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Abstract: Unmanned construction work in Japan is required because skilled people decrease and natural disasters increase in recent 

years. Ministry of Land, Infrastructure and Transport in Japan released “i-Construction”, which is construction approach using 

information and communication technology (ICT) in the whole construction production processes as surveying, designing, 

construction and maintenance management. The current computerized construction technology uses visual information based on 

image of camera mounted on a vehicle body. However, the work efficiency of unmanned construction is lower than that of manned 

construction because visual information is not sufficient to correspond to various soil conditions. If soil strength can be estimated by 

using tactile information based on excavating resistive force obtained from bucket of hydraulic excavator, it can be expected that the 

soil strength conditions will be evaluated by in situ measurement such as computerized construction. Thus, we focus on a changing 

in the excavating resistive force acting on bucket influenced by the various soil types and properties. In this paper, to investigate the 

relationship between excavating resistive force and cone index, excavating test and portable cone penetration test were performed 

with various soil conditions. Then, based on the experimental data, the cone index estimation model was developed by using 

multilayer neural network, and the validity of the estimated results was investigated. 
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1. Introduction 
In Japan, unmanned construction work is required 
because skilled people decrease and natural disasters 
increase. Ministry of Land, Infrastructure and Transport 
in Japan (2015) released “i-Construction”, which is 
construction approach using information and 
communication technology (ICT) in the whole 
construction production processes as surveying, designing, 
construction and maintenance management. The current 
computerized construction technology uses visual 
information based on image of camera mounted on a 
vehicle body. However, the work efficiency of unmanned 
construction is lower than that of manned construction 
because visual information is not sufficient to correspond 
to various soil conditions: types, densities and water 
contents, and so on. If soil strength parameters such as 
cone index, cohesion, and internal friction angle can be 
estimated using tactile information such as excavating 
resistive force acting on blade of bulldozer or bucket of 
hydraulic excavator, it becomes possible that the soil 
strength is evaluated at a construction site. 

Previous studies on estimation of cohesion and 
internal friction angle of soil using a model for predicting 
excavating resistive force acting on bucket or blade have 
been reported (Tan et al. 2005a, 2005b, Moghaddam et al. 
2012). The two main features of these developed 
techniques are that (1) limit equilibrium methods such as 
Mohr-Coulomb model are adopted to predict the failure 
force and (2) the unknown soil parameters are estimated 
as to minimize the error between the measured failure 
force and the modeled one. Moreover, to estimate the 
unknown soil parameters, the number of the measured 
force with different angles of excavator tool needs to be 
the same as the number of the unknown soil parameters. 
Thus, the estimating accuracy of the soil parameters by 
the above developed method depends on the soil 

excavation model. However, since the soil cutting 
patterns differ according to the kinds of soil and the 
failure conditions of soil (Hatamura and Chijiiwa 1975), 
the soil excavation model needs to correspond to various 
soil types and properties. 

Based on the above backgrounds, we focus on a 
changing in excavating resistive force acting on bucket 
influenced by the various soil types and properties. Fig. 1 
shows outline of proposed method for estimating soil 
strength parameters by excavator bucket. The proposed 
method is based on a machine learning utilizing 
experimental data and numerical simulation data. The 
final goal of this study is to establish estimation method 
of soil strength parameters using excavator bucket. In this 
paper, a cone index estimation model for evaluating soil 
strength and terrain trafficability is developed using all 
laboratory experimental data. Specifically, laboratory 

Input data : Measurement data and specification of

excavator (excavating resistive force, arm angle and

bucket size, etc.)

Output data :  Soil strength parameters

Development on model for estimating 

soil strength by machine learning

・ Experimental data : Laboratory and outdoor tests

・ Numerical simulation data : Distinct element

method (DEM), etc.
 

Figure 1. Outline of proposed method for estimating soil 

strength by excavator bucket. 
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excavation test and portable cone penetration test are 
performed with various soil conditions. Moreover, based 
on the obtained experimental data, the cone index 
estimation model is developed using multilayer neural 
network that is one of machine learning techniques 
because the multilayer neural network is effective for 
developing the non-linear relationship, and the validity of 
the estimated values is investigated. 

2. Laboratory Tests 

2.1 Outline of laboratory tests 
The excavating test to measure the excavating resistive 
force acting on bucket and portable cone penetration test 
to measure cone index were performed with various soil 
conditions, i.e., soil type, water content and density. 
Table 1 shows the laboratory test conditions and the 
laboratory tests were carried out by combining the 
conditions shown in Table 1. Fig. 2 shows the grain size 
distribution curve of each soil. In a series of tests, soil 
sample was silica sand (soil particle density s = 2.65 
Mg/m3) mixed with Kasaoka clay (typical kaolin clay, s 
= 2.74 Mg/m3). As shown in Table 1, the soil type was 
from sandy soil to clayey soil, the soil water content state 
was from relatively dry to wet conditions, and the dry 
density was set to within the range that specimen can be 
created. The oven-dried soil was mixed with water that is 
adjusted to be a given water content. After that, the soil 
samples were compacted to be a given dry density. 

