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Abstract: The deterioration of seismic-isolated rubber bearings affects the seismic performance of existing bridges and it is required 

to estimate the residual seismic performance of the existing bridges by seismic reliability analysis considering uncertainties due to the 

deterioration. However, with the complex performance function and time-demanding computation of nonlinear seismic responses, 

estimation of small failure probabilities is a challenging task and the surrogate modeling, especially for the adaptive Kriging model, 

has been paid attention to effectively evaluate the failure probabilities. In this study, a newly proposed method, namely AK-MCMC, 

is implemented to seismic reliability analysis of existing bridges with deteriorated rubber bearings. AK-MCMC approximates a set of 

intermediate failure surfaces by the adaptive Kriging model, which converges to the true failure surface, and is applicable for estimation 

of very small failure probabilities. The accuracy and efficiency of AK-MCMC are examined for two cases; the healthy and deteriorated 

conditions at the rubber bearings, and the results demonstrated that, as compared with Subset simulation (SS) and other adaptive 

Kriging models, AK-MCMC provides accurate results more efficiently regardless of the order of the failure probability.  
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1. Introduction 
Over the past decades, seismic-isolated rubber bearings 
have been considered as an attractive technology to 
mitigate the risk of seismic damages on bridges (Bhuiyan 
and Alam 2013). On the other hand, it is well known that 
the structural property of rubber bearings is varied due to 
the aging deterioration. Hence, it is important to estimate 
the residual seismic performance of existing bridges with 
deteriorated rubber bearings considering uncertainties due 
to the deterioration.  
   Seismic reliability analysis plays a key role in this 
context; however, with the complex performance function 
and time-demanding computation of nonlinear seismic 
responses, estimation of small failure probabilities is a 
challenging task. Surrogate modeling is an important 
approach to efficiently evaluate the performance function 
with approximate surrogate models. The commonly used 
surrogate models include the response surface (Sudret 
2012), neural network (Hurtado and Diego 2001), and 
Kriging model (Kaymaz 2005). 
   Recently, attention has been paid to methods by 
combining sampling procedures with surrogate models. 
Echard et al. (2011) proposed AK-MCS by combining the 
adaptive Kriging surrogate model with Monte Carlo 
simulation (MCS) and demonstrated its accuracy and 
efficiency. Huang et al. (2016) developed AK-SS, which 
combines AK-MCS and Subset simulation (SS) (Au and 
Beck 2001). However, these methods are not applicable for 
estimating very small failure probabilities as AK-MCS is 
not effective in approximating the failure surface when it 
is far away from the distribution center of input variables. 
To solve this problem, Wei et al. (2019) proposed a new 
procedure, namely AK-MCMC. Based on Markov chain 
Monte Carlo (MCMC) samples, this method approximates 
a set of intermediate failure surfaces by the adaptive 
Kriging surrogate model, which converges to the true 
failure surface. 

   This study aims to show the applicability of AK-
MCMC to seismic reliability analysis of existing bridges. 
The failure probability against the acceptance plastic 
modulus of the reinforced concrete (RC) pier is estimated 
for two cases; the healthy and deteriorated conditions at the 
rubber bearings, and compared with the results by SS and 
other adaptive Kriging surrogate models. 

2. Description of AK-MCMC 
AK-MCMC (Wei et al. 2019) is derived from SS (Au and 
Beck 2001). In the SS procedure, a sequence of 
intermediate failure domains is defined as 𝐹𝑖 = {𝐺(𝒙) ≤
𝑏𝑖} , where 𝒙(= [𝑥1, ⋯ , 𝑥𝑛])  is the uncertain input 
variables with the joint probability density function (PDF) 
𝑝(𝒙) , 𝐺(𝒙)  is the performance function and 𝑏𝑖  is the 
corresponding failure threshold (𝑏1 > 𝑏2 > ⋯ > 𝑏𝑚 = 0). 
The failure probability 𝑃𝑓 can be then expressed as: 

 𝑃𝑓 = P(𝐹1) ∏ P(𝐹𝑖+1|𝐹𝑖)𝑚−1
𝑖=1  (1) 

The intermediate probabilities P(𝐹1) and P(𝐹𝑖+1|𝐹𝑖) are 
set to be a constant value 𝑝0 and each intermediate failure 
threshold 𝑏𝑖  is calculated based on MC or MCMC 
samples. 
   Based on the SS procedure, the AK-MCMC procedure 
is described as follows and its flowchart is shown in Fig. 1. 

