p ψ θ  
in a more tractable form.  

Recall [ ], ,=θ X Y Z , ( ),p ψ θ  can be rewritten as 

 ( ) ( ) ( ) ( ), , , , , ,p p p p= =ψ θ X Y Z ψ X Y Z ψ ψ  (7) 

and note that Z  is not related to ψ , it is reasonable to 
assume that { },X Y  and Z  are conditionally 
independent for a given ψ , i.e.,  

 ( ) ( ) ( ), , ,p p p=X Y Z ψ X Y ψ Z  (8) 

Substituting Eq. 8 into Eq. 7 gives 

 ( ) ( ) ( ) ( ), ,p p p p=ψ θ X Y ψ ψ Z  (9) 

It can also be shown that { },X Y  and Z  are 
unconditionally independent: 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( )

, , , ,

,

,

p p p d

p p p d

p p

=

=

=

∫
∫

X Y Z X Y Z ψ ψ ψ

Z X Y ψ ψ ψ

X Y Z

 (10) 

Substituting Eq. 9 and Eq. 10 (noting that 
( ) ( ), ,p p=θ X Y Z ) into Eq. 6, the posterior distribution can 

now be expressed as: 

 ( ) ( ) ( ) ( ) ( ) 1
, ,p p p p p d d

−
= ∫ ∫ψ D X Y D Y X ψ ψ X Y X X Y  (11) 

It is reasonable to assume that ( )p ψ X  is slow-varying 
with respect to ψ  compared to ( ),p Y X ψ  since only 
knowing X  does not provide much information about 
ψ  due to the absence of Y . On the other hand, in the 
absence of  knowledge about ψ  that characterises the 
probabilistic description of Y  given X , ( )p Y X  is 
slow-varying with respect to X  and Y  compared to 
( ),p Y X ψ  and hence can be assumed practically constant. 

We can now express ( )p ψ D  as 

 ( ) ( ) ( ), ,p p p d d∝ ∫ ∫ψ D X Y D Y X ψ X Y  (12) 

Eq. 12 provides a framework for incorporating the 
identification uncertainty of training data when inferring 
about the hyper parameters of the data driven model. It 
expresses the posterior distribution of ψ  in terms of the 
posterior PDF of training set given the system 
measurements as well as the posterior PDF of output data 
given input training data and hyperparameters. Compared 
to Eq. 1, Eq. 12 is computationally tractable since the 
first term ( ),p X Y D  results directly from Bayesian 
inference of { },X Y  based on measurement D  and the 
second term ( ),p Y X ψ  results directly from the data 
driven model adopted.  

3. Efficient Algorithm for OMA Data using GP 
The Bayesian framework in the last section is applicable 
in a general context as long as the assumptions are met. 
In this section, it is further specialized to OMA data with 
a GP model adopted as data driven model. The resulting 
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algorithm is efficient for computation and applied to 
SHM data of a tall building in the next section.   

First consider ( ),p X Y D  in the context of OMA. For 
given measurement set iD , the posterior distribution 
( ),i i ip x y D  can be inferred using a Bayesian operational 

modal analysis (BAYOMA) approach (Au 2012a; b). For 
sufficient data, modal analysis problem is ‘globally 
identifiable’ (Beck and Katafygiotis 1998). The posterior 
PDF ( ),i i ip x y D  then can be approximated by a Gaussian 
PDF (Beck and Katafygiotis 1998): 

 ( ),
ˆ ˆ,ˆ

i i
i i i i

i i

x x
p x y D

y y

    ≈        
CN  (13) 

where { },ˆ ˆi ix y  are the most probable value (MPV) of 
{ },i ix y  and ˆ

iC  is the corresponding posterior covariance 
matrix. The identification results of { },i ix y  from iD  
will be taken as training data for constructing the 
Gaussian process model in order to learn the relationship 
between X  and Y . Given { } 1

, sn
i i i

x y
=

, the system 
measurements { } 1

sn
i i

D
=

 are assumed to be independent. 
Together with the fact that iD  only depends on { },i ix y , 
we have 

 ( ) ( ) ( )
1 1

, , ,
s sn n

i i i i
i i

p p D p D x y
= =

= =∏ ∏D X Y X Y  (14) 

Using Baye’s theorem with a flat prior on ( ),X Y , 
( ),p X Y D  can be approximated as 

 ( )
ˆ

, ,
ˆ

p
      ≈            

X XY

YX Y

C CX X
X Y D

C CY Y
N  (15) 

which is a Gaussian PDF with ( )1
[ ... ]

nsx xdiag c c=XC , 
( )1
[ ... ]

nsy ydiag c c=YC  and ( )1 1
[ ... ]

n ns sx y x ydiag c c= =XY YXC C .  
Now consider ( ),p Y X ψ  when a GP model is 

adopted. Without loss of generality, a regression model 
with unknown relationship f  between a given input x  
and output y  can be written as: 

