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Abstract: In this study, a simplified method for estimating the maximum displacement of oscillators with bi-linear, bi-linear-slip, or 
tri-linear hysteresis curves is proposed. The method is based on a newly discovered simple relationship with the natural period 
dependent spectrum intensity, which is defined herein as an integration of an elastic acceleration response spectrum from the elastic 
natural period of the oscillator to the elongated natural period. The accuracy of the proposed method is investigated based on numerical 
examples. The results indicate that the bias of the estimates by the proposed method is significantly smaller than that of other methods, 
regardless of the types and characteristics of the oscillator. Additionally, the dispersion of the estimates by the proposed method is 
mostly smaller than that of the other methods. Moreover, the dispersion models of the proposed method are presented in this paper. 
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1. General
For reliability-based seismic performance assessment and
design of structures, the structural demand needs to be
evaluated in a probabilistic sense. Such information for
given structures can be obtained via a simulation-based
approach (e.g., Collins et al. 1996) with nonlinear dynamic
analysis (NDA). However, the seismic demand must be
estimated for numerous earthquake records, which
requires intensive computational effort. Thus, a predictor
of seismic structural demands that is more time-efficient
than NDA can be practically useful.

The calculation of response and limit strength method 
was introduced in the Japanese Building Code in 2000 as a 
seismic design rule for ordinary building structures. The 
predictor of structural demands in this method evaluates 
inter-story drifts, only considering the inelastic first-modal 
response. Luco and Cornell (2007) proposed a predictor, 
originally as an earthquake ground motion intensity 
measure (IM), that uses the square-root-of-sum-of-squares 
(SRSS) rule of modal combination and considers the first-
mode inelastic spectral displacement. Mori et al. (2004, 
2006) proposed a predictor based on Luco and Cornell's 
method that considers a post-elastic deflected shape for the 
first modal vector.  

These techniques use the maximum displacement 
response of the inelastic oscillator, 𝑑𝑑max, that is equivalent 
to the original frame. The IM, such as peak ground 
acceleration (𝑃𝑃𝑃𝑃𝑃𝑃 ), peak ground velocity (𝑃𝑃𝑃𝑃𝑃𝑃 ), and 
spectrum intensity (𝑆𝑆𝑆𝑆) (Housner 1952) have been used to 
predict 𝑑𝑑max ; whereas numerous studies on IM have 
shown that the appropriate IM for predicting the response 
of structures depend on the natural period, 𝑇𝑇1, of the given 
structure. Although the elastic spectral response is a 
function of 𝑇𝑇1 , it does not consider the effect of the 
inelastic behavior of oscillators, which questions the 
accuracy and applicability of the 𝑑𝑑max estimation method 
based on the elastic spectral response. 

With respect to the aforementioned problem, Kitahara 
and Itoh (1999, 2000) proposed a new IM known as natural 
period dependent 𝑆𝑆𝑆𝑆  (noted as 𝑆𝑆𝑆𝑆n.p.  hereafter) that is 
applicable to bridge piers with a wide range of the natural 

period, and the 𝑑𝑑max estimation method based on 𝑆𝑆𝑆𝑆n.p.. 
This IM is defined as an integration of an elastic velocity 
response spectrum, 𝑆𝑆v; not from 0.1 s to 2.5 s as defined 
by Housner, but from 𝑒𝑒 ∙ 𝑇𝑇1  to 𝑓𝑓 ∙ 𝑇𝑇1  ( 𝑒𝑒 , 𝑓𝑓 : constant 
values). Furthermore, Kadas et al. (2011) have proposed a 
modified 𝑆𝑆𝑆𝑆n.p. for reinforced concrete (RC) frames. This 
is defined as an integration of an elastic acceleration 
response spectrum, 𝑆𝑆a, between 𝑇𝑇1 and the natural period 
elongated by the inelastic behavior of the oscillator 
equivalent to the RC frame, 𝑇𝑇el , that is estimated for a 
given ground motion on the basis of the elastic acceleration 
spectral response. They demonstrated that the modified 
𝑆𝑆𝑆𝑆n.p. correlates better with the inelastic response of RC 
frames compared to other spectral intensities. 