(1) Let 𝑖 = 1. Generate 𝑁1 MC samples 𝐖𝟏 according 
to the joint PDF 𝑝(𝒙).  

(2) Randomly select 𝑁0 samples from 𝐖𝟏 and estimate 
the true performance function 𝐺(𝒙)  on these 
samples. Attribute these 𝑁0 samples to the training 
population 𝐖𝒕. 

(3) Train or update the Kriging model 𝐺̂𝑖(𝒙) with 𝐖𝒕. 
(4) Predict the performance function for each non-training 

sample in 𝐖𝒊  by the Kriging model 𝐺̂𝑖(𝒙)  and 
obtain or update the intermediate failure threshold 𝑏𝑖 
based on the principle that ⌊𝑝0𝑁1⌋  samples in 𝐖𝒊 
drop into the intermediate failure domain 𝐹𝑖. 
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(5) Compute the learning function proposed by Echard et 
al. (2011) as 𝑈(𝒙) = |𝐺̂(𝒙) − 𝑏𝑖| 𝜎𝐺(𝒙)⁄ , where 
𝐺̂(𝒙)  is the Kriging predictor and 𝜎𝐺(𝒙)  is the 
Kriging standard deviation. If min(𝑈(𝒙)) ≥ 2  for 
all the 𝑁1  samples, go to the next step. Otherwise, 
find the non-training sample in 𝐖𝒊  with the 
minimum value of the learning function, compute the 
corresponding true performance function, add this 
point to 𝐖𝒕, and return to step (3). 

(6) If 𝑏𝑖 ≤ 0, let 𝑚 = 𝑖, save the Kriging model 𝐺̂𝑚(𝒙), 
and end the algorithm. Otherwise, generate 𝑁1 
MCMC samples 𝐖𝒊  following the conditional PDF 
𝑝(𝒙|𝐹𝑖) by calling the Kriging model 𝐺̂𝑖(𝒙) based 
on the modified Metropolis-Hastings (M-H) algorithm 
(Au and Beck 2001), let 𝑖 = 𝑖 + 1  and 𝐺̂𝑖(𝒙) =
𝐺̂𝑖−1(𝒙), and return to step (4). 

With the final Kriging surrogate model 𝐺̂𝑚(𝒙), the failure 
probability can be estimated by any sampling procedures, 
e.g. MCS and SS. 

Figure 1. Flowchart of AK-MCMC algorithm. 

   With regards to the learning function employed in step 
(5), since the Kriging predictor follows the standard 
Gaussian distribution, Φ(𝑈(𝒙))  is the probability of 
making a wrong classification on the sign of 𝐺(𝒙) − 𝑏𝑖 , 
where Φ is the standard normal cumulative distribution 
function. Thus, the stopping criterion, min(𝑈) ≥ 2 , 
corresponds to the case that the probability of making a 
wrong classification on the sign of 𝐺(𝒙) − 𝑏𝑖 is less than 
Φ(−2) = 0.023. 
   AK-MCMC adaptively generates a sequence of 
intermediate failure surfaces approximated by the Kriging 
surrogate model, which converges to the true failure 
surface. An illustration of AK-MCMC algorithm is 
provided in Fig. 2. Fig 2(a) shows an illustration of the 
approximation of the intermediate failure surface by MC 
samples. Here, the points represent the MC samples. In 

