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Abstract: Turbopumps of liquid rocket engines require high reliability because unreliable turbopumps will certainly lead to 

catastrophic failure of a rocket launch. Aerospace products usually undergo multi-stage development and will be tested after each 

stage. Due to budget and time pressures, such tests typically have small sample sizes and short durations. For highly reliable 

products, few failures or zero failure may be observed in such tests. At the end of a new phase, relying solely on the data from the 

corresponding tests, the reliability assessment is not satisfactory. So, the data from the previous stage is better included in the 

reliability assessment of the current stage, which helps to develop the experimental design, improve the accuracy of the reliability 

assessment and make it more practical. In this study, we assume that the lifetime of turbopump components follow Weibull 

distribution, and there is only one failure occurred in the 1st stage and the 2nd stage has zero failure. Then a scaling factor method is 

presented to deal with the conversion problem of 1st stage data, to the 2nd stage. And the 2nd stage Bayes estimations of the Weibull 

distribution parameters are obtained by the Markov Chain Monte Carlo (MCMC) sampling method. Finally, the effect of the failure 

time in the 1st stage on the evaluation results of the 2nd stage is studied in this paper.  
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1. Introduction 
Liquid rocket engines require high reliability, as the lack 
of reliability of such products will lead to catastrophic 
failure of rocket launches. Reliability tests usually 
proceed to assess whether the product has reached the 
required reliability. Due to the pressure of budget and 
time to market, the reliability tests of aerospace products 
are performed with small sample size and short duration. 
In such tests, there are often very few or even no failures, 
which makes it difficult to assess reliability through 
traditional methods (Jia 2015). Meanwhile, products will 
experience multi-stage development with respective tests 
after each stage, by which, weaknesses are identified and 
corresponding modifications will be made in the next 
stage. This is an important process of product 
development and reliability growth (Tian 1992 and 
Wayne 2014). To improve the accuracy of reliability 
assessment, it is necessary to make full use of the 
available information, especially, the data from previous 
stages. Based on the motivation, it is reasonable to design 
a more appropriate evaluation method. 

A Bayesian evaluation method based on information 
conversion has been proposed. This method not only 
solves the problems mentioned above, but also provides 
an interval estimate of reliability, which is of great 
importance to engineering practice. Firstly, a new scaling 
factor method is proposed under Weibull lifetime 
distribution. Then, the prior distributions of the Weibull 
parameters are obtained by expertise, and finally, the 
Bayesian method is used to obtain estimates by applying 
of converted data. 

After verifying the effectiveness of this method, we 
hope to obtain some regular conclusions through further 
exploration. In this paper, Part 2 describes the 
experimental background and the data; the specific 
implementation process of this method is reflected in Part 
3; Part 4 is the main point of this article, which is to 

explore the influence of the failure time on the evaluates. 
The paper is summarized in Part 5. 

2. Background 
As a certain type of turbopump, the rated mission 
working time   is 500s  and two-unknown parameter 
Weibull life distribution is chosen to describe the lifetime. 
Two stages of reliability tests are arranged and the test 
design arrangement is listed in Table 1. 

Table 1 Test design of two stages 

Stage Censored time Sample size 

1 500at s=  1 10n =  

2 500bt s=  2 10n =  

 
There is one failure that occurred in the 1st stage, 

denoted by t1=316s and the others are censored, which 
are denoted by t2=…=t10=ta=500s. According to experts, 
the shape parameter is m1=1.5. Referring to the MLE 
(Maximum Likelihood Estimation) method (Song 2014), 
the characteristic life η1 (also called scale parameter) can 
be calculated by  
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   The product design would be revised in the 2nd stage. 
So, the distribution parameters, m2 and η2, differ from 
those in the 1st stage. Besides, due to the reliability 
growth along with the design revisions, there is no failure 
occurred in the 2nd stage, which makes it difficult to 
evaluate reliability by the MLE method. Thus, Bayesian 
method, by fusing multi-source information, is desirable 
to obtain more accurate results (Jiang 2010).  