Optimally estimating 𝑑𝑑max  based on the general 
relationship between 𝑑𝑑max  and modified 𝑆𝑆𝑆𝑆n.p. is 
important; however, Kadas et al. have not yet determined 
this relationship. In this study, it is found that the 
relationship between 𝑑𝑑max  and modified 𝑆𝑆𝑆𝑆n.p. can be 
modeled by a simple linear function based on the NDA 
results of the oscillators with bi-linear, bi-linear-slip, or tri-
linear hysteresis curves. Modified 𝑆𝑆𝑆𝑆n.p. used in this study 
is defined as an integration of 𝑆𝑆a  from 𝑇𝑇1  to 𝑇𝑇el 
estimated by the maximum ductility factor, 𝜇𝜇 , of the 
oscillator, which is followed by the proposed 𝑑𝑑max 
estimation method based on the combination of the above 
relationships and the elastic response spectrum of a given 
ground motion. Further, the accuracy of the proposed 
method is investigated using the NDA results. 

2. Past Studies on Natural Period Dependent SI
Kitahara and Itoh proposed 𝑆𝑆𝑆𝑆n.p. defined by the following 
equation for bridge piers. They showed that the correlation
coefficient between 𝑆𝑆𝑆𝑆n.p.  and 𝑑𝑑max  of the oscillators
equivalent to piers was 0.90-0.95, whereas the correlation
coefficient between 𝑃𝑃𝑃𝑃𝑃𝑃s and 𝑑𝑑max was approximately
0.70-0.90.

𝑆𝑆𝑆𝑆n.p. =
1

(𝑓𝑓 − 𝑒𝑒) ∙ 𝑇𝑇1
� 𝑆𝑆v(𝑇𝑇;ℎ1 = 0.05)d𝑇𝑇
𝑓𝑓∙𝑇𝑇1

𝑒𝑒∙𝑇𝑇1
 (1) 

Here, ℎ1 is a damping factor of piers, 𝑒𝑒 and 𝑓𝑓, which are 
set to 0.9 and 1.2, respectively, for steel piers and 1.0 and  
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2.8, respectively, for RC piers.   
Kadas et al. proposed a modified 𝑆𝑆𝑆𝑆n.p. defined by the 

following equation and showed the correlation coefficient 
between the modified 𝑆𝑆𝑆𝑆n.p. and maximum inter-story drift 
ratio of RC frames was 0.792-0.992:  

modified 𝑆𝑆𝑆𝑆n.p. = �
𝑆𝑆a(𝑇𝑇; ℎ1 = 0.05)

𝐶𝐶y ∙ g
∙
𝑇𝑇 − 𝑇𝑇1

𝑇𝑇el − 𝑇𝑇1
d𝑇𝑇

𝑇𝑇el

𝑇𝑇1

 (2) 

where 𝐶𝐶y is the yield base shear force coefficient of an 
oscillator equivalent to the RC frame and g  is the 
gravitational acceleration. In addition, 𝑇𝑇el is estimated by 
the following equation, which is obtained by modeling the 
relationship between the elastic acceleration spectral 
responses and the natural periods estimated based on the 
secant stiffness at the maximum response of the oscillator 
calculated via NDA: 

𝑇𝑇el = 1.07 ∙ 𝑇𝑇1 ∙ �𝑆𝑆a(𝑇𝑇;ℎ1 = 0.05)/(𝐶𝐶y ∙ g)�0.45 (3) 

3. New Natural Period Dependent SI
This study defines a natural period dependent 𝑆𝑆𝑆𝑆, 𝑆𝑆𝑆𝑆𝜇𝜇, as
follows:

𝑆𝑆𝑆𝑆𝜇𝜇 = � 𝑆𝑆a(𝑇𝑇;ℎ1)d𝑇𝑇
𝑇𝑇el

𝑇𝑇1
 (4) 

where 𝑇𝑇el is the natural period elongated by the inelastic 
behavior of the oscillator. It is estimated with 𝜇𝜇 of the 
oscillators with bi-linear, bi-linear-slip, or tri-linear 
hysteresis curves as follows: 

𝑇𝑇el =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

[Bi- liear, Bi- liear- slip] 

