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Abstract: Polynomial chaos expansion (PCE) technique has been widely used to replace expensive simulation models in order to 

reduce computing costs. In this paper, we develop a new structural reliability analysis method based on PCE. To address that 

conventional regression method of sparse PCE cannot provide the surrogate error measure (predictive variance) which is employed to 

improve the sampling performance in reliability analysis, variational Bayesian inference, with state of the art performance in robust 

regression, is employed to build sparse PCE. Then, an active learning function is employed as the guideline to adaptively select new 

training points. This active learning procedure stops when the accuracy of the reliability estimate reaches a specific target. To assess 

the performance of the proposed method, it is compared detailedly with two well-established AK-MCS and APCK-MCS methods. 

The results show that the proposed method is superior to these two well-established in terms of efficiency and accuracy.  
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1. Introduction  

Reliability analysis aims at evaluating the safety level 

of structures or system. For time-demanding and complex 

performance functions of structural responses, the 

evaluation of small failure probability with fewer model 

evaluations is a challenging problem in engineering 

application. First-order Reliability method (FORM) and 

Second-order Reliability method (SORM) are two 

classical methods for estimating the failure probability  

(Rackwitz 1978, Der Kiureghian et al. 1991). These two 

methods approximate the performance function at the 

most probable point (MPP) in the failure domain with 

first-order and second-order polynomial, on which the 

failure probability  is estimated (Konakli et al. 2016). 

SORM captures the nonlinearity near the verified point 

and partially improves the prediction accuracy of the 

failure probability of FORM. However, SORM is 

impossible to capture the local property of the 

performance function around the design checking point. 

For performance functions with highly nonlinear or 

multimodal behaviors, the accuracy of FORM and SORM 

may not be acceptable.  

Finite element model is widely used for many 

structural systems with expensively time-consuming 

performance functions. The cost of a large number of 

repeated simulations is extremely expensive. In order to 

improve computational efficiency and avoid a large 

number of expensive finite element simulations, surrogate 

modeling techniques which allow one to develop a 

cheap-to-evaluated surrogate from a limited collection of 

model evaluations are widely used. Building a surrogate 

relies on the evaluation of the original model at a set of 

points in the input space. The efficiency of a surrogate 

modeling technique depends on its ability to provide 

sufficiently accurate representations of the exact 

performance function by using relatively small size of 

training points. This can be particularly challenging in 

cases that determining the tails of the distribution of 

model response with high accuracy is important for 

estimating the small failure probabilities required in 

reliability analysis. During the past decades, various 

surrogate modeling techniques have been proposed for 

reliability analysis. Kriging (also known as Gaussian 

process (Sack et al. 1989)) is one of the most popular, it is 

easy to implement to assess the failure probability of 

complex structures, since it is based on the hypothesis 

that the weight of the failure probability is located in the 

vicinity of the unique most possible failure point. Several 

reliability analysis methods based on the Kriging include 

the efficient global reliability analysis (EGRA) method 

(Bichon et al. 2008), the active learning reliability method 

combining Kriging and Monte Carlo simulation 

(AK-MCS) (Echard et al. 2011), active Kriging combined 

with subset simulation (AK-SS) (Huang et al. 2016) or 

(modified) importance sampling (AK-IS and AK-MIS) 

(Echard et al. 2013, Yun et al. 2018), Kriging-based 

quasi-optimal importance sampling (Meta-IS) (Dubourg 

et al. 2013), the global sensitivity analysis enhanced 

Kriging (GSAS) [Hu and Mahadevan 2016]. By selecting 

more training points near the limit state surface according 

to several active learning functions such as the U function 

(Echard et al. 2011) and the expected feasibility function 

(EFF) (Bichon et al. 2008), the accuracy and efficiency of 

reliability estimate can be improved. Schöbi et.al (2015) 

developed a new surrogate modeling technique called 

Polynomial-chaos-Kriging (PC-Kriging). It employs 

orthonormal multivariate polynomials as drift term of 

Kriging to convey the data mean trend. A modified 

version of the AK-MCS method, i.e., active PC-Kriging 

Monte-Carlo simulation (APCK-MCS), was then used to 

enhance the accuracy of reliability estimate or quantile 

estimate (Schöbi et al. 2016). Because of the lack of a 

prior knowledge about the output, leave-one-out cross 

validation (LOOCV) is employed as an object function to 

select optimal regression functions for PC-Kriging from 

the set of orthonormal multivariate polynomials. In fact, 

LOOCV is an approximation method used to estimate the 

actual generalization error. The overfitting phenomenon 



The Seventh Asian-Pacific Symposium on Structural Reliability and Its Applications (APSSRA2020) 

October 4–7 2020, Tokyo, Japan 

T. Takada, I. Yoshida & T. Itoi (editors) 

could influence its basis selection.  