Fig. 3 shows soil excavation test apparatus. The test 
apparatus consists of a DC motor, a force sensor, a 
triangular prism-shaped bucket of (length: 54 mm, width: 
58 mm, height: 54 mm) and a soil box (length: 346mm, 
width: 126mm, height: 48mm). The bucket moves along 
the circular track, as shown in Fig. 4. The maximum 
excavating depth D was set to 15 mm. The radius R was 
206 mm which is distance between the base of the arm 
and the blade tip of the bucket. The arm angle  was 
calculated based on the motor rotating angular speed. The 
excavating speed was set to 5.3 deg/s. The data sampling 
frequency was set to 10 Hz. 

The portable cone penetration test was conducted 
based on Japanese Geotechnical Society Standards 
(JGS1431) using a vinyl chloride resin cylindrical 
container (Diameter: 108 mm, Height: 180 mm). The 
penetration resistance under the depth of 100 mm was 
measured, and cone index was determined dividing the 
penetration resistance by the cone base area. 

The excavating tests and the cone penetration tests 
were conducted three or four times on each test condition. 
The average values were used for learning by multilayer 
neural network. 

2.2 Experimental results and discussions 
Fig. 5 shows examples of measurement result of soil 
excavation test. As shown in Fig. 5, since it seems that 
the peaks “+” correspond to the soil failure by bucket, this 
study focused on five index parameters; (1) excavating 
resistive force of first soil failure Ff1, (2) arm angle  f1 
corresponding to Ff1, (3) excavating work to reach first 
soil failure Wf1, (4) maximum excavating resistive force 
Fmax and (5) total excavating work W. Ff1 is determined 

Table 1. Laboratory test conditions. 

Parameter Condition 

Mixing ratio of sand to clay 

s/c 
1/0, 3/1, 1/1, 1/3, 0/1 

Water content w [%] 5, 10, 15, 20, 25, 30 

Dry density d [Mg/m3] 1.0, 1.1, 1.2, 1.3 
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Figure 2. Grain size distribution curve of each soil. 
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Figure 3. Soil excavation test apparatus. 
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Figure 4. Track of excavator bucket. 
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Figure 5. Examples of measurement results of soil excavation 

tests (w = 15% and d = 1.2 Mg/m3). 

when [F( t-2) < F( t)  F( t-1) < F( t)  F( t) > F( t+1)] 
or [F( t-N) < F( t)  F( t) > F( t+N) (N = 1, 2)] is 
satisfied, where F( t) is the excavating resistive force at 
the t-th arm angle . The excavating work Wf1 
corresponds to workload from the start of excavation to 
the first soil failure, and the grey area in Fig. 5 indicates 
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the excavating work Wf1. The maximum excavating 
resistive force Fmax is the maximum force during 
excavation. The total excavating work W corresponds to 
workload from the start to the end of excavation. 

Fig. 6 shows relationship between excavating index 
parameters (i.e., Ff1, Wf1 and Fmax) and cone index. As 
shown in Fig. 6, the cone index decreased with increasing 
Ff1, Wf1 and Fmax, although there were variations in the 
results. Moreover, for example, the symbol “○” in Fig. 6 
shows the results obtained under the constant values of 
soil type and dry density and different water contents. 
The results indicated that cone index, Ff1, Wf1 and Fmax 
increased with increasing dry density. On the other hand, 
the symbol “■” in Fig. 6 shows the results obtained 
under the constant values of soil type and dry density and 
different water contents. The results indicated that cone 
index decreased and Ff1, Wf1 and Fmax increased with 
increasing water content. Thus, it was observed that cone 
index was affected by soil properties. From the above 
results, it was found that the excavating resistive force 
and cone index are the integrated index values of soil 
mechanics changed by soil properties. Moreover, the 
relationship between cone index and excavating index 
parameter was nonlinear and was not clearly a one-to-one 
relationship. Therefore, it seems possible to estimate cone 
index from soil excavation work using multilayer neural 
network. 

3. Learning by Multilayer Neural Network 

3.1 Outline of multilayer neural network 
Fig. 7 shows basic structure and learning process of the 
multilayer neural network using back propagation 
algorithm (Rumelhart et al. 1986a, 1986b). The back 
propagation is a supervised learning algorithm which 
takes input values and target values in advance and 
generally consists of input layer, hidden layer and output 
layer, as shown in Fig. 7. The input-output relationships 
of hidden layer and output layer are expressed as Eq. 1. 
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where xi is input value of neuron i, yj is output value of 
neuron j, zk is output value of neuron k, bj is threshold of 
neuron j, bk is threshold of neuron k, wij is weight between 
neuron i and neuron j, vij is weight between neuron j and 
neuron k and f() is activation function of neuron. 

