
MCMC ENHANCED FORM ESTIMATES AND SUBSET SIMULATION

K. Breitung1

1 TU Munich, Munich, Germany: Email: breitu@aol.com

Abstract: The calculation of failure probabilities in high dimensional spaces is an important problem in structural
reliability. FORM/SORM concepts are based on using the Laplace method for the pdf of the failure domain in its
modes. A mathematical justification for this was given in Breitung (1984, 1994). With increasing dimensions it was
found that the quality of SORM decreases considerably here. The obvious solution would have been to modify the
SORM approximations. However instead of this, a new approach, subset simulation (SS) was championed by many
researchers. By those it is generally maintained that this method does not suffer from the deficiencies of SORM and
can solve high-dimensional reliability problems for very small probabilities easily. But in Breitung (2018, 2019a, 2019b)
in numerous examples the shortcomings of SS were revealed. In Breitung (2019b) it was finally demonstrated that SS is
in fact a camouflaged Monte Carlo copy of asymptotic SORM. The points computed by SS converge towards the design
points as seen for example in the diagrams in Papaioannou (2016). With MCMC one can calculate integrals over F
with the pdf φn(x), but not the normalizing constant P(F). However, a little trick helps here. Comparing the failure
domain F with another domain F having a known probability content P(F∗); not P(F) has to be estimated, but the
quotient of these two probabilities. A possible choice for this is FL = {x;g(x)< 0} given by the linearized LSF gL(x), so
P(FL) = Φ(−|x∗|) with x∗ the design point. Running two MCMC’s, one on F and one on FL, by comparing them it is
possible to obtain an estimate for the failure probability P(F) which improves the FORM/SORM estimate. Improving
FORM/SORM by MCMC adds the advantages of analytic methods to the flexibility of the Monte Carlo approach. This
algorithm works also for non-smooth limit state surfaces. So the costs and deficiencies of the sequential approach of SS
style methods are avoided.

Keywords: FORM, SORM, asymptotic analysis, Bennett’s acceptance ratio, subset simulation.

1. Introduction
A key problem of failure probability estimation meth-
ods is that many of these are focused only on producing
some numbers. The whole question at issue should be
seen in a larger context. Why numbers are needed
and what for? Is the reliability problem for which the
probability is computed already in a fixed form and the
result of the computation is only some additional in-
formation? Or will these results be used to reconfigure
the model, i.e. change its parameters? All these ques-
tions influence the meaning of results. The numbers
are not only numbers, they have a significance which
one can understand only from the environment of the
model and the involved intentions of the people making
the computations.

2. Structuralism and Inverse Problems
Now it will be attempted to look at this hodgepodge
of questions and problems from a philosophical view-
point. In most cases there is given a mathemati-
cal/mechanical model. There are the mechanical re-
lations between the elements of the system and there
is a set of probability distributions describing the un-
certainties for the parameters.

As said in Feyerabend (1993), new theories nor-
mally never include the whole content of the older,
some parts of the research field explained by those they
cannot handle. In structural reliability it is the same.
Here it will be outlined later where the newer concepts
miss some important points covered by dust-covered
approaches as FORM/SORM. And that then by using

these stone age tools as starting point one can construct
methods which can cope with those used today.

Structuralism is a philosophical viewpoint who sees
the main goal to study the relations between ele-
ments of structures. Further to find similarities be-
tween structures, in mathematics in this case one is
especially interested in isomorphisms and projections.
More about this can be found in Rickart (1995). If
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Figure 1: Forward and inverse problems: General and in
structural reliability

one takes a structuralist view on structural reliability,
what structures can one detect here? This now leads
immediately to the concept of inverse problems.
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Figure 2: Two different structures

In applied mathematics one can distinguish be-
tween forward problems and inverse problems. In a
forward problem there is a given model and the goal
is to determine additional properties of it. Whereas in
inverse problems, from given data one wants to make
some inference about the causes which produced these
data. The relations between forward and inverse prob-
lems in general and in special for strucural reliability
are illustrated in Fig.1. For failure probability calcula-
tions all important information is in the limit state sur-
face. For its structure one can make inferences about
how the parameters of given model influence the oc-
curence of failures.

In structural reliability in many cases one wants not
only a failure probability, but also information what
is causing the failure of the structure. Monte Carlo
methods spit out only numbers. Consider now a simple
example as in Fig. 2. Given is a system consisting of
two elements X1 and X2, all is in the standard normal
space. If these two different systems are studied with
a MC approach where the LSF is treated as a black
box, no basic difference will be seen in the results; a
probability estimate is produced with an error bound.
The geometry of the problems is ignored. This is not
satisfying from the structuralist view.

