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Abstract: A well understanding of subsurface heterogeneities is beneficial for risk assessment and decision making in geotechnical 

engineering practice. It is conventional to use geostatistics to estimate heterogeneous geotechnical properties at un-sampled 

locations. The successful application of traditional geostatistical models relies heavily on stationarity assumption to derive spatial 

auto-correlation functions, e.g. semivariogram. The conversion of geotechnical measurements, which are normally non-stationary 

and non-Gaussian, into stationary processes is a highly non-trivial task for engineering practitioners, particularly when only sparse 

measurements are available. Data-driven machine learning methods, e.g., radial basis function network (RBFN), are promising for 

spatial interpolation as they are non-parametric and can adaptively determine the optimal relationship between input and output. In 

this study, three data-driven machine learning algorithms, namely ensemble RBFN, Multiple Point Statistics (MPS) and Bayesian 

Compressive Sensing (BCS), are introduced and compared for spatial interpolation. The three approaches can provide best estimate 

as well as quantify prediction uncertainty of geotechnical properties at locations of interest. The performance of all the three methods 

is illustrated using a simulated example of cone penetration test (CPT) data. The results indicate that the ensemble RBFN can better 

predict the best estimate and associated uncertainty when a reasonable amount of measurements are available. Moreover, BCS 

algorithm is demonstrated to be robust and insensitive to measurement data number, exhibiting a superior performance over RBFN 

and MPS when only limited measurements are available. 
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1. Introduction 

It is an essential task to interpolate spatially varying field 

attributes from scatter measurements for geotechnical 

engineers. An accurate interpolation of geotechnical 

properties plays a key role in planning, risk assessment 

and decision making. Geostatistics has been a powerful 

tool for assessing heterogeneity and spatial variability. 

For instance, kriging is a popular geostatistics model and 

can provide both best estimate and interpolation 

uncertainty. However, the successful application of 

kriging is limited to stationary field (Webster and Oliver, 

2007) and requires prior evaluation of a site- and data- 

specific autocorrelation structure (e.g., semivariogram) 

(Oliver and Webster, 2014) between spatial 

measurements. The accurate specification of parametric 

function forms and associated parameters (i.e., still, range 

and nugget) requires a large amount of measurements, 

which are normally unavailable in practical geotechnical 

site characterization. 

It is well acknowledged that geotechnical 

measurements (e.g., cone pressure and undrained shear 

strength) are non-stationary and non-Gaussian in nature, 

which impedes the application of conventional parametric 

statistical models (e.g., kriging). Emerging machine 

learning methods provide alternative spatial interpolators 

for dealing with those non-stationary, non-Gaussian and 

non-heteroscedastic geotechnical processes (Li and Heap, 

2008; Li et al., 2011). Machine learning is a branch of 

soft computing techniques, which solve practical 

problems by progressively and adaptively exploiting 

imprecision, uncertainty and partial truth (Devendra, 

2008). The prominent advantages of machine learning 

approaches over conventional geostatistical models and 

other deterministic methods (e.g., inverse distance 

weighing) are data-driven and less assumption dependent 

(e.g., specification of certain parametric function forms 

are not needed for machine learning methods). 

Of all the machine learning methods, network based 

models are appealing to engineers as they can adaptively 

exploit complex non-linear relationship between 

measurements. Shi and Wang (2020) developed an 

ensemble Radial Basis Function Network (RBFN) to 

account for spatial anisotropy and quantify prediction 

uncertainty for spatial interpolation in geotechnical site 

characterization. Other popular non-parametric 

data-driven approaches including Multiple Point Statistics 

(MPS) (e.g., Mariethoz and Caers, 2014) and Bayesian 

Compressive Sensing (BCS) (Wang and Zhao, 2016). In 

this study, a comparative study is performed to 

benchmark the above three data-driven approaches in 

spatial interpolation of non-stationary and non-Gaussian 

geotechnical processes. The accuracy of best estimate and 

uncertainty quantification are explicitly compared. 

