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Abstract: This paper presents a highly efficient and accurate approach to determine the bounds on the first excursion probability of a 
linear oscillator that is subjected to an imprecise stochastic load. Traditionally, determining these bounds involves solving a double 
loop problem, where the aleatory uncertainty has to be fully propagated for each realization of the epistemic uncertainty or vice versa. 
When considering realistic structures such as building models, often containing thousands of degrees of freedom, such approach 
becomes quickly computationally intractable. In this paper, we introduce an approach to decouple this propagation by applying 
operator norm theory. In practice, the method determines those epistemic parameter values that yield the bounds on the probability of 
failure, given the epistemic uncertainty. The probability of failure, conditional on those epistemic parameters, is then computed using 
the recently introduced framework of Directional Importance Sampling. A case study involving a modulated Clough-Penzien spectrum 
is included to illustrate the efficiency and exactness of the proposed approach. 
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1. Introduction 
Most dynamically loaded systems exhibit some sort of 

randomness, for instance caused by several uncontrollable 
sources of variability of the loading conditions. However, 
in many practical engineering applications such as 
assessing the effect of wind loads on buildings, the 
statistical properties of a large number of samples of the 
phenomenon are often found to be constant (Li & Chen, 
2009). This motivates the application of probabilistic 
methods to assess the reliability (i.e., the probability that 
the structure does not fail given a probabilistic description 
of the load) of a structure. Dynamic loads that act on 
structures and components are in this context often 
modeled via a stochastic process representation, where the 
time-domain behavior of the loading phenomenon is 
modeled by an auto-correlation function or a power 
spectrum. In the case of realistic natural structural loading 
conditions such as earthquakes or wind loads, these auto-
correlation functions or power spectra are intricate and 
require the definition of a set of governing parameters. For 
example, a stochastic representation of an earthquake 
spectrum can be modeled by means of a Clough-Penzien 
power spectrum, potentially combined with the Shinozuka 
- Sato modulating function (Deodatis, 1996). However, the 
accuracy of the representation of this stochastic process is 
highly dependent on the accuracy of the estimation of the 
governing site-specific soil parameters. As such, it is 
reasonable to question to which extent a computed crisp 
value for the reliability of the structure given such model 
representation is realistic when only a very limited data set 
is available to estimate the governing parameters from. 

As an alternative approach, the framework of imprecise 
probabilistic analysis (Beer, Ferson, & Kreinovich, 2013) 
offers a variety of tools to relax the need for a crisp 
probabilistic description of the variable dynamic loading, 
and hence, allows for explicitly taking the (epistemic) 
uncertainty an analyst has concerning the parameters of the 
stochastic process model into account in the reliability 
estimation. Instead of a crisp value, in this case, bounds are 

obtained between which the true crisp probability of 
failure is believed to lie, are obtained. Concerning the 
estimation of the bounds on the probability of failure, 
many efficient approaches have been introduced for scalar 
imprecise probability problems, such as e.g., those based 
on Chebyshev polynomial schemes (Wu, Luo, Zhang, & 
Zhang, 2015) or variants of the Sobol-Hoeffding 
decomposition (Wei et al., 2019). However, it is as yet 
unclear how these bounds can be efficiently obtained when 
the structure is subjected to a load modelled as a stochastic 
process with an imprecise autocorrelation structure 
without resorting to computationally demanding double-
loop approaches. A theoretical study on such imprecise 
stochastic processes is presented in (Faes & Moens, 2019a) 
or (Dannert et al., 2018). This paper goes beyond these 
works and presents an efficient and highly accurate 
approach for the computation of the bounds on the failure 
probability of linear structures subjected to loads that are 
modelled as imprecise stochastic processes. By applying 
the operator norm theorem and fully exploiting the 
linearity of the problem, the proposed method is capable to 
fully decouple the epistemic uncertainty in the parameters 
of the stochastic model from the stochastic process itself, 
and as such allows determining those values for the 
epistemically uncertain parameters that yield the bounds 
on the probability of failure a priori. This drastically 
reduces the computational cost of the computation, as no 
double loop approach is required. The paper is structured 
as follows; Section 2 provides the theoretical background 
on stochastic dynamic motion simulation; Section 3 
discusses the proposed approach for imprecise stochastic 
load propagation; Section 4 provides a case study on a 
single degree-of-freedom oscillator and Section 5 lists the 
conclusions of the work. 