The activation functions of hidden layer are sigmoid 
function and Rectified linear unit (ReLU) function (Nair 
and Hinton 2010, Glorot et al. 2011), and so on. On the 
other hand, the activation function of output layer is 
identity function, and the number of output layer k is one 
because the case of this study is a regression problem for 
estimating cone index. 

The weights w (i.e., wij, vij) in Fig. 7 are renewed to 
find the minimum of error E between output value 
calculated from the network and target value by using 
optimization algorithm of weights such as gradient 
descent method with momentum (Rumelhart et al. 1986a) 
and Adam (Kingma and Ba 2014). 

s/c = 0/1,  w = 20%,  d = 1.0 Mg/m3, 1.1 Mg/m3, 1.2 Mg/m3

s/c = 0/1,  w = 20%, 25%, 30%,  d = 1.2 Mg/m3
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(b) Excavating work Wf1 ~ cone index 
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Figure 6. Examples of relationship between excavating index 

parameter between cone index. 
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Figure 7. Basic structure and learning process of multilayer 

neural network using back propagation algorithm. 
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3.2 Learning conditions 
To develop the neural network model for estimating cone 
index from soil excavation by bucket, it is necessary to 
set and input various parameters, i.e., 1) input and output 
variables, 2) the number of neurons for the hidden layer, 
3) activation function for hidden layer, 4) optimization of 
weights, 5) initial values of weights and 6) learning steps. 
The learning conditions in this paper are described below, 
and Table 2 summarizes the learning conditions. 

The learning was conducted with different the 
number of input variables in order to compare the 
learning performance of multilayer neural network. 
Before the learning, the log-transformation of input 
values was conducted, and the input values were 
standardized to have a mean of zero and a standard 
deviation of one. On the other hand, the 
log-transformation and standardization of output values 
were not conducted. 

When the number of neurons for hidden layer M 
increases, a generalization capability of non-learning 
data decreases. Therefore, the maximum M was set to the 
number that is three times the number of neurons for 
input layer according to Hush (1989), and the learning 
was conducted with different the number of neurons. 

To compare the learning performance of multilayer 
neural network, sigmoid function conventionally used in 
multilayer neural network (see Eq. 2) and Rectified 
linear unit (ReLU) function (see Eq. 3, Nair and Hinton 
2010, Glorot et al. 2011) used in the current neural 
network were used as the activation function f(x). 
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where x is weighted sum of hidden layer, and is 
corresponding to the value in the parenthesis of Eq. 1. 

The two learning optimization algorithms of weights 
for finding minimum of the error were used in order to 
compare the learning performances of neural network. 
Specifically, the gradient descent method with 
momentum (see Eq. 4, Rumelhart et al. 1986a, and 
hereinafter referred to as Momentum) used in the current 
neural network and the Adam (see Eq. 5, Kingma and Ba 
2014) used in the current neural network were selected. 

 ( 1) ( ) ( ( )) ( 1)t t E t t       w w w w        (4) 

where t is learning step,  is learning rate and  is 
momentum decay factor (0 <  < 1).  and  are set to 
0.1 and 0.9, respectively, according to Rumelhart et al 
(1986a). 
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Table 2. Learning conditions. 

Parameter Condition 

Input variables Case1: Ff1,  f1, Wf1, Fmax, W 

Case2: Ff1,  f1, Wf1, Fmax 

Case3: Ff1,  f1, Wf1, W 

Target variable Cone index 

Number of neurons for 

hidden layer 

Case1: 5 ~ 15 

Case2: 4 ~ 12 

Case3: 4 ~ 12 

Activation function for 

hidden layer and 

optimization 

Case1: SigmoidMomentum 

Case2: ReLUAdam 

Initial values of weights 
Sigmoid: 

1 1
w

n n
    

ReLU: 
2 2

w
n n

    

where n is the number of the 

preceding layer. 

w = 0 (threshold) 

Learning steps Learning steps when MSE of 

non-learning data is minimized 

where t is learning step,  is learning rate, β1 and β2 are 
momentum decay rates and  is smoothing term. β1, β2 
and  were set to 0.9, 0.999 and 10-8, respectively, 
according to Kingma and Ba (2014). 

The initial values of weights were set to random 
number according to activation function for hidden layer 
based on Glorot and Bengio 2010 and He et al. 2015. 
The initial value of threshold was set to zero. In general, 
since the learning result is affected by the initial values 
of weights, the learning with changing the initial values 
of weights was conducted, and the average of learning 
result was calculated. 

