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Abstract: This paper presents an approach for calculating the first excursion probability of linear structural systems subject to 

stochastic Gaussian loading. The probability estimation is carried out by Directional Sampling in combination with Importance 

Sampling. The approach fully exploits the linearity of the structural system with respect to the loading. In this way, it is possible to 

estimate small failure probabilities (within the range of 10-3) with high precision and high efficiency (a few hundred simulations). A 

numerical example illustrates the application of the sampling technique.  
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1. Introduction 
The uncertainty associated with time-dependent 

loading acting over structural systems can be described by 
means of stochastic processes (Soong & Grigoriu, 1993). 
In such case, the response of the structural system becomes 
uncertain as well. A means to quantify the uncertainty 
associated with the response consists of calculating the 
first excursion probability (Au & Beck, 2001), which 
measures the chances that the response exceeds a 
prescribed threshold level within the duration of the 
stochastic load. Calculation of first excursion probabilities 
remains as one of the most challenging problems in 
stochastic dynamics. Usually this probability is assessed 
by means of simulation, as closed form solutions are not 
known for cases of practical interest (Schuëller et al., 
2004). However, applying simulation may not be 
straightforward, as the computation of the dynamic 
response for different samples of the input loading can be 
numerically demanding. In view of this challenge, this 
contribution explores the application of an approach for the 
estimation of first excursion probabilities of linear 
structural systems subject to dynamic Gaussian load. The 
approach is based on directional importance sampling 
(Ditlevsen et al., 1988). The main idea behind such 
sampling technique consists of sampling a direction in the 
standard normal space using a specially designed 
importance sampling density function. Afterwards, this 
sampled direction is explored radially, taking advantage of 
the linearity of the structural response. The application of 
directional importance sampling is illustrated by means of 
an application example involving a large-scale finite 
element model. The results obtained suggest that small 
failure probabilities (in the order of 10-3 or less) can be 
estimated with high accuracy and a low number of 
realizations of the structural response. 

2. Problem Formulation 
Consider a linear elastic structural system subjected to a 
stochastic Gaussian loading, whose equation of motion is: 

 
𝑴 𝑥̈(𝑡, 𝒛) + 𝑪𝒙̇(𝑡, 𝒛) + 𝑲𝒙(𝑡, 𝒛) = 𝒈𝑝(𝑡, 𝒛) (1) 

 
where 𝑡  denotes time; 𝑝  is the Gaussian loading of 
duration 𝑇, which depends on time 𝑡 and 𝒛, the latter 

being a realization of a standard Gaussian multivariate 
probability distribution with density function 𝑓𝒁(𝒛); 𝒙 is 
the vector of displacements; 𝑴, 𝑪 and 𝑲 represent the 
mass, damping and stiffness matrices; and 𝒈 is a vector 
that couples the Gaussian loading with the corresponding 
degrees-of-freedom of the structure. Due to the uncertain 
nature in the loading, the displacement vector becomes 
also uncertain. 
A possible means for quantifying the uncertainty 
associated with the structural response is calculating the 
first excursion probability, which measures the chances 
that the structural response 𝜂 (which depends linearly on 
𝒙 ) exceeds a prescribed threshold level 𝑏  within the 
duration of the stochastic loading. Formally, the first 
excursion probability 𝑝𝐹  is expressed by means of the 
following integral: 
 

 𝑝𝐹 = ∫ 𝑓𝒁(𝒛)𝑑𝒛
𝒛∈𝐹

 (2) 

 
where 𝐹  is the set of all values of 𝒛 for which failure 
occurs, that is 𝐹 = {𝒛: 𝜂(𝑡, 𝒛) ≥ 𝑏 ∧ 𝑡 ∈ [0, 𝑇]} . In 
practical problems, the dimensionality of the above 
integral is quite high, in the order of hundreds or 
thousands. Furthermore, the response 𝜂  is not known 
analytically, but is the result of a structural analysis 
conducted applying, e.g. the finite element method. These 
two issues favor the application of Monte Carlo simulation 
for evaluating the integral associated with the first 
excursion probability. Nonetheless, Monte Carlo 
simulation may demand performing repeated structural 
analyses for different realizations of the stochastic loading, 
which can become prohibitive when dealing with involved 
structural models. A possible means for overcoming such 
issue consists of designing an advanced simulation scheme 
that exploits specific features of the problem at hand, as 
described in the sequence. 

3. Directional Importance Sampling 
As the structural systems considered in this contribution 
exhibit a linear behavior, it is straightforward to 
demonstrate that its response is linear with respect to 𝒛 at 
each time instant of analysis (Au & Beck, 2001; Der 
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Kiureghian, 2000). Hence, the failure domain is bounded 
by a series of hyperplanes, as represented schematically in 
Figure 1.  
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. Schematic representation of failure domain. 

 
Considering the geometry of the failure domain, it is 
possible to formulate the probability integral within the 
framework of Directional Importance Sampling, that is: 
 

𝑝𝐹 = ∫ ∫ 𝑓𝑅(𝑟)
𝑓𝑼(𝒖)

𝑓𝑼
𝐼𝑆(𝒖)

𝑓𝑼
𝐼𝑆(𝒖)𝑑𝑟𝑑𝒖

∞

𝑟∗(𝒖)𝒖∈Ω𝑈

 (3) 

 
where 𝒖 is a vector of unit Euclidean norm that points in 
the direction of 𝒛, with associated probability distribution 
𝑓𝑼(𝒖); 𝛺𝑈  is the set of all points belonging to the unit 
hypersphere; 𝑟  is the Euclidean norm of 𝒛 , with 
associated probability distribution 𝑓𝑅(𝑟) ; 𝑟∗(𝒖)  is the 
value of 𝑟  that fulfills the equation 𝑏 = 𝜂(𝑟𝒖) ; and 
where 𝑓𝑼