𝑇𝑇1�
𝜇𝜇

1 − 𝛼𝛼 + 𝛼𝛼 ∙ 𝜇𝜇

[Tri- liear] 

⎩
⎪
⎨

⎪
⎧𝑇𝑇1�

𝜇𝜇
1 − 𝛼𝛼 + 𝛼𝛼 ∙ 𝜇𝜇  (𝜇𝜇 < 𝜇𝜇g)

𝑇𝑇g�
𝜇𝜇/𝜇𝜇g

1 − 𝛼𝛼g + 𝛼𝛼g ∙ 𝜇𝜇/𝜇𝜇g  (𝜇𝜇 ≥ 𝜇𝜇g)

(5) 

Figure 1 presents the relationship between the shear 
force, 𝑄𝑄, and displacement, 𝑑𝑑, of the oscillators with (a) 
bi-linear, bi-linear-slip, and (b) tri-linear hysteresis curve. 
Here, 𝑚𝑚 is the mass, 𝑑𝑑y and 𝑑𝑑y2 are the first and second 
yield displacements, respectively, 𝜇𝜇g=𝑑𝑑y2/𝑑𝑑y , 𝑘𝑘  is the 
elastic stiffness, 𝑘𝑘g  is the secant stiffness connecting 
origin and second break point, 𝐶𝐶y2  is the shear force 
coefficient at the second break point, 𝑇𝑇g  is the natural 
period according to 𝑘𝑘g , 𝛼𝛼 and 𝛼𝛼𝛼𝛼 are the ratios of the 
second and third slope, respectively, and 𝛼𝛼g = 𝛼𝛼𝛼𝛼𝛼𝛼/𝑘𝑘g.  

4. Relationship between 𝑺𝑺𝑺𝑺𝝁𝝁 and 𝒅𝒅𝐦𝐦𝐦𝐦𝐦𝐦
In this section, the general relationship between 𝑆𝑆𝑆𝑆𝜇𝜇 and
𝑑𝑑max is modeled based on the NDA results.

4.1 Ground motion records and inelastic oscillators  
Considering the effect of the characteristics of various 
ground motions, this study uses 219 observed ground 
motions recorded mostly in the United States and Japan 
and 1400 simulated ground motions. 

Of the 219 observed ground motions, (Furukawa et al., 
2017) 108 were intraplate earthquakes of moment 
magnitude M=6.0-7.7, and the other 111 were interplate 
earthquakes (M=7.1-8.0), including 91 recorded during the 
Tohoku Region Pacific Coast earthquake that occurred on 
March 11, 2011 (Knet).  

The simulated ground motions (Mori et al., 2018) 
consist of 6 sets of 50 ground motions, which consider 
different types of earthquakes such as interplate or 
intraplate, as well as soil conditions such as hard, medium, 
or soft. The ground motions in each set were normalized 
such that their 𝑃𝑃𝑃𝑃𝑃𝑃s equaled 0.5, 1.0, 1.5, or 2.0×103 
(mm/s). The durations of the ground motions were set to 
40.96 (s) and 163.84 (s) for intraplate and interplate 
earthquakes, respectively. 

The oscillators with the following characteristics were 
considered: 
[Bi-linear, Bi-linear-slip] 
 𝑇𝑇1 =0.10, 0.15, 0.20, 0.25, 0.35, 0.5,0 0.75, 1.00, 1.25,

1.50, or 2.00 (s)
 𝐶𝐶y =0.20, 0.30, 0.40, 0.50, 0.60, or 0.70
 𝛼𝛼 =0.00, 0.03, 0.06, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60,

0.70, 0.80, 0.90, or 0.99 
 ℎ1 =0.02
[Tri-linear]
 𝑇𝑇1, 𝛼𝛼, ℎ1: Same values as bi-linear and bi-linear-slip
 𝐶𝐶y =0.20, 0.30, 0.40, or 0.50
 𝐶𝐶y2 = 𝐶𝐶y+𝐶𝐶x where 𝐶𝐶x =0.05, 0.10, 0.20, or 0.30
 𝛼𝛼𝛼𝛼 where 𝛽𝛽 =0.03, 0.06, 0.10, 0.20, 0.30, 0.40, 0.50, 

0.60, 0.70, 0.80, 0.90, or 0.99 

4.2 Analysis of relationship between 𝑺𝑺𝑺𝑺𝝁𝝁 and 𝒅𝒅𝐦𝐦𝐦𝐦𝐦𝐦 
The relationship between 𝑆𝑆𝑆𝑆𝜇𝜇 and 𝑑𝑑max is modeled using 
half of the ground motion records described in Section 4.1, 
and the other records are used to investigate the accuracy 
of the proposed method in Section 6. These records were 
divided such that they did not have a bias of characteristics 
for the ground motions. 