In structural reliability the asymptotic SORM con-
cept gives a structuralist view by providing estimates
as functions of the underlying parameters (Breitung
(1994)). Here this approach will be enhanced to give
more precise probability estimates and also structural
information.

3. Design points in structural reliability
In none of these mathematical fields the fact that the
concept of critical points is not a panacea and that
there are problems where it does not work has led to
the deplorable consequences as in structural reliability.
Here in the last decades there was and still is a cam-
paign to discredit this approach as useless. Certainly it
is no vice to try to show that a specific scientific method
is not efficient. The weak point of these papers is that
they do not show a way how to replace the information
which design points give about the structure of the re-
liability problem under consideration. In the contrary
they intend to destroy the whole geometric structure
which ahs benn built around the FORM/SORm con-
cepts and declare that it is all Monte Carlo, only num-
bers no structure.

The most cited publications which seem to show

that design points are of no particular use in struc-
tural reliability are Katafygiotis and Zuev (2007) and 
Valdebenito et al. (2010). Unfortunately in these pa-
pers the asymptotic analysis concepts, the basis of 
FORM/SORM, are ignored, not even mentioned. The 
conclusions about design points in these publications 
are questionable.

The main example in Katafygiotis and Zuev (2007) 
is a parabolic region in a space with dimension N = 1000, 
defined by

g(x) = x1 +a
N

∑
i=2

x2
i −b (1)

with parameter values a = 0.025, b = 20.27. Now, the
authors define as failure domain F the interior of the
parabola, i.e. F = {g(x)< 0}. Then they continue to say
that the point θ∗ = (−b,0, . . . ,0) is the design point of
this failure domain F. This contradicts the definition
of a design point. For a failure domain F a design point
θ∗ ∈ F is a point with |θ∗|= minF |θ |, i.e. a point in the
domain (usually on its boundary) which has minimal
distance to the origin. The point with them minimal
distance origin is for the interior of this parabolic re-
gion the origin itself. Therefore all arguments brought
forward in this example are not only moot, but simply
wrong.

In the second paper the quality of SORM approx-
imations is studied. Now, asymptotic analysis shows
that for small failure probabilities the probability mass
will be asymptotically in the relative neighborhood of
the design points. From this result one can derive
using the Laplace method for multivariate integrals
the SORM approximations. It is shown in the paper
that for increasing dimensions they become worse and
worse. The authors conclude: In consequence, prob-
ability estimates generated using FORM and SORM
are inaccurate in high dimensions. The only meaning-
ful conclusion one can draw from the decreasing quality
of the SORM approximations that better approxima-
tions will be needed in high dimensional spaces. These
results say nothing at all about the role and meaning
of design points. Here there is an example of a log-
ical fallacy; asymptotic analysis concepts, i.e. design
points, are used to derive the SORM approximation.
Now, these approximations are not good for large di-
mensions; therefore the authors conclude that design
points are irrelevant for problems in large dimensions.
This is wrong logic, nothing else.

4. Subset simulation (SS), Sequential Importance
Sampling and Variants

Before the improved SORM concept is described a
short account of the now popular MC methods and
their deficiencies will be given. The subset simulation
concept is a variant of Monte Carlo methods; here it is
tried to avoid the large number of data points needed
in the usual Monte Carlo. This is done by using an
iterative procedure. The algorithm can be seen as a
sort of a stochastic optimization procedure combined
with MC integration.
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While importance sampling methods try to improve
the efficiency of Monte Carlo by identifying regions
with high probability content and moving more date
points there, SS starts from an enlarged failure do-
main whose beta points are nearer to the origin and
moves step by step towards the original failure do-
main. These intermediate regions are defined in the
form Fi = {g(u) < ai} where the ai’s are positive and
ai → 0. The basic idea (Au and Beck (2001), Au and
Wang (2014)) is to write the failure probability P(F)
as a product of conditional probabilities

P(Fn)=P(F1|F0)·P(F2|F1) . . .P(Fn|Fn−1)=
n−1

∏
k=0

P(Fk+1|Fk)

Here Rn = F0 ⊃ F1 ⊃ F2 ⊃ . . .⊃ Fn = F. Since the suitably
chosen conditional probabilities are relatively large
compared with the failure probability P(F) which has
to be estimated, such an access to the problem has the
advantage that these conditional probabilities can be
estimated more efficiently with much smaller sample
sizes.