Polynomial chaos expansion (PCE) established in the 

context of uncertainty quantification is a promising 

surrogate model for uncertainty quantification (Xiu and 

Karniadakis 2002). Alban et al. (2010) and Marelli S et al. 

(2018) combined the bootstrap resampling and PCE to 

construct an active learning method which adaptively 

approximates the limit state surface to perform a failure 

probability estimate. Pan and Dias (2017) combined 

sparse PCE and sliced inverse regression technique to 

achieve a dimension reduction for high-dimensional 

reliability analysis problems. However, the prediction 

variance which can be used to improve the sampling 

performance of PCE is difficult to be obtained for these 

techniques. 

In this paper, we demonstrate the potential of Bayesian 

regression-based polynomial chaos expansion to provide 

surrogate appropriate for reliability analysis. Bayesian 

regression methods have received much attention in the 

compressed sensing problem since they generally achieve 

the best recovery performance (Zhang and Rao 2011). 

Variational Bayesian inference (VBI) with Student-t 

distribution proposed by Tipping and Lawrence (2005) is 

one important family. Based on VBI, we employ an 

automatic search algorithm to enhance sparsity. Since 

VBI is a Bayesian method, not only the prediction mean 

but also the prediction variance can be obtained. The 

predictive variance plays an important role to improve the 

accuracy of sparse polynomial chaos approximations for a 

fixed computational budget in the context of design of 

experiment. Further, the estimation of failure probability 

analysis is transformed into a classification problem. In 

this case, an active learning function that utilizes the 

space-filling and projective properties is used. It enables 

to select training points to improve the accuracy of the 

surrogate in the key regions which have a significant 

impact on the failure probability. A benchmark case is 

used for validating and assessing the performance of the 

proposed method, and it is detailedly compared with the 

well-established AK-MCS and APCK-MCS methods.  

The rest of the work is organized as follows. In Section 

2, the general PCE is recalled. In Section 3, a detailed 

derivation of the Bayesian modeling for PCE is presented. 

Section 4 discusses the implementation details of the 

proposed method for structural reliability analysis. The 

performance of the proposed method is assessed in 

Section 5. Section 6 presents conclusion. 

2. A brief review of polynomial chaos expansion 

Let  1,..., n =  be a vector of random variables 

which contains the component dimension sizes, material 

properties, etc.. The joint PDF of   is denoted as 

   
1

=
j

n

j

j

f f 


  . Performance function  g  is 

commonly an explicit function of random variables  . 

Let  l  and l respectively represent the multivariate 

orthogonal polynomial and the deterministic coefficient to 

be computed. The performance function  g  can be 

written using the formulation of PCE, 

   
1

= l l

l

g 




                    (1) 

The expansion of Eq.(1) should be truncated for 

computation. Let  
T

1,..., P  , so that a truncated 

PCE  pg  with total degree p is given by: 

       T

pg g                   (2) 

where   ! !P p pn n ！ and    represents the residual 

introduced by truncating the expansion to a finite number 

of terms. The basis function vector     1    

 
T

,..., P  is constructed with respect to the distribution 

information of   so that  l  ’s are orthogonal. 

Often in practice, many of the terms are negligible and 

thus  g   admits a sparse representation of the 

following form,                                          

   
p

l l

l

g 


                 (3)                                              

where p is the truncation set with few elements. 

3. Variational Bayesian inference for polynomial chaos 

expansion 

3.1 Variation Bayesian inference using Student-t 

residual distribution 

Suppose that we have generated the initial 

experimental design with N realizations of  , we then 

have the matrix     
T

1
,...,

N

D    of training points.  g   

is then evaluated for each training point and yields a 

corresponding model evaluation vector     
T

1
,...,

N
  

      
T

1
,...,

N
g g   . The observed data can be denoted 

as the linear system, 
= + D                    (4) 

where     
T

1
,...,

N
    and          

T
1

= ,...,
N i i

D       

, 1,...,i N .  