Figure 2(a) presents the relationship between 𝑆𝑆𝑆𝑆𝜇𝜇 and 
𝑑𝑑max of the oscillators with the bi-linear hysteresis curve 
(𝑇𝑇1 = 0.50, 𝛼𝛼 = 0.00 and 𝐶𝐶y = 0.20, 0.40, and 0.60) 
calculated via NDA using the ground motions described 
above in the forms of ln (𝑆𝑆𝑆𝑆𝜇𝜇) and ln (𝑑𝑑y(𝜇𝜇 − 1)). Notably, 
only the results within the range of 1 < 𝜇𝜇 < 20, which are 
generally of concern in structural engineering, were plotted 
in the figure. Because all the results are plotted closely 
along a single linear line, regardless of the 𝐶𝐶y values, the 
relationship can be modeled by a linear function. As shown 
in Figure 2(a), the regression lines are also presented by a 
solid line as well as the dispersion of ln (𝑑𝑑y(𝜇𝜇 − 1))  on 
ln (𝑆𝑆𝑆𝑆𝜇𝜇), 𝜎𝜎SI.  Figure 1 Parameters of hysteresis curve 

( ) Bi-linear, Bi-linear-slip ( ) Tri-linear
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Figures 2(b) and (c) present the relationship between 
ln (𝑆𝑆𝑆𝑆𝜇𝜇)  and ln (𝑑𝑑y(𝜇𝜇 − 1))  for the oscillators with bi-
linear-slip (𝑇𝑇1 =0.50, 𝛼𝛼 =0.00 and 𝐶𝐶y =0.20, 0.40, 0.60) 
and tri-linear (𝑇𝑇1 = 0.50, 𝛼𝛼 = 0.90, 𝛽𝛽 = 0.00, 𝐶𝐶y = 0.20, 
0.40 and 𝐶𝐶y2 = 0.40, 0.45, 0.60) hysteresis curves, 
respectively. Additionally, the relationship in Figure 2(b) 
can be modeled by a linear function as the relationship in 
Figure 2(a); however, the relationship in Figure 2(c) cannot 
be modeled this way. Although not shown in Figure 2(c), 
the tendency of the relationship changed when the value of 
the vertical axis was equal to ln (𝑑𝑑y(𝜇𝜇g − 1)) for all three 
oscillators with tri-linear hysteresis curves. Considering 
these observations, all of the results plotted in Figure 2 
were re-plotted in Figure 3 with new vertical axes, ln (𝑑𝑑0), 
defined by the following equation, where all of the results 
were plotted closely to a single linear line for each 
hysteresis curve. 𝑑𝑑0  is expressed in Figure 1 as the 
interception of 𝑄𝑄 = 0 and the linear line with the slope 
equal to 𝑘𝑘 though the maximum response point.  

𝑑𝑑0 =

⎩
⎪
⎨

⎪
⎧

[Bi- liear, Bi- liear- slip] 
𝑑𝑑y(𝜇𝜇 − 1)(1 − 𝛼𝛼)         
[Tri- liear]                                                    

�
𝑑𝑑y(𝜇𝜇 − 1)(1 − 𝛼𝛼)   (𝜇𝜇 < 𝜇𝜇g)
𝑑𝑑y(𝜇𝜇 − 1)(1 − 𝛼𝛼) + 𝑑𝑑𝑔𝑔   (𝜇𝜇 ≥ 𝜇𝜇g)

 (6) 

where 𝑑𝑑𝑔𝑔 = 𝑑𝑑y(𝜇𝜇 − 𝜇𝜇g)(𝛼𝛼 − 𝛼𝛼𝛼𝛼). 
   As shown in Figure 3, the results of the oscillators with 
the bi-linear and bi-linear-slip hysteresis curve in Figures 
2(a) and (b) are moved in the upper direction by adding the 
constant value, ln (1 − 𝛼𝛼) , to the value of the vertical 
coordinate. In Figure 3, the result of the oscillators with the 
tri-linear hysteresis curve in Figure 2(c) are moved as well, 
and re-plotted on the new vertical axis, ln (𝑑𝑑y(𝜇𝜇 − 1)(1 −
𝛼𝛼) + 𝑑𝑑𝑔𝑔), in the range of 𝜇𝜇 ≥ 𝜇𝜇g.  