 ( )y f x e= +  (16) 

where e  accounts for modelling error. Instead of 
parameterising f , a GP model assumes that given the 
input data X  the output data Y  are jointly Gaussian: 

 ( ) ( )2, , ep σ+Y X ψ M K IGP  (17) 

where mean M  and covariance K  are functions of the 
input training data X  and hyperparameters ψ . The 
modelling error e  is assumed to be Gaussian and its 
variance 2

eσ  is a hyper parameter as well. 
To further facilitate computation, rewrite ( ),p X Y D  

in Eq. 15 as 

 ( ) ( ) ( ), ,p p p=X Y D Y X D X D  (18) 

Clearly, ( )p X D  is a Gaussian PDF with mean X̂  and 
covariance matrix XC . On the other hand, ( ),p Y X D  is 
the conditional PDF, which from standard results is also 
a Gaussian PDF for Y  with mean ( )1ˆ ˆ−+ −YX XY C C X X  
and covariance matrix 1−−Y YX X XYC C C C . Substituting Eq.17 
and Eq. 18 into Eq. 12 gives 

 ( ) ( ) ( )p F p d∝ ∫ψ D X X D X  (19) 

where 

 ( ) ( ) ( )/2 1/2 112 det exp
2

sn TF π − − − = − 
 

W WX C W C W  (20) 

with 

 ( )1ˆ ˆ−= + − −YX XW Y C C X X M  (21) 

 1 2
eσ

−= − + +W Y YX X XYC C C C C K I  (22) 

The resulting integrand in Eq. 19 generally depends 
on X  in a nonlinear manner and is not proportional to a 
standard probabilistic distribution. Without resorting to 
brute-force numerical integration that is prohibitive, a 
Gaussian type approximation (Girard 2004) is adopted, 
which gives 

 ( ) ( ) ( )/2 1/2 112 det exp
2

sn Tp π − − − ′ ′ ′ ′≈ − 
 

W Wψ D C W C W  (23) 

where 

 ( )ˆ ,

ˆ

d′ =

′= −

∫ XW W X X C X

Y M

N  (24) 

 
( ) ( )

( ) ( )
( )

2
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1
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e
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T

T T

d

d

d

σ
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−
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∫

∫
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XY X X

X

C C I K
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C C M X X X X C X

MM X X C X M M
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 (25) 

with 

 ( )ˆ , d′ = ∫ XM M X X C XN  (26) 

 ( )ˆ , d′ = ∫ XK K X X C XN  (27) 

Whether the analytical expressions of ′W  and ′WC  are 
available still depends on the form of the mean and 
covariance function. For a commonly used GP model 
with zero mean function and squared exponential 
covariance function, ′W  and ′WC  can be simplified as 
 

 ˆ′ =W Y  (28) 

 2
eσ′ ′= + +W YC C I K  (29) 

with 

 ( )
( ) ( ) ( )

( )( )

1
2

1/2
1

1 ˆ ˆ ˆ ˆexp
2,
1 1

i j

i j

T

f i j x x i j

i j

x x ij

x x w c c x x
x x

w c c

σ

δ

−

−

 − − + + − 
 ′ =

+ + −
K  (30) 

Here ijδ  is the Kronecker delta, i.e., 1ijδ =  if i j=  and 
zero otherwise. For inferring the hyper parameters ψ , it 
is more convenient to work with the negative 
log-likelihood function 
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 ( ) 11 1ln det
2 2

TL −′ ′ ′ ′= +ψ W WC W C W  (31) 

such that 

 ( ) ( )expp L∝ − ψψ D  (32) 

The hyper parameter ψ  now can be obtained by 
maximising ( )p ψ D , or equivalently minimising Lψ . 

4. Application of Tall Building SHM 
The proposed method has been validated in a previous 
work (Zhu and Au 2020). This section focuses on further 
applying the proposed method to SHM of a tall building 
during a typhoon event, illustrating its feasibility to SHM 
data in real applications. The instrumented building is 
320m tall and 50m by 50m in plan located in Hong Kong. 
Benchmark tests have been conducted under normal 
wind conditions with four triaxial accelerometers placed 
at four corners on the roof. Detailed modal identification 
results (namely Building B) can be found in Au et al. 
(2012). 