particular, the circles are the samples which drop into the 
region where 𝐺(𝒙) > 𝑏1 and the squares are the samples 
which drop into the intermediate failure domain 𝐹1. The 
grey points indicate the initial training samples and the 
black points show training samples which are adaptively 
selected based on the learning function. The dashed line 
illustrates the true intermediate failure surface and the solid 
line describes its Kriging surrogate model. Fig. 2(b) shows 
an illustration of the approximation of the failure surface 
by MCMC samples. Here, the points represent the MCMC 
samples, and, in particular, the triangles denote the samples 
in the failure domain. Similarly to Fig. 2(a), the black 
points show the training samples which are adaptively 
selected based on the learning function. The dashed line 
shows the true failure surface and the solid line indicates 
its Kriging surrogate model. Note that, no prior 
information about the failure probability is required for 
implementing this method. When the failure probability is 
larger than 𝑝0, AK-MCMC degrades into AK-MCS.  
   Comparing with SS, MCMC samples is generated 
based on the Kriging surrogate model instead of the true 
performance function in AK-MCMC. The approximation 
of the Kriging surrogate model only requires to compute 
the true performance function for a small set of the training 
samples adaptively chosen from MC or MCMC samples; 
hence, AK-MCMC needs a much smaller number of calls 
to the true performance function than the classical SS. 

(a). Approximation of the intermediate failure surface. 

(b). Approximation of the failure surface. 

Figure 2. Illustration of AK-MCMC algorithm. 
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3. Target bridge and analytical conditions 

3.1 Target bridge and its analytical model 
The target bridge is a seismic-isolated bridge designed 
based on the design specifications of highway bridges 
(Japan Road Association (JRA) 2016) and manual on 
bearings for highway bridges (JRA 2004). The RC pier 
with rubber bearings is modeled as a two degree of 
freedom (DOF) lumped mass system, as shown in Fig. 3. 
Descriptions of the target bridge are also listed in Table 1. 
Force-displacement relationships of the rubber bearing and 
RC pier are described by hysteresis loops using the bi-
linear and stiffness degradation bi-linear modes (so-called 
Takeda model) (Takeda et al. 1970), respectively. The 
ultimate strength of the pier is idealized as same as its yield 
strength; thus, the pier has no post-yield stiffness. Rayleigh 
damping is assumed in which damping ratios of the bearing 
and pier are given as 0% and 2%, respectively. 

Figure 3. 2-DOF lumped mass model for the target bridge. 

Table 1. Descriptions of the target bridge. 

Model parameter 
Nominal 

value 

Superstructure Mass 𝑀𝑠 (ton) 604.0 

Rubber 

bearing 

Yield strength (kN) 1118 

Yield stiffness 𝐾𝐵1 (kN/m) 40000 

Post-yield stiffness  

𝐾𝐵2 (kN/m)  

6000 

RC pier Mass 𝑀𝑝 (ton) 346.2 

Yield strength (kN) 3374 

Yield displacement (m) 0.0306 

Ultimate displacement (m) 0.251 

Yield stiffness 𝐾𝑃 (kN/m) 110100 

   A dynamic response analysis is conducted by 

Newmark 𝛽 method (𝛾=1 2⁄  and 𝛽=1 4⁄ ) with a time 

step ∆𝑡 = 0.001sec. The level-2 type-II-I-1 earthquake, 

defined in JRA (2016), is used as an input ground motion. 

This earthquake is a ground acceleration corresponding to 

an inland direct strike type earthquake with the low 

probability of occurrence, strong acceleration, and short 

duration, such as Kobe earthquake. Fig. 4(a) shows time-

histories of the relative displacement response at the 

superstructure and RC pier. It can be seen that the time-

histories of the relative displacement response at the pier is 

much smaller than those at the superstructure because the 

rubber bearings work properly as the isolator. Fig. 4(b) and 

(c) also show the response of the rubber bearing and RC 

pier, respectively. The plasticity of the RC pier is limited 

compared with that of the rubber bearing. 

(a). Time-histories of the relative displacement response. 