𝐼𝑆 (𝒖)  is the importance sampling density 
function associated with the direction vector. The latter 
importance sampling density function is equal to a 
weighted summation of the probability density function 
associated with 𝒖 conditioned on the occurrence of the 
failure event at each discrete time instant. That is: 
 

𝑓𝑼
𝐼𝑆 (𝒖) = ∑ 𝜔𝑘𝑓𝑼(𝒖|𝐹𝑘)

𝑛𝑇

𝑘=1

 (4) 

 
Where 𝜔𝑘 is a real number that acts as a weight (Au & 
Beck, 2001); 𝑛𝑇 is the number of discrete time instants of 
analysis; and 𝐹𝑘  denotes occurrence of the elementary 
failure event at discrete time 𝑡𝑘 , that is 𝐹𝑘 =
{𝒛: 𝜂(𝑡𝑘, 𝒛) ≥ 𝑏}. It can be shown that explicit expressions 
associated with 𝑓𝑼

𝐼𝑆 (𝒖) can be deduced by applying 
Bayes’ theorem, as discussed in (Misraji et al., 2020), 
leading to: 
 

𝑓𝑼
𝐼𝑆 (𝒖) =

𝑓𝑼(𝒖)

𝑃̂𝐹

∑ (1 − 𝐹Χ𝑛
2

𝑇
(𝑑𝑘(𝒖)2))

𝑛𝑇

𝑘=1

 (5) 

 

where 𝑃̂𝐹 denotes the summation of the probabilities of 
occurrence of all elementary failure events (that is, 𝑃̂𝐹 = 
∑ 𝑃[𝐹𝑘]𝑛𝑇

𝑘=1 ); 𝑑𝑘(𝒖) = 𝑏/|𝜂(𝑡𝑘, 𝒖)|; and 𝐹Χ𝑛
2

𝑇
(⋅) is the 

Chi-squared distribution of 𝑛𝑇  degrees-of-freedom. It 
should be noted that 𝑃̂𝐹 can be calculated in closed form, 
as discussed in detail (Au & Beck, 2001; Der Kiureghian, 
2000). 
Eq. (3) is estimated by generating 𝑁  random samples 
𝒖(𝑗), 𝑗 = 1, … , 𝑁  that follow the importance sampling 
density function 𝑓𝑼

𝐼𝑆(𝒖) , resulting in the following 
estimator for the failure probability (Misraji et al., 2020): 
 

𝑝𝐹 ≈ 𝑝𝐹 =
𝑃̂𝐹

𝑁
∑

1 − 𝐹Χ𝑛
2

𝑇
(𝑑𝑚𝑖𝑛(𝒖)2)

∑ (1 − 𝐹Χ𝑛
2

𝑇
(𝑑𝑘(𝒖)2))

𝑛𝑇
𝑘=1

𝑁

𝑗=1

 (6) 

 
where 𝑑𝑚𝑖𝑛(𝒖) = min (𝑑1(𝒖), … , 𝑑𝑛𝑇

(𝒖)). 
 
Numerical experience indicates that a few hundreds of 
samples allow producing highly accurate estimates of the 
sought probability. 

4. Example 
The example involves a 3D finite element model of a 
bridge structure that involves 10068 degrees-of-freedom, 
which is shown in the figure below. 

Figure 2. Bridge model, perspective view 

 
This example has been adapted from (Jensen et al., 2015). 
The bridge consists of a monolithic box girder represented 
through shell and beam elements. The superstructure is 
curved and has a total length of 119 [m], divided over five 
spans of length 24 [m], 20 [m], 23 [m], 25 [m] and 27 [m], 
respectively. The bridge's substructure is modeled by 
means of four columns with diameter 1.6 [m] and height 8 
[m]. Each of these columns is supported by four piles of 35 
[m] length and diameter 0.6 [m]. The interaction between 
the piles and soil is modeled by means of linear springs 
with translational stiffness. All elements of the bridge are 
made of reinforced concrete with Young's modulus 20 
[GPa]. Critical damping equal to 3% is considered for all 
mode shapes. The bridge is excited by a stochastic ground 
acceleration of 10 [s] duration modeled as a discrete white 
noise that passes through a Clough-Penzien filter. The time 
discretization step is equal to 0.01 [s], leading to a total of 
𝑛𝑇 = 1001 discrete time instants of analysis. Evidently, 
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the estimation of the first excursion probability involves a 
high-dimensional integral. 
The failure event is defined as the maximum relative 
horizontal displacement between the bottom and top of 
each column exceeding a threshold of 𝑏 = 0.02  [m] 
within the duration of the stochastic excitation. The failure 
probability is estimated using both Directional Importance 
Sampling and Monte Carlo Simulation. In order to assess 
the convergence properties of the estimator, a large number 
of samples, equal to 𝑁 = 106, is considered. The results 
obtained are shown in Figure 3. It is readily observed that 
Directional Importance Sampling produces a precise 
estimate of the first excursion probability with as few as 
100 samples. On the contrary, Monte Carlo requires about 
10000 samples for producing an estimate with the same 
precision. 

5. Conclusions 
The results presented in this contribution suggest that 
Directional Importance Sampling allows estimating first 
excursion probabilities most efficiently. In fact, a reduced 
number of samples allows estimating the sought 
probability with a high level of precision. 
Future research efforts aim at studying the application of 
Directional Importance Sampling for estimating 
probability sensitivity and for performing reliability-based 
optimization. 
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Carlo Simulation (MCS) 