The vibration response of the building was measured 
during Typhoon Vicente in July 2012. A triaxial force 
balance accelerometer was placed in a secure room on 
the roof of the buildings to measure vibration response. 
Forty-eight hours of acceleration time history data were 
recorded. The instrument (sensor and data acquisition 
unit) has a noise level of 1μg/ Hz  and the data was 
logged using a 24bit digital signal recorder at a sampling 
rate of 50Hz. The whole time history data is divided into 
non-overlapping segments each with a duration of 
30mins. The data is modelled as stationary stochastic 
process within each segment and Bayesian OMA 
techniques is applied to identify the modal parameters. 
The change of dynamic properties against environmental 
variations are investigated. Specifically, the dynamic 
properties here refer to the natural frequency and 
damping ratio and the environmental variation refers to 
that of the power spectral density (PSD) of modal force 
(which reflects the intensity of the wind).  
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Figure 2. Time history data at 23rd July 2012 11:30pm 

Fig. 2 shows a typical time history data starting at 
23rd July 2012 11:30pm when the wind was strong. The 

maximum acceleration response of the structure is 
around 0.005g. Fig. 3 shows the corresponding singular 
value spectrum (i.e., a plot of the square root of the 
eigenvalues of the real part of the spectral density matrix 
against frequency). Modal analysis here focuses on the 
first two modes marked in the figure, where ‘[-]’ denotes 
the selected frequency band and ‘o’ denotes the initial 
guess of natural frequency. These two modes are 
translational modes identified simultaneously based on 
the same band as they are closely spaced. Fig. 4 shows 
the identified mode shapes of these two modes. The 
interactions between these two modes also increase the 
identification uncertainty of the modal parameters.  
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Figure 3. Singular value spectrum 
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Fig. 5 and Fig. 6 show the identified natural 
frequency against the modal force PSD for Mode 1 and 
Mode 2, respectively. The circle in the figure denotes the 
MPV and the error bar represents +/-2 posterior standard 
deviation. There is an inverse trend between the natural 
frequency and modal force PSD, indicating the amplitude 
dependence of the tested structure. The predictive mean 
values with the predictive 95% confidence bounds (i.e., 
+/-2 standard deviation) based on the proposed method 
and conventional GP model have also been plotted in the 
figures. The squared exponential function is selected as 
the covariance function and the mean function is set as 
zero for both models. It can be seen that the prediction 
from the proposed model is similar to that based on the 
conventional GP model based on the training data of 
mode 1. This is reasonable since the posterior 
uncertainties among the training data are similar. This is 
not the case for the identified damping ratio, however. 
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Fig. 7 and Fig. 8 show the identified damping ratio 
against modal force PSD with model predictions of these 
two methods, respectively. Discrepancies in model 
predictions can be found around modal force PSD of 

10 210 g /Hz−  between the proposed method and 
conventional GP model for Mode 1. This is due to the 
large identification uncertainty of the training points 
marked in the red square shown in Fig. 7. The 
conventional GP model does not consider the uncertainty 
of individual training points and so it tries to fit the 
training points with the same weight. This is not the case 
for the proposed method. The training points marked in 
the red square take less weight when the model is trained 
by the proposed method due to their large uncertainty. 
The resulting data model has lower sensitivity to training 
points with large uncertainty compared to the model 
based on conventional GP method, in a manner 
consistent with the uncertainty of parameters. 
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Figure 5. Identified natural frequency against modal force PSD 

with data driven models, Mode 1 
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Figure 6. Identified natural frequency against modal force PSD 

with data driven models, Mode 2 
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Figure 7. Identified damping ratio against modal force PSD 

with data driven models, Mode 1 
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Figure 8. Identified damping ratio against modal force PSD 

with data driven models, Mode 2 

5. Conclusions 
Training data are commonly assumed as precise values 
without uncertainty in conventional data driven models. 
However, this may not be the case when applying data 
driven models to SHM data. The training data may not be 
directly obtained but identified from the measured 
structural response data, which inevitably carries 
identification uncertainties. A Bayesian data driven 
framework has been used in this work which incorporates 
the identification uncertainty rigorously when inferring 
the data driven model. Efficient algorithm has been 
presented for OMA data with GP adopted as data driven 
models. 

The method has been applied to SHM of a tall 
building under a typhoon event, which illustrates its 
feasibility to real data. It was shown that when the 
variation of the identification uncertainty among the 
training data is small, the proposed method has similar 
performance compared to classic GP model which does 
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not consider uncertainty. The proposed method has 
shown robustness to large discrepancies among the 
identification uncertainty of the training data sets. The 
classical GP model treat all the training data equally as 
the associated uncertainty of each individual training data 
is not considered. On the other hand, the proposed 
method accounts for the training points in accordance 
with their identification uncertainty. 
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