2. Stochastic dynamic motion simulation 
Consider a structural system modeled as linear, elastic 

and with classical damping. The model possesses 𝑛! 
degrees-of-freedom, its structural matrices are 
deterministic, and it is subjected to a stochastic ground 
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motion loading, which is modelled as a base excitation. 
The equation of motion for the degrees of freedom of this 
system, represented as a finite element model, is: 

 𝑴𝑥̈(𝑡, 𝒛) + 𝑪𝑥̇(𝑡, 𝒛) + 𝑲𝑥(𝑡, 𝒛) = 𝝆𝑝(𝑡, 𝒛)	 (1) 
where 𝑥̈, 𝑥̇, 𝑥 ∈ ℝ"! are vectors respectively representing 
the acceleration, velocity and displacement of the degrees 
of freedom. The matrices 𝑴,𝑪,𝑲 ∈ ℝ"!×"!  are 
respectively the mass, damping and stiffness matrices of 
the system. The vector 𝝆 couples the stochastic ground 
acceleration loading 𝑝(𝑡, 𝒛) to the corresponding degrees 
of freedom of the system. Since the system is linear, 
propagation of 𝑝(𝑡, 𝒛)  towards predefined degrees of 
freedom is performed via convolution. Specifically, 
consider 𝑛$  responses of interest, denoted 𝜂%(𝑡, 𝒛) , 
which are computed as follows: 

 𝜂!(𝑡, 𝒛) = ∫ ℎ!(𝑡 − 𝜏)
"
# 𝑝(𝑡, 𝒛)𝑑𝜏 (2) 

for 𝑖 = 1,… , 𝑛$  and with ℎ%(𝑡) the corresponding unit 
response functions, which are computed as: 

ℎ!(𝑡) = 	∑
𝜸!
"𝝓#𝝓#"𝝆
𝝓#"𝑴𝝓#

($
)*+	 ⋅ +

-%,#
⋅ 𝑒./#-#" sin=𝜔0,)𝑡? (3) 

where 𝝓&, 𝑣 = 1,… , 𝑛!  are the eigenvectors associated 
with the eigenproblem of the undamped equation of 
motion; 𝜔&, 𝑣 = 1,… , 𝑛!  are the natural frequencies of 
the system; 𝜁&, 𝑣 = 1,… , 𝑛!  are the corresponding 
damping ratios; 𝜔',& = 𝜔&;1 − 𝜁&), 𝑣 = 1,… , 𝑛! are the 
damped frequencies; and 𝜸%	  is a constant vector such that 
𝜂% = 𝜸%+𝒙.  

In the context of propagating stochastic ground 
acceleration models, the loading 𝑝(𝑡, 𝒛) is represented as 
a zero-mean non-stationary stochastic process, where the 
inherent uncertainty associated with the stochastic ground 
acceleration is considered to follow a Gaussian distribution. 
To simulate sample paths from 𝑝(𝑡, 𝒛) , a modulated 
Clough-Penzien (CP) autocorrelation model is applied (see 
e.g., (Li & Chen, 2009)). Specifically, the autocorrelation 
function 𝑅,  of the stochastic process 𝑝(𝑡, 𝒛)  is 
represented as: 

 𝑅2 = 𝑚(𝑡+)𝑚(𝑡3)𝑅45(𝑡3 − 𝑡+) (4) 
with 𝑅-. the Clough-Penzien autocorrelation model and 
𝑚(𝑡) a deterministic modulation function. In this paper, 
we consider the Shinozuka-Sato modulation function 
(Shinozuka & Sato, 1967) which is given by: 

 𝑚(𝑡) = BC 6'
6(.6'

	D 𝑒
)(

)(*)'
789)()'

:E
.+

(𝑒.6'" − 𝑒.6(") (5) 

with 𝑐/ and 𝑐) parameters of the model that have to be 
set by the analyst. The time-behavior of a stochastic 
process governed by a Clough-Penzien autocorrelation 
model is governed by 7 parameters, gathered in a vector 𝜽: 

 𝜽 = G𝜔𝑔	 , 𝜔𝑓	 , 𝜁𝑔, 𝜁𝑓, 𝑆0, 𝑐1, 𝑐2H  (6) 

with 𝜔5	 , 𝜔6	 , 𝜁5, 𝜁6 filter parameters associated to the CP 
spectrum, which are soil specific, 𝑆7 the spectral intensity 

associated with the bedrock excitation and 𝑐/, 𝑐)  the 
parameters of the Shinozuka-Sato modulation function.  