The reminder of this study is organized as follows. In 

the second section, a numerical example of a 2D 

non-stationary and non-Gaussian random field is 

simulated. Rationales behind the three non-parametric 

methods (i.e., RBFN, MPS and BCS) are briefed and 

implementation procedures are detailed in the third 

section. Comparison of the three data-driven methods in 

interpolating spatially varying geotechnical properties is 

discussed in the fourth and fifth sections. Subsequently, 

effects of measurement data number on the reconstructed 

fields by different methods are investigated. Finally, 

conclusions on capacity of different models in estimating 

spatially varying geotechnical properties are drawn.  
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2. Simulation of 2D random field 

In this section, a vertical 2D random field representing 

cone pressure qc from Cone Penetration Test (CPT) is 

simulated. According to Fenton (1999), cone pressure is 

considered the most representative of ‘point’ property of 

soil without local averaging. The qc values after 

logarithmic transformation are assumed to increase 

linearly with depth (Fenton, 1999).   

           ln(qc) = a + b×z + ε      (1) 

where a and b are intercept and coefficient for the linear 

equation and taken as 1.5 and 0.1, respectively; ε is the 

residual term and assumed to follow Gaussian distribution 

with mean and standard deviation of 0 and 0.15. The 

correlation ρ of ε between any two points in space is 

modeled as an exponential function (e.g., Shen et al., 

2016). 

                           (2) 

where Δh and Δv are relative distance in the horizontal and 

vertical direction between any points in space; λh and λh 

are correlation lengths in the horizontal and vertical 

directions and taken to be 15m and 6m, respectively. 

 
Fig.1 Simulated 2D random field: (a) Simulation image; (b) 

Training image for MPS algorithm 

The total size of the simulated 2D random field is 

12.8m in depth and 25.6m in horizontal length. The 

resolution in both directions is taken as 0.1m, resulting in 

a total of 32768 (i.e., 128×256) points. Fig.1a shows the 

colormap of the simulated image. For illustration, only 11 

line measurements with equal horizontal separation of 

2.56m are taken as measurements. A training image (refer 

to Fig.1b) follows the same set of random field 

parameters is also generated to facilitate the calculation of 

MPS algorithm. More discussion can refer to section 3.2. 

3. Comparative study 

3.1 Ensemble radial basis function network 

Radial basis function network, i.e., RBFN, has been a 

popular method for solving multivariate interpolation 

problems. Mathematically speaking, the interpolant, y(x), 

at an un-sample location is calculated as a weighted 

summation of basis functions at discrete points, i.e., xi, 

i=1, 2…n. 

                    (3) 

where ||•|| calculates the Euclidean distance between two 

points x and xi. ψ is the radial basis function, whose 

value solely depends absolute radial distance to a central 

point, xi. Any functions satisfy the above property can be 

called a radial basis function. Conventional radial basis 

functions include multiquadratic and inverse 

multiquadratic. 

        (4) 

       (5) 

where σ is shape factor. Fig.2 illustrate the distribution of 

multiquadric and inverse multiquadric functions with 

raidal distance at different shape factors. 

 
Fig.2 Illustration of commonly used radial basis function with 

different shape factors 

It is worth pointing out that conventional 

geotechnical properties are normally depositional and 

exhibit strong horizontal patterns. Therefore, it is 

imperative to take spatial anisotropy into consideration. 

Another difficulty associated with conventional RBFN is 

the quantification of interpolation uncertainty. 

In order to explicitly overcome the above limitations 

of conventional RBFN. An ensemble RBFN was 

proposed by Shi and Wang (2020). Spatial anisotropy 

was accounted for by implementing a Generalized 

Euclidean distance (Mahalanobis, 1936) for distance 

calculation in Eq.(6).  

               (6) 



The Seventh Asian-Pacific Symposium on Structural Reliability and Its Applications (APSSRA2020) 

October 4–7 2020, Tokyo, Japan 

T. Takada, I. Yoshida & T. Itoi (editors) 

where M is 2 by 2 diagonal matrix for 2D problem in this 

study.  

    (7) 

where a is the anisotropic ratio. 

In addition, interpolation uncertainty is quantified by 

employing multiquadric and inverse multiquadric 

functions within an ensemble learning framework. Both 

multiquadric and inverse multiquadric functions are 

adopted based on the consideration that the two functions 

can fill up the whole space at any points by changing 

shape factor σ (see Fig.2). The interpolation results from 

both radial basis functions are then stacked with equal 

weights for deriving the final mean and prediction 

uncertainty. Eq.(6) is then integrated with Eqs.(4) and (5), 

yielding the following modified radial basis functions. 

Multiquadric  

                 (8) 

Inverse multiquadric    

                    (9) 

It should be noted that there are two unknown 

parameters, i.e., anisotropic ratio a and shape factor σ, in 

above Eqs.(8) and (9), which are determined using 

training data. Fig. 3 shows implementation procedure for 

ensemble RBFN.  