(b). Rubber bearing. 

(c). RC pier. 

Figure 4. Responses of the target bridge. 

3.2 Model parameter uncertainties 
The uncertain model parameters affecting the target bridge 
considered in this study are listed in Table 2. The 
uncertainties are considered as multiplicative coefficients 
applied to the nominal parameter values of Table 1. All 
uncertain parameters follow a Gaussian distribution.  
   Both healthy and deteriorated conditions at the rubber 
bearings are considered in this study. Statistical values for 
the healthy condition, as shown in Table 2(a), are based on 
Adachi (2002). On the other hand, statistical values for the 
deteriorated condition, as shown in Table 2(b), are set such 
that the yield and post-yield stiffnesses of the rubber 
bearings are 1.2 times those of the healthy condition and 
the yield strength of the rubber bearings is 0.5 times that of 
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the healthy condition based on Matsuzaki et al. (2017). The 
coefficient of variations (COVs) for the deteriorated 
condition are assumed identical to those for the healthy 
condition due to the lack of statistical information about 
deteriorated rubber bearings. 

Table 2. Model parameter uncertainties (Gaussian distribution). 

(a). Healthy condition. 

Model parameter 
Coefficient 

Mean COV 

Superstructure Mass  1.05 0.05 

Rubber 

bearing 

Yield strength 1.13 0.18 

Yield stiffness 1.00 0.07 

Post-yield stiffness  1.00 0.07 

RC pier Mass 1.05 0.05 

Ultimate displacement 1.062 0.181 

Yield stiffness 1.00 0.07 

(b). Deteriorated condition. 

Model parameter 
Coefficient 

Mean COV 

Superstructure Mass  1.05 0.05 

Rubber 

bearing 

Yield strength 0.5×1.13 0.18 

Yield stiffness 1.2×1.00 0.07 

Post-yield stiffness  1.2×1.00 0.07 

RC pier Mass 1.05 0.05 

Ultimate displacement 1.062 0.181 

Yield stiffness 1.00 0.07 

3.3 Seismic reliability analysis 
Seismic reliability analysis is conducted by AK-MCMC 
taking into account the uncertainties listed in Table 2. The 
performance function associated with the maximum 
relative displacement of the RC pier is considered in this 
study. A threshold value is given as the following equation 
based on JRA (2016): 

 𝐷0(𝒙) = 𝑢𝑝𝑦 + (𝑢𝑝𝑢(𝒙) − 𝑢𝑝𝑦) 2.4⁄  (2) 

where, 𝑢𝑝𝑦  and 𝑢𝑝𝑢(𝒙)  are the yield and ultimate 
displacements of the pier. The ultimate displacement of the 
pier is also taken into account as the random variable and 
its distribution information is listed in Table 2. Hence, the 
performance function is defined as: 

 𝐺(𝒙) = 𝐷0(𝒙) − 𝐷(𝒙) (3) 

where, 𝐷(𝒙) is the maximum displacement of the pier. 
   The parameters of AK-MCMC are set as follows. The 
number of initial training samples is set to be 𝑁0 = 12, as 
suggested in literatures (Echard et al. 2011, Huang et al. 
2016, and Wei et al. 2019), the number of initial MC 
samples is set to be 𝑁1 = 1000 , and the intermediate 
failure probability is set to be 𝑝0 = 0.01. Note that, these 
samples are employed to select the training samples based 
on the Kriging model, hence the total number of calls to 
the true performance function in AK-MCMC is different 
from this value. With the final Kriging surrogate model, 
the failure probability is estimated by SS and the initial 
number of MC samples in SS is chosen as 20,000. 
Reference values are defined as the failure probabilities 

assessed by MCS with a number of 500,000 samples. 
Furthermore, AK-MCMC is compared with the results by 
SS, AK-MCS, and AK-SS.  