4.3 Modeling relationship between 𝑺𝑺𝑺𝑺𝝁𝝁 and 𝒅𝒅𝐦𝐦𝐦𝐦𝐦𝐦 
Results similar to Figure 3 were obtained for all the 
oscillators described in Section 4.1, and the relationship 
between ln�𝑆𝑆𝑆𝑆𝜇𝜇�  and ln(𝑑𝑑0)  is modeled by the linear 
function expressed by Eq. (7). The slope, 𝐴𝐴1, and intercept, 
𝐴𝐴2, are estimated by Eqs. (8) and (9), respectively. 

ln(𝑑𝑑0) = 𝐴𝐴1 ∙ ln�𝑆𝑆𝑆𝑆𝜇𝜇� + 𝐴𝐴2  (7) 

𝐴𝐴1 = 𝐵𝐵1 ∙ ln(𝑇𝑇1) + 𝐵𝐵2/(𝑇𝑇1) + 𝐵𝐵3 (8) 

𝐴𝐴2 = 𝐵𝐵4 ∙ ln(𝑇𝑇1) + 𝐵𝐵5  (9) 

Here, 𝐵𝐵𝑝𝑝  (𝑝𝑝 =1,2,3,4,5) is estimated by substituting the 
values in Table 1 into Eq. (10). 

𝐵𝐵𝑝𝑝 =

⎩
⎪⎪
⎨

⎪⎪
⎧

[Bi- liear] 
𝑏𝑏𝑝𝑝,1𝛼𝛼3 + 𝑏𝑏𝑝𝑝,2𝛼𝛼2 + 𝑏𝑏𝑝𝑝,3𝛼𝛼 + 𝑏𝑏𝑝𝑝,4√𝛼𝛼 + 𝑏𝑏𝑝𝑝,5

[Bi- liear- slip]        
𝑠𝑠𝑝𝑝,1𝛼𝛼3 + 𝑠𝑠𝑝𝑝,2𝛼𝛼2 + 𝑠𝑠𝑝𝑝,3𝛼𝛼 + 𝑠𝑠𝑝𝑝,4√𝛼𝛼 + 𝑠𝑠𝑝𝑝,5

[Tri- liear]        
𝑡𝑡1 𝑝𝑝𝛼𝛼3 + 𝑡𝑡2 𝑝𝑝𝛼𝛼2 + 𝑡𝑡3 𝑝𝑝𝛼𝛼 + 𝑡𝑡4 𝑝𝑝√𝛼𝛼 + 𝑡𝑡5 𝑝𝑝

(10) 

where 𝑡𝑡𝑟𝑟 𝑝𝑝 = 𝑡𝑡𝑟𝑟 𝑝𝑝,1𝛽𝛽3 + 𝑡𝑡𝑟𝑟 𝑝𝑝,2𝛽𝛽2 + 𝑡𝑡𝑟𝑟 𝑝𝑝,3𝛽𝛽 + 𝑡𝑡𝑟𝑟 𝑝𝑝,4�𝛽𝛽 + 𝑡𝑡𝑟𝑟 𝑝𝑝,5. 