The application of Bayesian inference in the 

formulation usually assumes that the residual     

follows Gaussian distribution with zero mean and a 

constant variance -1 . The model evaluation  g   at 

an arbitrary point   is then a Gaussian variable with an 

conditional PDF   | ,f g   . The corresponding 

posterior distribution of the model parameters   and   

is inferred by applying Bayes’ rule as: 

                                           

          
   

 

| , ,
,

f f
f

f

 
 | =

 
          (5)   

where  | ,f  is the likelihood function.  ,f  is the 
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prior PDF of the Bayesian model parameters and  f is 

the marginal likelihood which is expressed as, 

     = | , ,f f f d d                 (6)  

An acknowledged limitation of the Gaussian residual 

model is that it is not robust (Tipping and Lawrence 

2005). Indeed, if the model response follows a 

heavy-tailed distribution, the accuracy of the predictor 

can be significantly compromised. To alleviate the 

problem, it could utilize a more robust noise distribution, 

such as a zero-mean Student-t distribution, 

   
  

 

 

 1

2 2
1 2 1

| , 1
2

i
i

f



 
  

  




   
         

      (7) 

  A joint Gaussian-Gamma distribution can be used to 

express the prior in the formulation given by: 
       

    

0 0 0 0
0

-1

0 0
0

| , | | ,

= |0, Gam | ,

i i

i i i

i

i i i

f C D f f C D d

C D d

    

   





 


     (8) 

where      0 0 -1

0 0 0 0 0Gam | , = exp
C C

i i iC D D C D    ,     

is the Gamma function. The equivalent distribution is 

obtained with 0=2C and 0 0= D C  (Tipping and 

Lawrence 2005). It is easy to see that as 0C  ,       

  0 0| ,
i

f C D  tends to a Gaussian distribution. As a result, 

the likelihood function  | ,f ω  can be further modeled 

as the product of several Gaussian distribution varying 

variances, 

        
    

    
1

1

1

| , = | ,

= | ,

N
i

i

i
N

i i

i

i

f f 












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

        (9) 

In order to maintain conjugacy, a similar hierarchical 

prior is aligned to   given by, 

   -1

1

| = |0,
P

l l

l

f  


              (10) 

where the hyper-parameters in the vector  
T

1,..., P   

control the prior variance on each polynomial chaos 

coefficient and follow independent Gamma distribution. 

The hyper-prior of 
l is then given as: 

        
   

 
 

0

0

0 0 0 0

-10
0

0

| , = Gam | ,

= exp

l l

A
A

l l

f A B A B

B
B

A

 

 



      (11) 

Overall, the posterior distribution over all unknowns is 

inferred as: 

 

       

 

0 0 0 0

0 0 0 0

, , | , , , ,

| , | , | | ,

f A B C D

f f C D f f A B

f


  

         (12)              

where    0 0 0 01
| , = Gam | ,

N

ii
f C D C D

  and  0 0| , =f A B  

 0 01
Gam | ,

P

ll
A B

 . The main objective of the Bayesian 

formulation is to compute the model parameters  , ,   . 

Since the hyper-prior in the Bayesian formulation makes 

the inference in Eq.(12) intractable, VBI is adopted.  

The VBI procedure is utilized for robust Bayesian 

modelling is inferred by approximating the marginal 

likelihood, which is made by constructing a variational 

lower bound (VLB) with respect to a variational 

PDF  , ,q    . The VLB is defined as,  

    
 

 

, , ,
, , , , log

, ,

f
q q d d d

q

  
  

  
 ω

  
       

  
(13) 

In order to have an appropriate solution,  , ,q ω    

should be specified. It is shown that  , ,q ω    can be 

partitioned using a factorized distribution to maintain 

conjugacy (Waterhouse et al. 1996). The VLB 

  , ,q ω   is then maximized with respect to each of 

the factorized distribution parameters for assessing an 

appropriate solution of the variational distribution. The 

factorized distribution is often called the expectation- 

maximization (EM) formulation, in which  q ω ,  q   

and  q  are respectively given by, 

                 = | ,q ω ωω ω               (14) 

where  
1

T=


ω     , T=ω ω    , diag   

 1 ,..., P  and    1diag ,..., N  ,  

   
1

= Gam | ,
N

i i

i

q C D


            (15) 

where 0= 1 2C C   and      
0 1 2 2

i i i

iD D y y   ω   

   T T( )
i i 


ωω  , 

    
1

= Gam | ,
P

l l

l

q A B


         (16) 

where 0= +1 2A A  and 0= 2l lB B ω .The expectation 

terms required to be evaluated in Eqs.(14)-(16) are 

computed using the standard moments and given by, 

T T

= =

=
l l i iA B C D 

 ω ω ω ωω ωω   
      (17)   