4. Analytical results 

4.1 Healthy condition 
The results of seismic reliability analysis for the healthy 
condition at the rubber bearings are summarized in Table 
3. Table 3(a) shows the accuracy of the results. Here, 𝛿𝑃𝑓

 
and 𝜀𝑃𝑓

 are the COV of the failure probability and 
percentage error of the failure probability in comparison 
with the reference value obtained by MCS, respectively. 
Table 3(b) details the efficiency of the results. Here, 
𝑁𝑖𝑛𝑖𝑡𝑖𝑎𝑙  and 𝑁𝑐𝑎𝑙𝑙  are the initial number of MC samples 
and number of calls to the true performance function, 
respectively. The total computation time consumed in the 
five methods, all performed with Intel core 1.9 GHz – 4 
cores, is also listed in the last column of Table 3(b). 
   The accuracy and efficiency of AK-MCMC are 
compared with those of SS, AK-MCS, and AK-SS in terms 
of the COV of the failure probability, relative error 
compared with MCS, number of calls to the true 
performance function, and total computation time. The 
MCS result with the number of 500,000 samples is defined 
as the reference value. The reference failure probability is 
assessed as 8.0 × 10−5  and the corresponding COV of 
the failure probability is 15.8%. For the healthy condition 
at the rubber bearings, the failure probability is quite small 
because the rubber bearings work property as the isolator 
and the relative displacement response at the RC pier is 
suppressed. In addition, the total computation time is 
1.7 × 106 s and it is completely beyond the acceptable 
level for the practical engineering even if the local 
parallelization is employed. 
   SS is performed with a number of 1,000 initial samples 
and provides a result of 𝑃𝑓 = 8.2 × 10−5 with 3,400 calls 
to the true performance function. SS gives a very accurate 
result (the relative error is 𝜀𝑃𝑓

= 2.5%), while the COV 
of the failure probability is 44.9% which is too large to be 
accepted. The total computation time is 1.2 × 104s and is 
still beyond an acceptable level for practical engineering.  
   Methods applying the adaptive Kriging surrogate 
model, AK-MCS, AK-SS, and AK-MCMC, require 
considerably fewer calls to the true performance function 
and total computation time; hence, they are significantly 
more efficient than MCS and SS. AK-MCMC provides a 
result of 𝑃𝑓 = 7.6 × 10−5  with 91 calls to the true 
performance function. AK-MCMC gives a less accurate 
result than SS, but since its relative error is 𝜀𝑃𝑓

= 5.0%, it 
is still acceptable. Moreover, the COV of the failure 
probability and total computation cost are 9.6% and 133s, 
respectively, thus giving a definite improvement over the 
results of the classic SS. AK-MCMC adaptively produces 
three intermediate failure surfaces and the last Kriging 
surrogate model is an accurate approximation of the true 
failure surface.  
   On the other hand, AK-MCS gives a result of 𝑃𝑓 =
9.4 × 10−5  with 249 calls to the true performance 
function, which is both less accurate and less efficient than 
AK-MCMC. The relative error of the failure probability is 
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17.5% and it is beyond an acceptable level. AK-MCS 
requires iterative procedures with enlarging MC samples 
until the acceptance level for the COV of the failure 
probability is achieved. The acceptance level is set as 15% 
due to the quite small failure probability. Furthermore, the 
initial number of MC samples is set as 50,000 in order to 
ensure that there are enough samples in the failure domain. 
It causes a significant decrease in the efficiency of 
selecting optimal training samples from the MC samples. 
AK-MCS requires 10 times iterations and thus the 
selection of optimal training samples is performed on 
1,000,000 MC samples at the last iteration. As a result, it 
leads a large total computational cost (the total 
computational time is 923s). On the other hand, AK-
MCMC avoids this problem by adaptively approximating 
a set of intermediate failure surfaces and this procedure 
makes it possible to set the MC samples to be much 
smaller.  
   Finally, AK-SS gives a result of 𝑃𝑓 = 1.1 × 10−4 
with 30 calls to the true performance function. AK-SS 
provides the minimum number of calls to the true 
performance function and total computational time (52s). 
However, the relative error of the failure probability is 
37.5% and is much larger than that of AK-MCS and AK-
MCMC. AK-SS also requires iterative procedures with 
increasing MC samples until the acceptance level for the 
COV of the failure probability is achieved and the 
acceptance level is set as 10% to get an almost same COV 
as AK-MCMC. Furthermore, the initial number of MC 
samples is set as 10,000. AK-SS employs the SS procedure 
to estimate the failure probability; hence, the number of 
MC samples can be smaller than that of AK-MCS, 
however, it is still larger than that of AK-MCMC. In 
addition, AK-SS only requires two times iterations. 