5. Proposed Estimation Method for 𝒅𝒅𝐦𝐦𝐦𝐦𝐦𝐦
The value of 𝑑𝑑max can be estimated as the intersection of
the straight line modelled by Eq. (7), as well as the
relationship between 𝑆𝑆𝑆𝑆𝜇𝜇  (Eq. (4)) and 𝑑𝑑0  (Eq. (6))
estimated by gradually increasing 𝜇𝜇, and accordingly 𝑇𝑇el
(Eq. (5)) from 𝑇𝑇1 for each ground motion. Hereafter, this
relationship is referred to as the “spectrum line.” Figure 4
presents the straight line modelled by Eq. (7) (solid line)
and a spectrum line (dashed line) as well as the NDA result
of an oscillator to a given ground motion (outlined circle).
By definition, the NDA result is always located on the
spectrum line of a given ground motion. Therefore, as
shown in Figure 3, when the relationship has no dispersion,
i.e. 𝜎𝜎SI = 0 , 𝜇𝜇  of the estimate for the ground motion
records is equal to 𝜇𝜇 calculated via NDA.

6. Accuracy of Proposed Method

6.1 Bias and dispersion 
The accuracy of various estimation methods is expressed 
by its bias, 𝑎𝑎, defined by the median (or geometric mean) 
of 𝜇𝜇 of the estimate divided by 𝜇𝜇 calculated via NDA for 
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the 𝑗𝑗 th ground motion records, 𝜇𝜇est,𝑗𝑗/𝜇𝜇NDA,𝑗𝑗 , and its 
dispersion, 𝜎𝜎 , defined by the standard deviation of the 
natural logarithms of 𝜇𝜇est,𝑗𝑗/𝜇𝜇NDA,𝑗𝑗  is estimated by the 
following equations. The bias and dispersion are 
equivalently obtained by performing a one-parameter log-
log linear least-squares regression of 𝜇𝜇NDA,𝑗𝑗 on 𝜇𝜇est,𝑗𝑗.  

𝑎𝑎 = exp�
1
𝑛𝑛� ln�𝜇𝜇NDA,𝑗𝑗� −

𝑛𝑛

𝑗𝑗=1

1
𝑛𝑛� ln�𝜇𝜇est,𝑗𝑗�

𝑛𝑛

𝑗𝑗=1

�   ^ (11) 

𝜎𝜎 = �
1

𝑛𝑛 − 2��ln�𝜇𝜇NDA,𝑗𝑗� − �ln(𝑎𝑎) + ln�𝜇𝜇est,𝑗𝑗���
2

𝑛𝑛

𝑗𝑗=1

(12) 

6.2 Results 
Figures 5 presents the comparison between 𝜇𝜇NDA and 𝜇𝜇est  
in the log-log scale for the oscillators with the bi-linear 
hysteresis curve (𝑇𝑇1 = (1) 0.20, (2) 0.50, (3) 1.50 and 𝛼𝛼 = 
(a) 0.00, (b) 0.10, (c) 0.90) subjected to the ground motions
not used in Sections 4.2, 4.3. The results of all oscillators
with different 𝐶𝐶y  values are presented together in each
part of Figure 5, as similar results were obtained regardless
of 𝐶𝐶y, given a combination of 𝑇𝑇1 and 𝛼𝛼. In each figure,
the regression line with a slope equal to unity and the one-
to-one straight line are presented by a solid line and a
dotted line, respectively, along with 𝑎𝑎, 𝜎𝜎, and 𝜎𝜎SI values.

For all the oscillators shown in Figure 5, 𝑎𝑎  was 
relatively close to unity. On the contrary, 𝜎𝜎 became large 
when 𝑇𝑇1 was short and 𝛼𝛼 was small. The following two 
factors could increase 𝜎𝜎: the effect of 𝜎𝜎SI as described in 
Section 5 as well as the difference between the slope of the 
straight line modelled by Eq. (7) and that of the spectrum 
lines. As shown in Figure 5, 𝜎𝜎SI for the oscillators with 
𝑇𝑇1= 0.20 and 𝛼𝛼= 0.00 was not significantly larger than 𝜎𝜎SI 
for the other oscillators. On the contrary, although not 
presented in this paper, the slopes of the straight line 
modelled by Eq. (7) was similar to those of several 
spectrum lines when 𝑇𝑇1  was short and 𝛼𝛼  was small 
(Furukawa and Mori, 2020). 