The proponents of SS claim that this is a MCMC
algorithm. One important point in MCMC methods
is that the chains have to run quite long to visit the
whole integration domain. SS users claim that the
MCMC results are valid fro SS too, since here many
short Markov chains are run. However, it is not cor-
rect to assume that instead of some very long chains
one can replace them with very many short chains. In
general this works only if the starting points of the
short chains have a stationary distributions over the
integration domain. However this is what should be
obtained by the MCMC algorithm. This problem is a
little bit tricky, it is a sort of catch 22. The justification

g(x)=cj+1

g(x)=cj beta
points

Figure 3: The distribution of points for stationary MCMC
(crosses) and for SS (dots)
that SS methods do this is usually the claim that the

seeds of the SS sequence in the next domain Fj+1 have
already a stationary distribution in this domain. But
this in the subset community often repeated assertion is
wrong. This has been shown in Breitung (2018), based
on earlier work by Botev and Kroese (2012). From this
follows that the data points of the SS method have no
stationary distribution in these failure domains Fi, i.e.
their PDF is not equal to the standard normal density
constrained to Fi. Therefore then the data of the al-
gorithm cluster around the seed points since the chain
length is very short, in general it is chosen as ten. Since
the seeds are near the beta points, most points are their
neighborhood. In Fig. 3 this is shown.

A further clear disadvantage of the method is that
with decreasing failure probability the corresponding
error variances for the estimator are increasing. The
problems in SS methods are:

1. The calculated data sets can converge to local
minima and not to the beta points (see Breitung
(2019b)),

2. The variance of the estimators increases with de-
creasing failure probabilities,

3. The information about the location of the beta
points obtained from the convergence of the data
points is ignored (see Breitung (2019a)).

In the published examples the problem under 1) never
shows up; since all examples have a well-behaved LSF
which is a linear or homogeneous function. However
if one has a complicated black-box algorithm which
produces the values of the LSF, how can one verify
that the LSF is well-behaved?

The examples the author studied in Breitung
(2019b) show that already in simple cases all these
methods can lead to wrong results. The trust that
the SS-community sets into theirs methods is psycho-
logically understandable. However, is it justified? The
counterexamples show that there cannot be a general
proof of convergence for these approaches. Maybe one
can give a proof for special cases of well-behaved LSF’s.
This would not be sufficient for the claim that the
SS approach works also for complex high-dimensional
cases.

The proponents of SS refrain from a precise math-
ematical explanation what the algorithm is doing and
why it is working. One problem which makes it diffi-
cult to understand the interior machinery is certainly
that it is a twisted up combination of stochastic min-
imization and integration. Everybody who looks at
the diagrams of SS calculations can see that the point
clouds converge towards the beta points (Papaioannou
et al. (2015), Cui and Ghosn (2019)) as explained ear-
lier. However, in the vast SS literature the concept of
beta points is practically never mentioned and is more
or less subject to a damnatio memoriae. Only in analyz-
ing the algorithm in context with FORM/SORM con-
cepts and asymptotic analysis methods one is able to
understand what is going on in the algorithm.
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The gist of the arguments for SS is that no infor-
mation about the structure of the problem is neces-
sary. The user starts the algorithm and automatically
a failure probability estimate pops up as result. This
may be very nice for the people applying the method,
but doing it this way any structural information is lost
completely. And there is the clear danger that due to
a lack of understanding the structure wrong results are
not recognized.

In Monahan (2011), p. 394, it is written about the
indiscriminate application of MCMC algorithms:

For MCMC, an extremely naive user can generate a
lot of output without even understanding the problem.
The lack of discipline of learning about the problem
that other methods require can lead to unfounded op-
timism and confidence in the results.

The important information about the location of
the beta points is thrown away. This seems to fol-
low from the ideology of SS which claims to be ba-
sically different from the FORM/SORM approach, so
any mention of these points is considered almost as an
anathema.

The philosophical view here seems to be that the
goal of structural reliability methods for failure prob-
ability calculation is only to produce numbers, i.e.
probabilities. This contradicts the opinion of the au-
thor that failure probability calculations should be seen
more under a structuralistic point of view. The effi-
ciency of the SS/SiS approach has been illustrated by
a deluge of examples. However all these examples have
the same deficiency, the structure of the graph of the
LSF’s. These are always of a simple structure, homo-
geneous functions or similar types.