Table 3. Results of seismic reliability analysis for the healthy 

condition. 

(a). Accuracy of the results 

Method 𝑃𝑓 𝛿𝑃𝑓
(%) 𝜀𝑃𝑓

(%) 

MCS 8.0 × 10−5 15.8 - 

SS 8.2 × 10−5 44.9 2.5 

AK-MCS 9.4 × 10−5 14.6 17.5 

AK-SS 1.1 × 10−4 9.5 37.5 

AK-MCMC 7.6 × 10−5 9.6 5.0 

(b). Efficiency of the results 

Method 𝑁𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑁𝑐𝑎𝑙𝑙 Time (s) 

MCS 500,000 500,000 1.7 × 106 

SS 1,000 3,400 1.2 × 104 

AK-MCS 50,000 249 923 

AK-SS 10,000 30 52 

AK-MCMC 1,000 91 133 

   As a consequence, adaptive Kriging surrogate models 
are significantly efficient to assess the quite small failure 
probability compared with MCS and SS. AK-MCMC is 
superior to AK-MCS and AK-SS considering its accuracy 
and efficiency thanks to its advantage that AK-MCMC 

approximates a sequence of intermediate failure surfaces 
by the Kriging surrogate model, which converges to the 
true failure surface, instead of directly approximates the 
true failure surface like AK-MCS and AK-SS.  

4.2 Deteriorated condition 
The results of seismic reliability analysis for the 
deteriorated condition at the rubber bearings are 
summarized in Table 4. Table 4(a) shows the accuracy of 
the results and Table 4(b) lists the efficiency of the results. 
The total computation time consumed in the five methods, 
all performed with Intel core 1.9 GHz – 4 cores, is also 
listed in the last column of Table 4(b). 
   The accuracy and efficiency of AK-MCMC are 
compared with those of SS, AK-MCS, and AK-SS in terms 
of the COV of the failure probability, relative error 
compared with MCS, number of calls to the true 
performance function, and total computation time. The 
MCS result with the number of 500,000 samples is defined 
as the reference value. The reference failure probability is 
obtained as 2.4 × 10−3  and the corresponding COV of 
the failure probability is 2.9%. For the deteriorated 
condition at the rubber bearings, the failure probability is 
larger than that for the healthy condition because the 
deterioration of the rubber bearings leads to the large 
relative displacement response at the RC pier.  
   SS is performed with a number of 1,000 initial samples 
and provides the same result as the probability obtained by 
MCS, with 2,249 calls to the true performance function. 
However, the COV of the failure probability is 27.9% and 
is too large to be accepted. The total computation time is 
7.5 × 103s and it is still beyond an acceptable level for 
practical engineering. 
   Same as the healthy condition, methods applying the 
adaptive Kriging surrogate model, AK-MCS, AK-SS, and 
AK-MCMC, require considerably fewer calls to the true 
performance function and total computation time; hence, 
they are significantly more efficient than MCS and SS. 
AK-MCMC provides a result of 𝑃𝑓 = 2.2 × 10−3  with 
63 calls to the true performance function. AK-MCMC 
gives a less accurate result than SS, while its relative error 
is 𝜀𝑃𝑓