3. Bayesian evaluation 
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3.1 Data from the first stage 
According to Zhang (2004), the converted data of the 1st 
stage can be used in the 2nd stage by scaling factor 
which is defined as 
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where pi is the failure probability of the ith stage. 
As the life distribution of turbopump is assumed to 

follow Weibull distribution, it is improper to define the 
scaling factor by Eq.2. Moreover, it only converts the 
sample size between two stages, while ignoring the 
important time information. Therefore, inspired by this 
method, a modified scaling factor method is introduced 
here in the two-stage test. The failure probability of the 
1st stage is 
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where p1j is the failure probability when t = tj in the 1st 
stage. The failure probability of the 2nd stage p2 is 
calculated by an empirical formula which was proposed 
by Bailey (1997). 
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Correspondingly, the scaling factor is changed to 
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Next, the converted data will be obtained by Eq.6 and 
the results are listed in Table 2. In this case, p2 is only 
related to the sample size n2. Therefore, p2 is a constant 
in Table 2. p1j is treated as time-dependent because the 
data in the 1st stage is sufficient and the Weibull 
distribution is assumed. The parameter η1 has been 
obtained by the MLE method in Eq.1. Next, the failure 
probabilities at different times are known by Eq.3. So, 
there are two sets in p1j, as well as Cj and t1j in Table 2. 
The second row corresponds with the converted results of 
the failure time (t1=316s), and the third row corresponds 
with converted results of the right-censored data 
(t2=…=t10=ta=500s). 

 1j j j jt t t C→ =   (6) 

Table 2 The scaling factor between the two-stage test 

jt  1 jp  
2p  jC  1 jt  

316 0.0515 0.0611 0.8431 266.39 

500 0.0999 0.0611 1.6357 817.84 

 

3.2 Determination of Bayesian prior distribution 
The prior distributions should be determined primarily. 
Obviously the relationship between η2 and the mission 
reliability Rτ is 
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Due to the reliability growth, the mission reliability 
of the 2nd stage is greater than that of the 1st stage and it 
cannot exceed 1 (Liu 2006 and Qiu 2018). Simply, we 
can use a uniform distribution to describe the prior 
distribution of Rτ. 
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where RL is the mission reliability of the 1st stage, 
determined by Eq.9. 
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The shape parameter m2 is a material-related 
parameter. In engineering practice, an interval that 
contains the true value can be provided by experience. 
Due to this reason, uniform distribution in Eq.10 is 
adopted. 
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where the lower and upper limits ma and mb are 
determined by experts. 

3.3 Bayesian assessment 
In this case, the likelihood function is 
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Substituting Eq.7-10 into Eq.11, the joint posterior 
distribution of Rτ and m2 is 
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The kernel of the posterior distribution is also obtained. 
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Since the kernel function has the same dimension as 
the target distribution and there are two unknown 
parameters in Eq.13, the MCMC method is proposed 
here for complex distribution without an analytical 
solution (Aslett 2017). Metropolis-Hastings (M-H) 
sampling and Gibbs sampling are two widely used 
sampling plans in MCMC. What’s more, the Markov 
process constructed by the M-H sampling algorithm 
satisfies the meticulous and stationary conditions. 

Estimated values of (m2, Rτ) are (1.99, 0.96). By 
substituting to Eq.7, the value of η2 is solved and 
η2=2942.0. Then a comparison of the CDFs (Cumulative 
Distribution Functions) between two stages is shown in 
Fig.1. 
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Figure 1. The comparison between two stages. 

Furthermore, an interval estimate is more practical in 
engineering projects. By solving Eq.14 and Eq.15, the 
confidence lower limit RLL, at a given confidence level 
 , will be obtained. And the estimates under different   
are listed in Table 3. 
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Table 3 The estimates under different   

  0.95 0.90 0.75 

LLR  0.9108 0.9190 0.9380 

 

4. The effect of failure time on evaluates 
The entire process of reliability assessment has been 
completed in Part 3. This part will explore the 
relationship between the failure time t1 and the estimate 
of η2. 