The VLB   , ,q ω   can then be computed from 

Eqs.(12)-(17). It is also worth mentioning that in the form 

of  q ω , the inversion of the P P matrix ω  requires 

an 3( )P operation. This can be problematic since P can 

be quite large. To alleviate this problem, ω can be 

computed as:  

 
 
 

1
T

1
1 1 T 1 T 1 1

11 1 T 1

=

=




    

  







ω    

       

    

       (18)       

We then need only invert the N N matrix  , 

reducing the operation to 3( )N . This procedure becomes 

more efficient for highly nonlinear problems, since P  

which reflects the complexity of the polynomial chaos 
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approximation raises polynomially with the total 

degree p .  

3.2 Automatic search algorithm for sparse PCE 

The structural form of the factorized distribution makes 

it very convenient to implement the iterative cycle 

procedure to estimate  , ,ω   . Upon convergence, we 

find that many of the model parameters in the vector   

are driven to zero. If 0l  , then the posterior probability 

satisfies Pr( | , 0) 0l l    , where Pr( )  represents a 

probability measure (Wipf and Rao 2004). Therefore, we 

should apply a detection rule to detect which 

hyper-parameters should be negligible. The detection rule 

is to choose between the two hypotheses: 

0

1

: 0
1,...,

: 0

l

l

l P








            (19)  

Choosing 0  as the true hypotheses means that the 

coefficient =0l  and the lth column l  of   is 

pruned from the linear system in Eq.(4). To compare the 

two hypotheses, we apply the test used for sparse signal 

reconstruction (Hurtado et al. 2013). Let T=S  

denote the sample estimate of the matrix   and 

1

l l

    , the test is denoted as follows,  

 

T

2

0 0 2~T

T

2

1 1 2T

2
: ~

2
: ~

l l

l

l l

l l

l l

S

S









 

 

 

 





            (20) 

where  ~l
  and   are the covariance of  under 

the respective hypotheses 0  and 1 . They have the  

relationship   1~ T= +
l

l l l


     . The quadratic form 

of S  follows a chi-squared distribution with two 

degrees of freedom as shown in Eq.(20) . 0  is true if 

the test statistic in Eq.(20) falls below the threshold  , 

which is set to meet the probability of false alarm 

(Hurtado et al. 2013): 

 2
2

FA 0 0Pr( ; ) 1P F


             (21)  

where  2
2

F


 represents the cumulative distribution 

function of the distribution 2

2 . The probability of 

detecting a significant component can be denoted as: 

 

 
 2

2

SC 0 1
~T

1 1T

1 T 1

1 1

1 T 1

Pr( ; )

Pr( ; )

= Pr( 1 ; )

=1 1

l

l l

l l

l l l

l l l

P

F






 

 

 

 

 

 

 

 

 

  
  

 

 





  

  

      (22)            

Based on the decision test, an automatic search 

algorithm is then proposed to for induce sparse. The 

flowchart of the automatic search algorithm is sketched in 

Fig. 1.  

  To start the algorithm, the parameters 0A , 0B , 0C  

and 0D  of the Gamma distributions should be specified. 

To produce an uninformative prior, the initial values of 

the parameters are chosen as 6

0 0 10A B    and 
2

0 0 10C D   . It is worth mentioning that the probability 

FAP of false alarm in the detection test works as a tuning 

parameter of the algorithm. Once FAP  is set, the 

detection test is completely set and needs no further 

adjustment. A low value of FAP  will promote sparser 

solutions. In the paper, we set the probability of false 

alarm to -4

FA =10P  for the sparsity process step of our 

algorithm. A stop criterion is also required to be imposed 

for converging the algorithm. If the change in the value of 

VLB between two iterations is less than -6=10T , the 

algorithm is ultimately to have a good convergence. At 

convergence of the parameter estimation and sparsity 

process steps, we can make predictions based on the 

posterior distribution over the polynomial chaos 

coefficients. The predictive distribution for an arbitrary 

point is then computed as,                    

       

      2

| = | ,

= | ,p p

p p

p

f g f g q d

g v

 



 

  

 ω ω
      (23) 

where prediction mean    T
p    ω   and prediction 

variance      
T2 1

pv      ω  . 