The bold conclusion made by the proponents of
these concepts that one can conclude from the good re-
sults obtained for simple examples that they work also
for more complex structured cases is a fallacy. Exam-
ples are an important tool in mathematics if they are
used in the right way. Especially counterexamples help
to understand the limitations of mathematical results
and they show the way to possible generalizations. In
no way one can give a general proof that a method
works by examples only.

5. Bennett’s Acceptance Ratio
But there are other methods for better failure probabil-
ity estimations improving FORM/SORM. The method
outlined here for calculating normalizing constants will
be applied in the next section to approximate failure
probabilities.

To calculate the normalizing constant many meth-
ods have been proposed. One of these is Bennett’s
acceptance ratio abbreviated BAR. This was proposed
in Bennett (1976). Originally it was used for calcu-
lating free energy differences. This approach seems to
be well suited for failure probability calculations. Here
only the most simple form will be described. A num-
ber of ramifications is possible taking this as starting
point. The exposition here is more or less a paraphrase
of section 2 in Meng and Wong (1996).

Given are two densities pi(x), i = 1,2 with respect

to the Lebesgue measure in the n-dimensional space. 
The support of pi is denoted by Di. These densities are 
known only up to a normalizing constant, i.e. pi(x) =
qi(x)

Ki
. Further it is assumed that K1 is known. The

algorithm gives a method to estimate the unknown K2
comparing it to the known K1.

Let h(x) be an arbitrary function defined on D1 ∩D2
the intersection of the domains such that

0 <
∫

D1∩D2
|h(x)p1(x)p2(x)dx|dx < ∞. (2)

Such a function exists iff ∫
D1∩D2

p1(x)p2(x)dx > 0. This
quantity is measuring the overlap between the support
of the both PDF’s. For such a function h(x) one can
write the identity:∫

D1∩D2
h(x)p1(x)p2(x)dx∫

D1∩D2
h(x)p1(x)p2(x)dx

= 1 (3)

Replacing in the nominator and the denominator the
functions p2(x) and p1(x) by their unnormalized densi-
ties yields

∫
D1∩D2

h(x)
[

q2(x)
K2

]
p1(x)dx∫

D1∩D2
h(x)

[
q1(x)

K1

]
p2(x)dx

=
K1

K2
×

∫
D1∩D2

h(x)q2(x)p1(x)dx∫
D1∩D2

h(x)q1(x)p2(x)dx
= 1 . (4)

Using the Rule of Three, one gets:

K2 = K1 ×
∫

D1∩D2
h(x)q2(x)p1(x)dx∫

D1∩D2
h(x)q1(x)p2(x)dx

= K1 ×
IE1(h(x)q2(x))
IE2(h(x)q1(x))︸ ︷︷ ︸

= r

(5)

Here IE i(.) denotes the expected value with respect to
the probability measure with PDF pi(x). Since the un-
normalized densities qi are zero outside of Di, one can
replace the integral over D1 ∩D2 by the integral over
Di in the nominator and denominator, respectively. If
one knows the quantities on the right side or can esti-
mate them, one gets an estimator for the constant K2.
Important here is that the function h(x) can be chosen
freely as long as Eq. 2 is satisfied. So it can be adjusted
to decrease the variance of the estimation.

The expected values in the fraction can be esti-
mated using MCMC methods. Assume that one has
two MCMC chains, one producing points xi with the
PDF p1 as target distribution and the other points y j
with target distribution PDF p2, each with run length
n. Then an estimator of r is given by:

r̂ =
∑n

i=1 h(xi)q2(xi)

∑n
j=1 h(y j)q1(y j)

(6)
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6. Failure Probability Calculation Using Bennett’s
Acceptance Ratio

Bennett’s acceptance ratio can be used for calculat-
ing failure probabilities. Here the difference between
both integrals is only the integration domain. The
integrand is always the PDF, i.e. in the standard
normal case φn(x). The idea is to compare a failure
domain with unknown probability with another one
whose probability content is known. Obvious choices
for domains with known contents are domains defined
in the FORM/SORM algorithms.

The failure regions for the FORM/SORM approx-
imation functions FL = {gL(x) < 0} and FQ = {gQ(x) < 0}
are approximating the original failure domain F =
{g(x)< 0}. Certainly these domains might be accurate
approximations for the failure domain if the dimension
is high and/or the shape is complex. However, in gen-
eral these domains will be nearer to F than the domains
{g(x)< a1} with a1 > 0 usually chosen a starting point in
SS/SuS/SiS methods. Further one can assume that in
the most cases the probabilities P(F), P(FL) and P(FQ)
are in the same order of magnitude. In the case of
SS and similar methods the first probability P(F1) is
usually taken as 10−2 which is several orders of mag-
nitude away from the true failure probability in most
examples.