When the learning steps increase, the error becomes 
small. However, since the learning becomes over fitting, 
the generalization capability of neural network model for 
non-learning data decreases. Thus, the all experimental 
data were randomly separated into learning data (80% of 
all data) and non-learning data (20%), and the learning 
was stopped when the error of non-learning data was 
minimized. Mean squared error (MSE, see Eq. 6) was 
used as the error function E. 

 
2

1

1 N

p p

p

MSE z t
N 

              (6) 

where zp is output value of the p-th training data and tp is 
the p-th target value and N is the size of data. 

3.3 Learning results and discussions 
Fig. 8 shows the learning results accumulated MSEs of 
learning data and non-learning data with various learning 
conditions. Specifically, Fig.8 (a1, a2, a3) indicate the 
learning results in case of with different input variables 
and using sigmoid activation function and  
Momentum as learning optimization. Fig.8 (b1, b2, b3) 
indicate the learning results in case of with different input 
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Figure 8. Relationship between the number of neurons of hidden 

layer and MSE with various learning conditions. 

variables and using ReLU activation function and Adam 
as learning optimization. 

As shown in Fig. 8, the accumulated MSE changed 
with increasing the number of neurons of hidden layer, 
and the number of neurons of hidden layer with the 
smallest accumulated MSE existed. Moreover, in the case 
of “Sigmoid-Momentum”, the MSE of the four input 
variables with total excavating work W, as shown in Fig. 
8 (a3), was smaller than the MSEs of the other input 
variables. On the other hand, in the case of 
“ReLU-Adam”, the MSE of the five input variables, as 
shown in Fig. 8 (b1), was smaller than the MSEs of the 
other input variables. From the results, it can be seen that 
there are an appropriate activation function and 
optimization depending on the input variables, i.e., a 
neural network model. Thus, in the condition ranges of 
this study, the most commonly used neural networks with 
ReLU as the activation function and Adam as the 
optimization, are not necessarily the most suitable, and 
the MSE is not necessarily smaller with increasing 
number of input variables. 

Focusing on the smallest accumulated MSE in all 
cases, the neural network learning conditions with four 
input variables (i.e., Ff1, θf1, Wf1 and W), nine neurons of 
hidden layer, the sigmoid as activation function, and 
Momentum as optimization, were the most suitable for 
estimating cone index from soil excavation work, and 
Table 3 summarizes the optimum learning conditions. 

Fig. 9 shows the comparison between the measured 
cone index and the estimated cone index. The estimated 
cone index was obtained from the neural network 
learning conditions shown in Table 3. As shown in Fig. 9, 
cone index was estimated with accuracy of the measured 
value  300 kN/m2 at maximum. Thus, by using the 
multilayer neural network, the cone index was able to be 

Table 3. Optimum learning conditions 

Parameter Condition 

Input variables Ff1,  f1, Wf1, W 

Number of neurons for hidden layer 9 

Activation function for hidden layer Sigmoid 

Optimization Momentum 
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Figure 9. Comparison between estimated cone index and 

measured cone index. 
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estimated through soil excavation by bucket.  

4. Conclusions 
In this paper, firstly, excavation tests and portable cone 
penetration tests were performed with various soil 
conditions, and excavating resistive force and cone index 
were measured, respectively. After that, by utilizing the 
experimental data obtained, the cone index estimation 
model with multilayer neural network was developed. 
The following results were obtained. 

The excavating resistive force and cone index were 
the integrated index values of soil mechanics changed by 
soil properties such as density and water content. 
Moreover, the relationship between cone index and 
excavating resistive force by bucket was nonlinear and 
was not clearly a one-to-one relationship. 

The developed multilayer neural network had an 
appropriate activation function and optimization 
depending on the input variables, i.e., the neural network 
model in the condition ranges of this study. Focusing on 
the smallest accumulated MSE, the neural network 
learning conditions with four input variables (i.e., Ff1, θf1, 
Wf1 and W), nine neurons of hidden layer, the sigmoid as 
activation function and Momentum as optimization, were 
the most suitable for estimating cone index from soil 
excavation work. By using the developed neural network 
model, the cone index was estimated with accuracy of the 
measured value  300 kN/m2 at maximum. 

Future works for experiment are carried out with 
different sizes of excavator bucket and the ununiformed 
soil containing gravel in order to storage and update data 
and to further investigate estimation model for cone index 
through soil excavation. Since the structure of neural 
network used in this paper was the simplest, it is 
necessary to further investigate the structure of neural 
network such as adding the number of hidden layers. 
Moreover, investigation using other machine learning 
techniques is also required. 
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