 
Fig.3 Flowchart of ensemble RBFN algorithm (Shi and Wang, 
2020) 

The flowchart in Fig.3 illustrates procedures of the 

ensemble RBFN algorithm to interpolate spatially 

varying geotechnical properties. For clear references, 

only key steps are summarized below. 

1. Collect all measurement data (i.e., spatial coordinates 

and cone pressure value) and divide into training and 

test dataset with a split ratio of 50:50. Define all 

possible ranges of anisotropic ratio a and shape factor 

σ. 

2. Calculate Mahalanobis distance between training 

dataset and spatial coordinates of test dataset using 

Eq.(6), and substitute into Eqs.(8) and (9) to derive 

corresponding interpolant. 

3. Determine the optimal combination of anisotropic 

ratio and shape factor based on the minimization of 

error between predicted and actual values for the test 

dataset, and apply the optimal parameters to 

interpolate spatially varying cone pressure at 

un-sampled locations. 

4. Repeat steps 1 to 3 separately for both radial basis 

functions until no new results are obtained from the 

last consecutive repetitions, and combine all the 

simulation results at un-sampled locations to derive 

mean and 90% Confidence Interval (CI). 

The above procedures can be easily implemented using 

the standard Scipy in Python 3.7 (Jones et al., 2001). 

3.2 Multiple point statistics 

Multiple point statistics (MPS) is a well-developed 

non-parametric spatial interpolation method in geoscience 

community. MPS was first proposed by Guardiano and 

Srivastava (1993) to move beyond conventional 

two-point based indicator variogram to multiple point 

statistics. Rather than rely on assumed parametric 

function forms for spatial interpolation, MPS directly 

infers higher-order statistics from a training image 

(Mariethoz and Caers, 2014; Strebelle, 2002) based on the 

assumption that both the training image and the 

underlying simulation image share the same 

multiple-point covariance relationship. It should be noted 

that in practical geotechnical engineering, the complete 

training image is normally unavailable, particularly for a 

small or medium-size project. 

 
Fig.4 Illustration of direct sampling algorithm 

MPS can be used for spatial interpolation of both 

categorical variable and continuous variable. Specifically 

for continuous variable, Direct Sampling (DS) was 

proposed by Mariethoz and Renard (2010) to perform 

conditional resampling of similar data events from 

training image. The conditional simulation process of 

direct sampling is illustrated in Fig.4. Each cell is a point 
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measurement. A target data event is defined as n closest 

known point values, e.g., the three colored cells (n=3) 

within the dashed circle as shown in Fig.4, around the 

unknown cell. Similar data events are searched within the 

training image and the similarity between target data 

event and potential replicates in the training image, e.g., 

examples 1 and 2, is regulated by a weighted Euclidean 

distance (d) (Mariethoz and Renard 2010). A smaller d 

value implies more resemblance of the searched example 

to the target data event. When the first replicate (e.g., 

example 2) with d less or equal to a specified value is 

located, the value of the unknown cell can be determined 

by directly assigning the central value of the replicate. 

The interpolated value is then treated as a known 

measurement. The above procedure is repeated until all 

the unknown cells within the simulation image are 

interpolated, finishing a realization. Multiple realizations 

are generated following random search path with training 

image and random simulation path in simulation image. 

The best estimate and associated interpolation uncertainty 

can be obtained by statistical analysis of those multiple 

realizations. 

Hanson and Bach (2016) coded the direct sampling in 

C++ program, which can be accessed by Python and 

Matlab interfaces. Two text files are required for running 

direction sampling. One file should contain all the 

information for the training image, including spatial 

coordinates and qc values. The other file documents all 

the available measurement (i.e., 11 line profiles) for the 

simulation image. In addition, hyper-parameters (e.g., 

distance criterion, number of conditioning points) for the 

algorithm should also be specified. Meerschman et al. 

(2013) provided a practical guidance on performing 

stochastic simulation with direct sampling algorithm. 

Table 1 lists the key hyper-parameters for geotechnical 

application of direct sampling. Multiple realizations are 

generated until the mean qc value of the last consecutive 

simulations show an average difference of less than 

0.1kPa.  