Samples of the stochastic process are then generated by 
applying the Karhunen-Loève expansion (Vanmarcke, 
1983). Hereto, we assume that the loading time of the 
ground acceleration is 𝑇, and that the time is discretized 
such that 𝑡8 = (𝑘 − 1)Δ𝑡, 𝑘 = 1,… , 𝑛+, where Δ𝑡 is the 
time step and 𝑛+ the number of time steps. This allows 
discretizing 𝑅!  into a discrete autocovariance matrix 
𝐶 ∈ ℝ""×"", with 𝐶%9 = 𝑚(𝑡%)𝑚H𝑡9I𝑅-.(𝑡% − 𝑡9). Finally, 
samples of the loading 𝒑(𝑡, 𝒛)  can be generated 
according to: 

 𝒑(𝑡, 𝒛) = 𝚿𝚲
𝟏
𝟐𝒛 (7) 

with 𝒛 ∈ ℝ𝒏𝑲𝑳  a realization of an 𝑛#$ -dimensional 
standard uncorrelated Gaussian distribution; 𝚿 ∈
ℝ%%&×%%& a matrix whose columns contain the  
eigenvectors associated with the largest 𝑛:; eigenvalues 
of the discrete covariance matrix C and 𝚲 ∈ ℝ%%&×%%& a 
diagonal matrix containing the ordered 𝑛:;  largest 
eigenvalues of C. 

Taking this excitation model into account, the dynamic 
response of interest, evaluated at a time 𝑡8 is computed 
as: 

𝜂%(𝑡8 , 𝒛) = K Δ𝑡𝜖</ℎ%H𝑡8 − 𝑡<'I MK 𝜓<',<(;𝜆<)𝑧<)

"%&

<(=/	

Q
8

<'=/

 

  (8) 

with 𝜖</  a coefficient depending on the applied 
integration scheme (e.g., Gauss or Trapezoidal) to solve 
the convolution integral. This can be translated to a matrix-
vector equation as: 

 𝜂%(𝑡8 , 𝒛) = 𝒂%,8+ 𝒛  (9) 
with 𝑖 = 1,… , 𝑛$ , 𝑘 = 1,… , 𝑛+  and where 𝒂%,8	 ∈ ℝ"%& 
is a vector such that: 

 𝒂%,8+ =

⎣
⎢
⎢
⎢
⎡ ∑ Δ𝑡𝜖<ℎ%H𝑡8 − 𝑡<'I𝜓<',/;𝜆/

8
<=/

∑ Δ𝑡𝜖<ℎ%H𝑡8 − 𝑡<'I𝜓<',);𝜆)
8
<=/

⋮
∑ Δ𝑡𝜖<ℎ%H𝑡8 − 𝑡<'I𝜓<',"%&;𝜆"%&
8
<=/ ⎦

⎥
⎥
⎥
⎤
 (10) 

In the context of assessing the reliability of a structure 
subjected to a stochastic ground excitation load such as an 
earthquake, especially the first excursion probability is of 
interest, which measures the probability that any of the 
considered responses 𝜂%(𝑡8), 𝑖 = 1,… , 𝑛$  exceeds a 
predefined threshold level 𝑏% , 𝑖 = 1,… , 𝑛$  within the 
duration T of the stochastic loading. Specifically, this 
probability 𝑃> is computed as: 
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 𝑃> = ∫ 𝐼>(𝒛)𝑓?(𝒛)𝑑𝒛@∈ℝ𝒏𝑲𝑳  (11) 
with 𝑓?(𝒛)  an 𝑛:;  dimensional standard Gaussian 
distribution and 𝐼>(𝒛)  an indicator function which is 
equal to one in case of failure and zero otherwise. Failure 
in terms of first excursion exceedance occurs whenever the 
performance function 𝑔(𝒛)  assumes a value equal or 
smaller than zero; 𝑔(𝒛) is computed as: 

 𝑔(𝒛) = 1 − max
%=/,…,"*

e max
8=/,…,""

f|$+(F,,𝒛)|
I+

gh (12) 

where | ∙ |  denotes the absolute value. Since for a 
general stochastic ground acceleration process, the 
number of terms 𝑛:;  in the KL expansion can easily 
become high, the application of quadrature schemes to 
solve Eq.(11) is computationally intractable, we apply 
Directional Importance Sampling, as introduced by 
(Misraji, Valdebenito, Jensen, & Mayorga, 2020), to 
compute the first excursion probability of the system. 