Let be given two domains F1 and F2. For F1 one
knows the probability P(F1) and P(F2) has to be esti-
mated. If one takes as F1 either as the linearized do-
main or the quadratic approximation domain, one can
be certain that the domains overlap, since a neighbor-
hood of the beta point is contained in the approximat-
ing domain and the original one, i.e. Eq. 2 is satisfied.

For the failure probability estimation, one considers
the two PDF’s pi and its unnormalized densities qi

pi(x) =
φn(x)1Fi(x)

P(Fi)
, qi(x) = 1Fi(x)φn(x), i = 1,2 (7)

with φn(x) the n-dimensional standard normal density.
Choosing now h(x) = 1/φn(x) gives then

h(x)qi(x) = 1Fi on F1 ∩F2 (8)

Inserting this into Eq. 5 one obtains

P(F2) = P(F1)×
P1(F1 ∩F2)

P2(F1 ∩F2)︸ ︷︷ ︸
=rp

(9)

Here analogously one writes Pi(A) = IE i(1A).
The quotient on the right side one can estimate

running two MCMC’s, one on F1 and the other on F2.
Denoting the points of the first chain by xi and those of
the second by y j, one obtains using Eq. 6 the following
estimator for

r̂p =
∑n

i=1 1F2(xi)

∑n
j=1 1F1(y j)

(10)

or written with the number sign # as

r̂p =
#{xi; i = 1 . . .n, xi ∈ F2}
#{y j; j = 1 . . .n, y j ∈ F1}

(11)

So the quotient rp can be estimated by counting the
points in the Markov chains over the sets Fi, i = 1,2
which are in the other set.

Given a failure domain F1 whose probability content
P(F1) is known, one obtains as estimate for P(F2)

P̂(F2) = P(F1)× r̂p (12)

For this procedure the acronym BM2C (Breitung’s

F

beta
point

x1

x2

F
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x1

x2
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beta
point
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Figure 4: Bennett’s acceptance ratio for failure probabili-
ties

Münchhausen Monte Carlo) was proposed in Breitung
(2020).

As starting point one can take the linear FORM
approximation. The probability PL = {gL(x)< 0} is com-
pared with the true failure probability P(F).

In Fig. 4 three cases are illustrated. As reference
set with known probability the linear approximation
is taken, its limit is denoted by the dashed horizontal
line. In the first case F2 ⊂ F1, one has to estimate the
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probability of the set F1 \F2. In the second case F1 ⊂ F2,
here the probability of F2 \F1 has to be found. In the
third case there are two sets F1 \F2 (horizontal lines)
and F2 \F1 ( vertical lines ) whose joint probability has
to be determined.

However in many cases the FORM approximation
might be too far away and such an approach would
need too many MCMC data. So a procedure starting
from a SORM approximation can be better. Now on
has to recognize that the asymptotic SORM approxi-
mation in Eq. 6 has a relative error which goes to zero
for β → ∞, but cannot be neglected for finite β if one
wants to use it as starting point for Bennett’s accep-
tance ratio. Since using such a probability as start
would mean calculating the fraction with respect to a
biased probability estimate.

But one can use as starting points other SORM
approximations for which one knows the exact proba-
bility. For this one can calculate the exact probability
for parabolas. For an n-dimensional problem this re-
quires the calculation of n−1 one-dimensional integrals.
Another possible choice – avoiding such integrations –
seem to be non-central spheres as outlined in the fol-
lowing. For a given beta point x∗ with |x∗|= β and main
curvatures κ1, . . . ,κn−1 one takes as approximating fail-
ure domain the non-central sphere:

F1 = {x; |x− c| ≥ R} (13)

with c = (R−β )|x∗|−1x∗. Here the radius R is chosen as
R = 1/(max1≤i≤n−1 κi)− β or R = 1/((n− 1)−1 ∑n−1

i=1 κi)− β .
In the first case the curvature of the sphere is equal to
the largest of the main curvatures and in the second
case to the mean curvature at the beta point. (Here
the sign of the curvatures are such that the curvature
is positive if the surface bends towards the origin at
the point Breitung (2015).