Let the failure time t1 in [0,500] (second) change in 5s 
steps, the corresponding estimates of η2 can be calculated 
and plotted in Fig.2.  

 

Figure 2. Different results over different failure time. (m, η) 

The reason why this tendency appears will be 
explored here. Considering the effect of the scaling 
method on the results, we replace the scaling factor 
method in Section 3.1 with the following Binomial 
Scaling method (Zhang 2004). 

 1

r
p

n
=  (16) 

 

Figure 3. Different results over different failure times. (0-1) 

Comparing Fig.2 with Fig.3, the scaling method under 
Weibull distribution is less affected by the failure time 
distinctly. As we have assumed that there is a reliability 
growth between two stages, the characteristic life must 
meet η2>η1. Take this as the basis for comparison, the 
range of failure time in Fig.2 (0,330) is greater than the 
Binomial scaling factor method in Fig.3 (0,195). 
However, the trend of η2 under the two different methods 
is uniform. As the failure time approaches the censoring 
time, the characteristic life of the 2nd stage decreases. 
This indicates that the choice of scaling methods is not 
the main reason for the decreasing trend, other reasons 
need to be considered to continue exploring. 

Then we hope to explain this curve by studying the 
trend of the parameters. There are many variables during 
the reliability assessment in Part 3. The diversifications of 
involved variables are summarized in Table 4. Variables 
before M-H in Table 4 are used in M-H arithmetic while 
Variables in M-H are the results of MCMC sampling. In 
particular, the trends of m2 and Rτ over the increasing 
failure time are plotted in Fig.4 and 5, respectively. 

Table 4 Variables during reliability assessment 

Indepen- 
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Figure 4. The trend of m2 over increasing failure time. 



The Seventh Asian-Pacific Symposium on Structural Reliability and Its Applications (APSSRA2020) 

October 4–7 2020, Tokyo, Japan 

T. Takada, I. Yoshida & T. Itoi (editors) 

 

Figure 5. The trend of Rτ over increasing failure time. 

After obtaining the estimates of m2 and Rτ, we can 
calculate η2 by Eq.7. The following conclusions are 
drawn after exploring the interactions between variables 
in Eq.7: 
C(1) When η2 is constant, Rτ is positively correlated with 
m2. 
C(2) When m2 is constant, Rτ is positively correlated with 
η2. 
C(3) When Rτ is constant, m2 is negatively correlated with 
η2. 

Focusing on C(1), Table 4 is consistent with it, and 
both parameters Rτ and m2 are increasing. From C(2) and 
C(3), when Rτ and m2 are both increasing, they have 
contrary impacts on η2. Note that in Table 4, η2 decreases 
over failure time t1, while Rτ and m2 are both increasing 
over t1. This indicates that C(3) is consistent with our 
proposed method in Table 4. Namely, m2 has a greater 
influence on η2 than Rτ. To improve the quality of 
estimated value of m2 in the algorithm, the upper and 
lower limits given by experts should be taken into 
account. Therefore, the fusing of multi-source 
information to make more accurate judgments and 
narrow the interval of shape parameter can effectively 
improve the accuracy of reliability assessment. 

5. Conclusion 
For a multi-stage test with few or no failures data, a 
feasible solution to evaluate products reliability was 
proposed. The new scaling factor method under Weibull 
distribution is developed from the Binomial Scaling 
method, and it enables wider applications. 

Based on this method, the relationship between the 
failure time and the evaluation results is discussed in this 
paper. After rigorous research, it has been revealed that 
the impact of shape parameter of 2nd stage on the 
reliability assessment is greater than mission reliability. 
To improve the accuracy of reliability assessment, 
multiple sources of information are highly recommended 
and the interval of (ma, mb) determined by experts, should 
be better shortened. 
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