3. Imprecise stochastic failure probability calculation 
As implied in section 2, the time-behavior of a 

stochastic process governed by a Clough-Penzien 
autocorrelation model is determined by a set of parameters 
𝜽. However, the selection of appropriate parameters for the 
modulated Clough-Penzien autocorrelation to represent 
the stochastic ground acceleration realistically is highly 
case- and site dependent. Therefore, rather than assuming 
a crisp autocorrelation model, we propose to define bounds 
between which the autocorrelation model parameters lie. 
These bounds can, for instance, be based on a set of 
measurement of similar sites, expert opinion, indirect 
measurements (Broggi et al., 2018; Faes et al., 2019) or 
past measurement campaigns (Imholz, Faes, Vandepitte, & 
Moens, 2020). By applying intervals to these parameters, 
the stochastic ground acceleration model becomes an 
imprecise stochastic process, as e.g. discussed in (Faes & 
Moens, 2019a), governed by an interval vector 𝜽J ∈ 𝕀ℝK, 
with 𝕀ℝ  the space of real-valued intervals. For more 
information concerning interval methods in engineering, 
the reader is referred to (Faes & Moens, 2019c) for a recent 
overview paper. 

This section focuses on the calculation of the failure 
probability for the case where the effects of imprecision are 
included in the description of the stochastic loading 
process by the interval vector 𝜽J. This implies that both 
the lower bound and upper bound of the intervals 
associated the failure probability 𝑃>J  must be determined, 
which leads to the following two optimization problems: 

𝑃; = 𝑚𝑖𝑛
𝜽∈𝜽-

=𝑃;(𝜽)?    (13) 

𝑃; = 𝑚𝑎𝑥
𝜽∈𝜽-

=𝑃;(𝜽)?    (14) 

with 𝑃;(𝜽) determined according to Eq.(11). 
The calculation of the bounds associated with the 

failure probability can be extremely demanding from a 
numerical viewpoint. On one hand, the calculation of the 
failure probability for a fixed value of the parameters 
associated with the stochastic process is quite costly, 
especially when a full finite element model of a building 

has to be considered; even when highly efficient methods 
such as Directional Importance Sampling are applied. On 
the other hand, solving the associated optimization 
problems to take the epistemic uncertainty into account is 
far from trivial, as it constitutes a double loop problem, 
where the inner loop comprises probability calculation, 
while the outer loop explores the possible values that the 
parameters 𝜽 may assume. Hence, apart from considering 
near-trivial simulation models, such computation is 
intractable without resorting to some sort of surrogate 
modelling strategies. 

However, by exploiting the linearity in the structural 
system under consideration, a large gain in computational 
cost can be obtained. Indeed, this allows to decouple the 
double loop problem described by Eq.(13) and (14) by 
determining those parameter values in 𝜽J  that yield the 
bounds in the failure probability a priori. Such decoupling 
is obtained by applying the operator norm theorem.  

Consider a continuous map 𝐴:ℝ"%& ↦ ℝ"" , a real 
number 𝑐 ∈ ℝ and an arbitrary vector 𝑣 ∈ ℝ"%& . It can 
be shown that in this case following inequality always 
holds: 

‖𝐴𝑣‖L( ≤ |𝑐| ⋅ ‖𝑣‖L'   
 (15) 

where ‖∙‖L  denotes a norm on the vector spaces ℝ"%& 
and ℝ""  and p ≥ 1 constructs a particular ℒL  norm. 
When we consider 𝐴% to be defined as 𝐴%(𝜽) = [𝒂%,/+ (𝜽),
𝒂%,)+ (𝜽), … , 𝒂%,""

+ (𝜽)	] , and integrating Eq.(10), then 
Eq.(15) becomes:  

 ‖𝜂%(𝑡, 𝜽, 𝒛)‖L( ≤ |𝑐%(𝜽)| ⋅ ‖𝒛‖L' (16) 

where 𝜂%(𝑡, 𝜽, 𝒛) denotes the 𝑖FM dynamic response as a 
function of 𝑡 , and 𝒛  are the i.i.d. Gaussian variables 
stemming from the KL expansion in Eq.(7). The 
computation of the maximum possible amplification of 𝒛 
is represented by the operator norm ‖𝑨‖L',L(, which in its 
turn is related to the selection of the type of ℒL norm that 
is chosen on both sides of the equation. In this particular 
case, i.e., bounding the first excursion probability of a 
linear dynamical system under imprecise stochastic 
loading, we consider following problem:  