7. Examples
7.1. Approximation of a parabolic failure domain

Table 1: Results for parabolic failure domain

log of failure number of mean of root of mean
probability points estimate square error

-4.9935 500 -4.9985 0.12726
-4.9935 1000 -4.9896 0.065905
-4.9935 2000 -4.9929 0.059162

Given is a parabola defining the failure domain:

g(x1,x2) = β − x2 −
κ
2

x2
1 (14)

As approximating failure domain the linear approxi-
mation region F = {β −x2 < 0} is taken with probability
content Φ(−β ). As parameters were taken β = 4 and
κ =−2. The exact failure probability is 1.0150e−5. For
the data sets with n = 500,1000,2000 the following re-
sults were obtained. The logarithms are to the base
10.

k

n

7.2. Sum of exponential random variables
This example is from Breitung (1984). It appears also 
in Papaioannou et al. (2015) as an example for SS al-
gorithms. Unfortunately a comparison of the results is 
not possible, since in this paper important information 
about the performance of the method is missing, i.e. 
the number of SS steps, the bias of the estimates and 
the moments of the logarithm of the estimator. The co-
efficient of  variation of  the es timates given there is  no 
good indicator of its variation, since the histogram of 
the data is quite skewed to the right (see Ramsey and 
Schafer (2012)). So it would have been more meaning-
ful to consider the error of the estimator of the loga-
rithm.

Given are k independent random variables Y1, . . . ,Yk, 
each with a standard exponential distribution, i.e. with
PDF f (x) = exp(−x) for x ≥ 0. The sum Y = ∑ j=1 Y j has 
then an Erlang distribution with shape parameter n 
and rate 1. The LSF is given by g(y) = n+α

√
n ∑i=1 yi. 

Now this is transformed into the standard
−
normal space. There is a unique beta point at :

z = (z, . . . ,z) with z =−Φ−1
(

exp
(
− α√

n
−1

))
(15)

In the original paper there are typos in the equations
(19) and (20a,b). The corrections are: Equation (19)
corrected:

z =−Φ−1
(

exp
(
− α√

n
−1

))
Equation (20a) corrected:

J1 =

{
1− z

[
φ(z)

Φ(−z)
− z

]}n−1

Equation (20b) corrected:

P(g̃(X)< 0)∼ Φ(−
√

n z) ·
{

1− z
[

φ(z)
Φ(−z)

− z
]}−(n−1)/2

The curvature of the limit state surface at the beta
point is constant

κ =
z√
n

[
φ(z)

Φ(−z)
− z

]
(16)

Now a non-central sphere with center −(|z|−1z)(1/κ −β )
and radius R = 1/κ is fitted to the limit state surface at
the beta point. This sphere has contact of order two
with the limit state surface there (see Struik (1988),
p. 23). The probability content of the domain FS out-
side of the sphere P(FS) is given by the complementary
CDF at R2 of the non-central χ2 distribution with non-
centrality parameter (1/κ − β )2 and n degrees of free-
dom.

Using Eq. 11 approximations for the quotient
P(F)/P(FS) were computed. For the domains F and FS
each 50 MCMC were run with length n = 500,1000,2000.
As parameters for the LSF were taken α = 3,4,5.
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Table 2: Results for sum of exponential variables, α = 3,4,5

log of failure number of mean of root of mean
probability points estimate square error

-2.5606 500 -2.1747 0.40348
-2.5606 1000 -2.3048 0.27882
-2.5606 2000 - 2.4299 0.16601

log of failure number of mean of root of mean
probability points estimate square error

-3.7930 500 -3.3157 0.49889
-3.7930 1000 -3.4680 0.34424
-3.7930 2000 -3.6086 0.21124

log of failure number of mean of root of mean
probability points estimate square error

-5.2273 500 -4.7933 0.44553
-5.2273 1000 -4.8846 0.35833
-5.2273 2000 -4.9397 0.30181

8. CONCLUSIONS
Here the concept of the application of the Bennett’s ac-
ceptance ratio to failure probability estimation is out-
lined. This method uses as starting point for approx-
imations the SORM/FORM results. Therefore it is
more efficient than SS/SiS procedures in two aspects.
The method starts from the regions where the PDF
in the failure domain is maximal and the difference
between the approximation at the start and the true
failure probability is much smaller. Further with this
concept one has again a meaning for the geometrical
structure of the failure domain and the beta points.
This approach allows a number of generalizations and
variations which can be tailored to suit complex prob-
lems.
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