The accuracy of the proposed method was investigated 
by comparing the energy conservation rule, displacement 
conservation rule, equivalent linearization technique 
(ELT), and the estimation method using 𝑆𝑆𝑆𝑆n.p.  with an 
integration range from 1.0∙ 𝑇𝑇1  to 2.8∙ 𝑇𝑇1  (noted as 𝑆𝑆𝑆𝑆n.p. 
method hereafter). Among the ELTs proposed previously, 
the equivalent natural period estimated by Eq. (5) and the 
damping reduction factor for the response spectra proposed 
by Kasai (2003) were used in this study. Furthermore, this 
study utilized the equivalent damping factor proposed by 
Shimazaki (1999) for the oscillators with the bi-linear 
hysteresis curve and the factor estimated with the 
hysteretic energy dissipation and maximum strain energy 
(Jennings, 1963) for the oscillators with the bi-linear-slip 
and tri-linear hysteresis curve.  

Figure 6 presents the comparison between 𝜇𝜇NDA and 
𝜇𝜇est estimated by previous methods for the oscillators with 
the bi-linear hysteresis curve (𝑇𝑇1= 0.20 and 𝛼𝛼= 0.00). The 
bias, 𝑎𝑎, of the proposed method was closer to unity, and 
the dispersion, 𝜎𝜎, was smaller than those of the other four 
methods (Figure 5 (a-1)).  

Table 1 𝑏𝑏𝑝𝑝,𝑞𝑞, 𝑠𝑠𝑝𝑝,𝑞𝑞 and 𝑡𝑡𝑟𝑟 𝑝𝑝,𝑞𝑞 in Eqs. (10) 

Slope, (Eq.(8))

1

1 -0.1260 -0.1050 0.1690 -0.5970 0.4470 -0.1020 0

2 0.2860 0.2480 -0.4280 1.2350 -0.7750 0.1590 0

3 -0.1700 -0.1230 -0.1790 0.0830 -0.0990 0.0270 0

4 0.0180 0 0.1960 -0.2340 0.1090 -0.0250 0

5 -0.0020 -0.0170 0.0080 -0.0050 0.0200 -0.0040 -0.0016

2

1 0 0.0030 -0.0450 -0.0700 0.1590 -0.0440 0

2 0.0260 0 -0.0030 0.2790 -0.3440 0.0860 0

3 -0.0570 -0.0220 0.0960 -0.2960 0.1880 -0.0310 0

4 0.0270 0.0150 -0.0353 0.0708 -0.0144 -0.0016 0

5 0.0060 0.0050 -0.0147 0.0439 -0.0462 0.0185 0.0061

3

1 0 -0.0310 0 0 0 0 0

2 -0.0280 0 -0.1230 0.1140 0.0440 0.0010 0

3 0.2800 0.1000 -0.1870 0.2700 0.0250 -0.0300 0

4 -0.1130 0 0.0730 -0.0720 -0.0570 0.0220 0

5 0.8580 0.9280 0.2820 -0.4530 0.3480 -0.1200 0.8580

Intercept, (Eq.(9))

4

1 0 0.55 0 0 0 0 0

2 0.09 -0.97 0 0 0 0 0

3 -0.72 0.08 3.35 -5.00 1.71 -0.18 0

4 0.43 0.15 -1.90 2.32 -0.35 -0.02 0

5 1.19 1.19 -0.52 1.02 -0.84 0.22 1.19

5

1 0 0 0 0 0 0 0

2 0.32 0.30 2.17 -2.73 0.50 -0.13 0

3 -1.54 -0.53 0 0 0 0 0

4 0.56 -0.05 0 0 0 0 0

5 -2.34 -2.70 -1.95 2.76 -1.78 0.51 -2.34

Dispersion, (Eq.(13))