  Since many of the expectancy terms  1,...,l l P   

are set to zero, the sparsity of the prediction mean 
ω  is 

guaranteed. However,  is undermined since nothing is 

known about the true variability at an unknown model 

response  g  . To overcome the limitation, we consider 

the Voronoi partition of the space  according to the 

training set and have the cell i  as  

   
i = } , } } } } ,{ ,1{ { { {

i j
i j i j N            

 
                                 

(24) 

Therefore, the inverse variance   at an arbitrary point 

  is estimated as   
i{= }

i

i    .   

 4. Active learning method for reliability analysis 

4.1 Active learning function 

  In structural reliability analysis, the failure event is 

defined by   0g  , so that the failure probability FP  is 

denoted as，  

          Prob 0)
F

F
D

P g df   (            (25) 

where   = 0FD g   is the failure domain and =FS   

  0g   is the safe domain. The limit state surface is 

defined by  =0g  which lies at the boundary between 

the two domains. The prediction mean  p  is used to 

estimate FP by means of Monte Carlo sampling method. 

The failure probability can be estimated as follows: 
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  
1

1ˆ =
MCS

p

N
m

F F

mMCS

P I
N




 
                 (26) 

where MCSN  is the total number of samples and 

  p

m

FI  
 

  is the indicator function of 

failure,    =1p

m

FI  
 

 , if    0p

m
  , otherwise FI   

  p

m
 
 

 =0 .  

In order to reduce the computational cost during 

surrogate modeling, PCE is built and refined adaptively. 

This refinement procedure is usually based on active 

learning functions, which determine the location of a new 

training point. The most widely used one is U function 

(Echard et al. 2011). In the paper, the U function for the 

refinement of the performance function is given by: 

               
 

 

p

p

U
v








           (27) 

 

 
 Figure 1.A automatic search algorithm for sparse PCE 

 

  However, the candidate point with the smallest value of 

 U   sometimes tends to cluster with existing training 

points. To address the issues, the aggregate of the Intersite 

and Projected (Intersite-Proj) distance which consider 

both space-filling and projective properties is used to 

ensure that the new points reside far away from the 

existing training points. The Intersite-Proj distance 

between the candidate point   and the exiting design 

point  i  is calculated by (Crombecq et al. 2011),  

       

2
1 1 1

i in N N


              (28) 

where  

2

i
   is the 2L  norm of  i

  , it defines 

the space-filling property, and  i


   is the minus 

infinity norm of  i
  , it defines the projective 

property. Therefore, an objective function using minimal 

Intersite-Proj distance is defined as  

       

 
 

 

 
 

 

 
   

   

 
   

   

1

2

1

2,

,

1 1 min

1 min

IP
1 1 max

1 max

i
D

i
D

i j
D

i j
D

in

i

i jn

i j

N

N

N

N













  

  


  

  

 

 

  

  

 

 


 

 

    (29) 

  The active learning function for the selection of new 

training points at each iteration is developed as, 

              
 

 IP

U
UI 





                 (30) 

  Therefore, the candidate point with the minimum value 

of  UI  is selected to refine the surrogate model. 

4.2 Degree selection and stop condition 

  Besides defining the active learning function for design 

of experiment, another main concern is to determine the 

most suitable degree p for PCE. A quantitative measure 

that quantifies the uncertainty of reliability 

approximations is then considered as, 

 
 

 
 

  
  

 max

1

UF =

1,...,

p

p

MCS p

p

m
N

m
m

p d
v

f

p p
v







 
 
 
 

 
 

  
 
 
 








 







      (31)                                  

where     denotes the standard normal cumulative 

distribution function and maxp  defines the maximum 

element in the candidate set  max1,..., p  . A bigger value 

 UF p  represents more uncertainty in reliability 

approximation (Sun et al. 2017). Therefore, a candidate 

degree p with the smallest value of Eq.(31) is selected as 

the most suitable degree and the corresponding surrogate 

is then used to construct the active learning function for 

selecting the next training point.  