 ‖𝜂%(𝑡, 𝜽, 𝒛)‖N ≤ |𝑐%(𝜽)| ⋅ ‖𝒛‖)   (17) 

The choice for an ∞−norm is motivated by the notion 
that those values in 𝜽	 that yield the extreme structural 
responses in 𝜂%(𝑡, 𝜽, 𝒛)	are of highest interest, as it are 
these extremes in the responses that drive the probability 
of failure. The 2-norm on the right-hand side can loosely 
be interpreted as a measure for the energy in the stochastic 
signal. In this case, it can be shown that ‖𝑨‖L',L( ,		can be 
computed as: 
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 ‖𝑨‖L',L( , = max
<
x𝐴%,<:(𝜽)x

)
 (18) 

where the subscript 𝑙: denotes taking the lth row of the 
matrix 𝐴%(𝜽) . As such, 𝑐%(𝜽)  is computed as the 
maximum 2-norm of a row of 𝐴%(𝜽). Finally, to determine 
which values in 𝜽J  yield the bounds on 𝑝> , two 
optimization problems have to solved: 

 𝜃∗ = argminQ∈Q-max< x𝐴%,<:(𝜽)x
)
	 (19) 

 𝜃∗ = argmaxQ∈Q-max< x𝐴%,<:(𝜽)x
)
	 (20) 

These analyses show that the parameters of the 
stochastic ground acceleration model that yield the bounds 
on the first excursion probability of structure can be 
determined in two optimization calls. Furthermore, this 
only requires a single deterministic call to the FE solver, 
namely, to determine the impulse response functions ℎ!(𝑡) 
that are required to assemble 𝒂%,8+ , as shown in Eq.(10). 
Therefore, since the interval problem corresponding to 
Eq.(13) and Eq.(14) can be solved completely a priori, only 
2 computations of the probability of failure are required: 

 𝑝> = ∫ 𝐼>(𝒛, 𝜽∗)𝑓?(𝑧)𝑑𝑧@∈ℝ.%& 	 (21) 

 𝑝> = ∫ 𝐼>H𝒛, 𝜽∗I𝑓?(𝑧)𝑑𝑧@∈ℝ.%& 	 (22) 

to obtain the upper bound, strongly reducing the 
computational cost of the determination of the bounds on 
the first excursion probability of the structure subjected to 
an imprecise stochastic ground motion acceleration. 

4. Case study: a linear oscillator 

This example comprises a single-degree-of-freedom 
oscillator with mass m = 1 [kg], stiffness k = 225 [N/m] 
and classical damping d = 5% subject to a stochastic 
ground acceleration 𝑝@	(𝑡) . The ground acceleration 
follows a modulated Clough-Penzien model Nominal 
parameters for the modulated Clough-Penzien model are 
set equal to [𝜔5, 𝜔6	, 𝜁5, 𝜁6	, 𝑆7, 𝑐/, 𝑐)] 	= 	 [6𝜋, 0.6𝜋, 0.6,
0.6, 0.04, 0.14, 0.16]. The total duration of the acceleration 
is 20 [s]. The time discretization is taken to be ∆t = 0.01 
[s]. The prescribed threshold level is b = 0.1 [m]. The 
oscillator is at rest at the beginning of the stochastic. The 
K-L expansion of the stochastic process is truncated at 
99% of the total variance, yielding approximately 1300 
terms in the expansion. Directional importance sampling 
with a sample size of 500 deterministic model evaluations 
is used to compute the crisp probability of failure. Using 
this set of parameters, the probability of failure of the 
mass-spring system is 0.0053 with a coefficient of 
variation of 0.0359.  

To illustrate the performance of the developed 
approach, a study is performed with wide interval widths 
on the parameters in 𝜽J, as illustrated in Table 2. These 

bounds are derived from the data in (Deodatis, 1996) and 
expert knowledge estimates and correspond to a case of 
nearly non-informative estimates on the parameters. For 
the soil conditions, parameters spanning the full range 
between Soft and Firm soil are considered. Three different 
approaches are applied to compute the bounds: (1) a vertex 
analysis (see e.g., (Hanss, 2005) for the theoretical basis or 
(Faes & Moens, 2019b) for an extension towards 
multivariate interval uncertainty propagation), where all 
combinations of the bounds of the parameters in 𝜽J are 
explored, leading to 27 = 128 computations of the 
probability of failure and hence, 64000 deterministic 
model evaluations, (2) Quasi Monte Carlo simulation 
under the assumption of a uniform distribution between the 
bounds in 𝜽J comprising of a Sobol sequence with 500 
points, leading to 500 computations of the probability of 
failure and hence, 250000 deterministic model evaluations 
and (3) the optimization approach explained in Section 3, 
leading to 2 computations of the probability of failure and 
hence, 1000 deterministic model evaluations. 