6

1 -0.800 0.060 -0.460 0.380 0.080 0 0

2 1.340 0 0 0 0 0 0

3 -0.430 0.040 -0.300 0.720 -0.280 0 0

4 0 0 0 0 0 0 0

5 -0.130 -0.110 -0.730 1.230 -0.530 0 -0.140

7

1 -0.390 0.060 -0.166 0.263 -0.035 0 0

2 0.810 0 0 0 0 0 0

3 -0.530 -0.070 -0.077 0.194 -0.166 0 0

4 0.090 0 0 0 0 0 0

5 0.020 0.017 -0.135 0.266 -0.152 0 0.015

8

1 0 -0.110 -0.070 -0.080 0.040 0 0

2 -0.270 0 0 0 0 0 0

3 0 -0.110 0.180 -0.500 0.110 0 0

4 0 0 0 0 0 0 0

5 0.280 0.240 0.260 -0.330 0.090 0 0.300
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 Figure 7 presents 𝑎𝑎 and 𝜎𝜎 of the estimators (a) as a 
function of 𝑇𝑇1 of the oscillators with a bi-linear hysteresis 
curve of 𝛼𝛼 =  0.00, and (b) as a function of 𝛼𝛼  of the 
oscillators with 𝑇𝑇1 = 0.50. Moreover, this figure depicts 
𝑎𝑎 and 𝜎𝜎 by an outlined circle obtained using the straight 
lines of the slopes and intercepts that were not estimated 
by Eqs. (8) and (9), rather calculated directly by the 
regression analysis. The dashed line in the lower part of 
Figure 7 indicates the dispersions of the proposed method, 
𝜎𝜎�, modelled by the following:  

𝜎𝜎� = 𝐵𝐵6 ∙ ln(𝑇𝑇1) + 𝐵𝐵7/(𝑇𝑇1) + 𝐵𝐵8 (13) 
Here, 𝐵𝐵𝑝𝑝  (𝑝𝑝 =6, 7, 8) is estimated by substituting the 
values in Table 1 into Eq. (10).  

As shown in Figure 7, 𝑎𝑎 of the proposed method was 
approximately equal to unity for all of the oscillators. In 
addition, 𝜎𝜎  of the method was smaller than or 
approximately equal to those of the previous methods. 
Both of the results, the outlined circle and 𝜎𝜎� , were 
approximately equal to those of the proposed method.  

Figure 8 presents 𝑎𝑎 and 𝜎𝜎 for the oscillators with a 
bi-linear-slip hysteresis curve. Figure 9 presents 𝑎𝑎 and 𝜎𝜎 
for the oscillators with a tri-linear hysteresis curve as a 
function of 𝑇𝑇1 of the oscillators with (a) 𝛼𝛼 = 0.10, 𝛽𝛽 =
0.00, (b) 𝛼𝛼 = 0.10, 𝛽𝛽 = 0.90, and as a function of 𝛼𝛼 of 
the oscillators with (c) 𝑇𝑇1 =  0.50, 𝛽𝛽 = 0.00 , (d) 𝑇𝑇1 = 
0.50, 𝛽𝛽 = 0.90. As the results in the Figure 7, the results in 
Figure 8 and 9 indicated that 𝑎𝑎 of the proposed method is 
close to unity and 𝜎𝜎  of the proposed method is 
approximately smaller than those of the previous methods. 

7. Conclusions
In this study, it was observed that the relationship between
the maximum displacement response of the oscillators with 
bi-linear, bi-linear-slip, or tri-linear hysteresis curves and
the natural period dependent spectrum intensity, 𝑆𝑆𝑆𝑆𝜇𝜇, can
be modeled using a simple linear function. 𝑆𝑆𝑆𝑆𝜇𝜇 is defined

as an integration of an elastic acceleration response 
spectrum from the elastic natural period of the oscillator to 
the elongated natural period, estimated by the maximum 
ductility factor of the oscillator. Subsequently, a maximum 
displacement response of the oscillator based on the 
combination of the linear relationships and elastic response 
spectrum of a given ground motion was proposed. 

The bias of the estimates by the proposed method is 
fairly close to unity, and the dispersion of the estimates 
using the proposed method was mostly smaller than those 
of the energy or displacement conservation rule, the
equivalent linearization technique and the estimation 
method using a past natural period-dependent spectrum 
intensity. In addition, the dispersion of the proposed 
method can be estimated by Eq. (13). 

Further investigations considering general hysteresis 
curves will be conducted to improve the applicability and 
versatility of the proposed method. Moreover, the seismic 
hazard at a site expressed in terms of 𝑆𝑆𝑆𝑆𝜇𝜇 will be studied 
for reliability-base limit state design.  
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Figure 8 𝑎𝑎 and 𝜎𝜎 (Bi-linear-slip, (a) 𝛼𝛼= 0.00, (b) 𝑇𝑇1= 0.50) 
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