4.3 Stop condition 

In principle, the relative bias between FP  and ˆ
FP  is 

able to assess the quality of the surrogate model in order 

to see how accurate it is to estimate the failure 

probability . However, the bias is undetermined because 

of the unknown true failure probability . Alternatively, we 

employ the K-fold cross-validation based method to 

estimate the bias term.  

  According to the principle of K-fold cross-validation 

(K is often set to 5–10 for the consideration of 

computation cost), the exiting training point set
D are 

divided into K subsets and the cross-validation sample 

subsets    1,...,
s

D s K


  are obtained where one of the 

subsets  s

D is taken out of
D . Based on    1,...,

s

D s K


 , 

the surrogate model is built K  time and corresponding 
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constructed surrogate model is denoted by  
p

s



 

 1,...,s K . We then obtain the sK  estimates  ˆ s

FP


 

 1,...,s K  of failure probability  and the stopping 

condition based on K fold cross-validation is defined as: 

         
 

 

1 , . . . , T a r g e t

ˆm a x
s

F F
s K

F F

F

P P

P
 






            (32) 

The target accuracy criterion Target

F is set to 0.005 in the 

paper. 

5. Numerical example  

In this section, the proposed method is applied to a 

structural reliability problem for the sake of illustration. 

In the following, we will refer to the proposed method as 

active polynomial chaos expansion combined with 

Monte-Carlo simulation (APCE-MCS). It will be 

compared with AK-MCS and APCK-MCS in the 

numerical problem. The AK-MCS and APCK-MCS 

employ the U function and the best sparse set of 

multivariate polynomials for APCK-MCS is selected by 

LAR algorithm. The results of them are obtained by 

UQLAB (Marelli et al. 2015), an uncertainty 

quantification software. 

As shown in Figure 2, a nonlinear undamped 

one-degree-of-freedom system (Rajashekhar and 

Ellingwood 1993) is taken as the problem, the 

performance function of the system is given as 

  0

2

0

2
=3 sin

2

lF t
g r

m





 
  

 
  

where  1 2= , , , , , lm c c r F t  and 0 1 2c c m   . The 

distributions and parameters of the six input variables are 

given in Table 1. 

Since input variables are Gaussian, multivariate 

Hermite polynomials are selected for polynomial chaos 

approximation. The initial experimental design for the 

surrogate model is obtained with experimental design 

generated by quasi-Sobol' sequence consisting of 10 

training points. Figure 3 gives a convergence rate of the 

estimated failure probability for the proposed method, 

AK-MCS and APCK-MCS. It illustrates the major benefit 

of using the proposed method, as a faster convergence is 

achieved with relatively small training sample size. 

AK-MCS requires almost 78 design points to be close to 

a convergent value, whereas the proposed method needs 

approximately 50% less points to achieve a similar level 

accuracy (see Table 2). 

Table 1. Input variables of the numerical example 

Input  Distribution Mean Standard deviation 

m Gaussian 1 0.05 

c1 Gaussian 1 0.1 

c2 Gaussian 0.1       0.01 

r Gaussian 0.5 0.05 

F Gaussian 1 0.2 

tl Gaussian 1 0.2 

 

  

Figure 2. A non-linear oscillator 

Table 2. Results of the numerical example 

Input  N Pf Relative error (%) 

MCS 2×107 0.0284 - 

AK-MCS 78 0.0285 0.04 

APCK-MCS 86 0.0294      1.75 

The proposed method 42 0.0284 0 

 

 

Figure 3. Convergence curve of the estimated failure 

probability . 

6. Conclusions 

This paper develops a new method to perform 

structural reliability analysis by PCE with a limited 

additional cost. The proposed method relies on variational 

Bayesian inference, which incorporates a parameterized 

prior to encourage the model with a sparse structure. The 

sparse PCE is built with an initial experimental design 

and updated according to a new active learning function 

progressively.  

This method has shown comparable performance with 

regard to the well-established AK-MCS and APCK-MCS 

techniques on an analytical benchmark function. In fact, 

the computational efficiency of the proposed method can 

be further improved by combining it with importance 

sampling or subset simulation. A future area of research 

will be to perform further validations on relevant 

industrial applications. 
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