Table 1. Tested values for 𝜽>. 

 𝜔?>  𝜔@>  𝜁?>  𝜁@>  𝑆# 𝑐+>  𝑐3>  
Lower bound 2.4𝜋 0.24𝜋 0.6 0.6 0.03 0.12 0.14 
Upper bound 8𝜋 0.8𝜋 0.85 0.85 0.05 0.16 0.18 

The results of the three propagation schemes are shown 
in Table 2. As may be noted, the bounds obtained by the 
proposed decoupling approach based on the operator norm 
(denoted optimization in the table) are the widest among 
the three tested methods. Concerning the lower bound on 
the first excursion probability, the Vertex approach and the 
proposed method predict the same lower bound for the 
probability, whereas the sampling approach provides a 
lower bound that is higher with almost an order of 
magnitude. Concerning the upper bound of the first 
excursion probability, it is clear that the Vertex method 
underestimates the probability as compared to the upper 
bound computed by both Sobol sampling and the proposed 
approach. This indicates that the bounds of the first 
excursion probability do not vary monotonically with 
respect to the parameters of the Clough-Penzien 
autocorrelation model of the stochastic process. The origin 
of this non-monotonicity lies in the interplay between the 
frequency content of the non-stationary stochastic base 
excitation with resonances inside the structure. Since both 
Sobol sampling and the proposed optimization approach 
do not assume any monotonicity, they are not affected by 
this effect. Comparing these two methods, it is furthermore 
clear that the upper bound, predicted by the optimization 
method, is higher than the one computed by Sobol 
sampling, indicating that the optimization procedure is in 
this case indeed capable of identifying the upper bound 
correctly. Furthermore, these bounds are computed at a far 
smaller computational cost as compared to both Sobol 
sampling as the Vertex approach; respectively a factor 64 
and 250 fewer deterministic model evaluations are 
required for the proposed approach.  
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Table 2. Computed bounds on the failure probability. 

 Vertex analysis Sobol sampling Optimization 

Low. bound 2.7e-15 4.7e-14 2.78e-15 
Up. bound 0.018 0.0192 0.0328 

 
Finally, Figure 1 shows the computed values of the first 

excursion probability for a realization of 𝜽J compared to 
the corresponding value of 𝑐%(𝜽). It can be noted that a 
reasonably smooth and perfectly monotonic relation 
between these two quantities exists in this case study, and 
that furthermore the bounds on the former correspond to 
the bounds on the latter and vice-versa. As such, it can be 
concluded that computing those realizations in 𝜽J  that 
bound 𝑐%(𝜽) also provides the bounds on PF, be it at a far 
reduced computational cost since no costly propagation of 
the stochastic process is required. 

 

5. Conclusions 

This paper discusses the application of imprecise 
probabilistic methods to account for epistemic uncertainty 
in commonly applied autocorrelation models for stochastic 
process in the context of computing the reliability of a 
linear structure in terms of its first excursion probability. 
In case insufficient data are available to determine a crisp 
autocorrelation model to represent a stochastic load such 
as e.g., an Earthquake, we propose to model the parameters 
of the autocorrelation function using intervals. To allow for 
propagating these imprecise stochastic processes within a 
reasonable computational budget, we introduce an 
efficient approach based on operator norm theory. The 
main idea is to decouple the propagation of the epistemic 
uncertainty from the stochastic variation by determining 
which values in the autocorrelation parameter intervals 
provide a bound on the probability of failure following an 

optimization approach. As such, no double loop 
propagation is required. 

The results of the case study considering a single 
degree-of-freedom oscillator illustrate that the method is 
indeed capable of bounding the first excursion probability 
of this system, subjected to an imprecise stochastic 
loading, accurately and at a greatly reduced computational 
cost. In fact, we show that this approach is more accurate 
than a Quasi Monte Carlo or Vertex approach for 
propagating the epistemic uncertainty, at a computational 
cost that is smaller with several orders of magnitude.  
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