= 8.3% and is still acceptable. Moreover, the COV 
of the failure probability and total computation cost are 
6.5% and 91s, respectively, and they are quite less than 
those of SS. AK-MCMC adaptively produces two 
intermediate failure surfaces and the last Kriging surrogate 
model is an accurate approximation of the true failure 
surface. Compared with the healthy condition, AK-MCMC 
gives the result with the almost same accuracy, regardless 
of the order of the failure probability. However, the 
number of calls to the true performance function and total 
computational time are reduced because the less 
intermediate failure surfaces are approximated for 
estimation of the relatively larger failure probability.  
   On the other hand, AK-MCS gives a result of 𝑃𝑓 =
2.0 × 10−3  with 206 calls to the true performance 
function, which is less accurate and efficient than AK-
MCMC. The relative error of the failure probability is 
16.7% and it is beyond acceptable level. Furthermore, the 
acceptance level for the iterative procedures is set as 15% 
to get an almost same COV as the healthy condition. The 
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initial number of MC samples is set as 5,000 in order to 
ensure that there are enough samples in the failure domain 
and AK-MCS requires five times iterations. The total 
computational time is 313s and is quite less than that for 
the healthy condition thanks to much less initial MC 
samples and iterations.  
   Finally, AK-SS gives a result of 𝑃𝑓 = 2.8 × 10−3 
with 95 calls to the true performance function. AK-SS 
provides an efficient result with small number of calls to 
the true performance function and short total 
computational time (145s). However, the relative error of 
the failure probability is same as AK-MCS and is too large 
to be accepted. Moreover, the acceptance level for the 
iterative procedures is set as 10% to get an almost same 
COV as AK-MCMC. The initial number of MC samples is 
set as 1,000 and AK-SS requires eight times iterations. 
Comparing with the healthy condition, more iterative 
procedures are employed and thus the number of calls to 
the true performance function and total computational time 
are much larger, while the initial number of MC samples is 
much smaller than that for the healthy condition.  

Table 4. Results of seismic reliability analysis for the 

deteriorated condition. 

(a). Accuracy of the results 

Method 𝑃𝑓 𝛿𝑃𝑓
(%) 𝜀𝑃𝑓

(%) 

MCS 2.4 × 10−3 2.9 - 

SS 2.4 × 10−3 27.1 0 

AK-MCS 2.0 × 10−3 14.3 16.7 

AK-SS 2.8 × 10−3 8.6 16.7 

AK-MCMC 2.2 × 10−3 6.5 8.3 

(b). Efficiency of the results 

Method 𝑁𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑁𝑐𝑎𝑙𝑙 Time (s) 

MCS 500,000 500,000 1.7 × 106 

SS 1,000 2,249 7.5 × 103 

AK-MCS 5,000 206 313 

AK-SS 1,000 95 145 

AK-MCMC 1,000 63 91 

   As a consequence, adaptive Kriging surrogate models 
are still significantly efficient to estimate the relatively 
large failure probability. AK-MCMC is still superior to 
AK-MCS and AK-SS considering its accuracy and 
efficiency, while the differences in these methods decrease 
compared with the healthy condition due to the relatively 
large failure probability. 

5. Conclusions 
In this study, a newly proposed adaptive Kriging surrogate 
model, namely AK-MCMC, is implemented to seismic 
reliability analysis of existing bridges with seismic-
isolated rubber bearings for two cases; the healthy and 
deteriorated conditions at the rubber bearings, and 
compared with the results by MCS, SS, and other adaptive 
Kriging models, AK-MCS and AK-SS. 
   The results demonstrated that AK-MCMC provides 
accurate results more efficiency compared with SS and 

other adaptive Kriging surrogate models, regardless of the 
order of the failure probability, by approximating a 
sequence of intermediate failure surfaces, which converges 
to the failure surface, instead of directly approximating the 
failure surface. Hence, AK-MCMC can be a promising 
approach for seismic reliability analysis involving small 
failure probabilities and time-consuming simulation codes 
in the practical engineering for estimation of the residual 
seismic performance of existing bridges. 
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