Table 1. Input parameters for MPS algorithm 

Input parameter Value 

Maximum number of counts for conditional probability 

density function 
1 

Maximum number of conditional point, n 10 

Minimum Euclidean distance, d 0 

Shuffle training path [0: sequential, 1: random] 1 

Number of realization 181 

3.3 Bayesian compressive sensing 

Compressive Sensing (CS) was originally developed in 

electrical engineering in order to compress and recover 

signals. Wang et al. (2017) and Zhao et al. (2018) 

integrated CS algorithm within the Bayesian framework 

for spatially interpolating non-stationary and 

non-Gaussian geotechnical properties from sparse 

measurements. The fundamental assumption behind the 

Bayesian Compressive Sensing (BCS) is that most 

geotechnical processes are compressive (e.g., having 

trends or patterns). Therefore, the complete geotechnical 

process or field can be represented as a weighted 

summation of a limited number of basis functions (e.g., 

wavelet or discrete cosine functions) and recovered by 

remarkably few measurements. Mathematically speaking, 

the original geotechnical process F̂ recovered from 

limited measurements is formulated as follows: 

                                 (9) 

where Bt
2D is the t-th 2D basis function; ω̂t2D is 

coefficients associated with Bt
2D; Nh and Nv are the total 

number of points in the horizontal and vertical directions.  

The determination of coefficients for those basis 

functions are purely data-driven. The derived coefficients 

and associated basis functions can be combined to give 

best estimate and quantify interpolation uncertainties of 

interpolated profiles. The complete mathematical 

derivations of BCS are detailed by Zhao et al. (2018). 

Only key equations are reported here. The best estimate 

and variance of the reconstructed geotechnical profile are 

expressed as follows: 

                        (10) 

                     (11) 

where μF̂ represents mean of the estimated geotechnical 

process F̂. BCS algorithm has been successfully applied 

to interpolation and simulation of 2D random fields (Hu 

et al., 2019; Wang et al., 2019; Zhao et al., 2018) and 

non-stationary and non-Gaussian Random fields (Wang 

et al. 2019; Montoya-Noguera et al. 2019). 

Although the mathematical formation of 2D BCS 

looks complicated, the implementation and simulation are 

quite straightforward. A packaged Matlab function is 

available in Zhao et al. (2018). The key simulation steps 

are summarized in Table 2. 

Table 2. Implementation procedure for BCS algorithm 

Step  

1 Collect all measurements and discretize the whole domain 

2 
Specify the resolution (e.g., 0.1m) and calculate total size 

of 2D field (e.g., 25.6m ×12.8m) 

3 Construct 2D orthogonal wavelet basis 

4 Calculate non-zero coefficients for the wavelet basis 

5 
Reconstruct 2D cone pressure field and derive associated 

prediction uncertainty 

4. Performance measure 

In this study, two major measures, namely Mean 

Absolute Percentage Error (MAPE) and Mean Absolute 

Error (MAE), are used to compare interpolation results of 

different methods. The formulations for MAPE and MAE 

calculation are as follows. 

              (12) 
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              (13) 

where ŷt and yt are predicted and actual value at t-th 

point. 

5. Numerical results of different methods 

 
Fig.5 (a) True test image; (b) Interpolation results of RBFN; (c) 
Interpolation results of MPS; (d) Interpolation results of BCS 

Fig.5 shows colormaps of underlying true test image and 

interpolation results from the above three methods. It is 

clear that all the three reconstructed colormaps 

conditional on 11 CPT soundings can essentially recover 

the spatial patterns of the test cone pressure field. The 

calculated MAPE for the three methods (i.e., RBFN, MPS 

and BCS) ranges between 9.4% and 12.9%. The 

corresponding MAE values vary between 1.0MPa and 

1.5MPa. For a cone pressure field with a maximum value 

of about 30MPa, the differences in MAE are considered 

negligible. To further compare the interpolation 

performance, vertical profiles along A-A’ section are also 

extracted and compared. 

 
Fig.6 Comparison of interpolation results along A-A’ section: (a) 

RBFN; (b) MPS; (c) BCS 

Fig.6a shows the comparison between the true 

measurement and the best estimate from ensemble RBFN. 

The 90% confidence interval (CI) from RBFN 

simulations are also superimposed for better comparison. 

Essentially, the variation of best estimate along depth 

follows that of true measurements. In addition, CI 

enlarges whenever there is a large variation of the true 

measurements. Similar interpolation results obtained from 

MPS and BCS are shown in Figs.6b and 6c. Clearly, the 

above three methods can not only provide the best 

estimate, but also explicitly quantify interpolation 

uncertainty. 

6. Effect of measurement data number 

Intuitively, the interpolation performance of different 

methods improves as more measurements are used. Fig.7 

compares the prediction performance of three different 

methods at different measurement numbers. The 

calculated MAPE along A-A’ section is shown in Fig.7a. 

It is evident that as the number of CPT increases from 11 

to 21, all MAPE values reduce, implying an improved 

prediction. The best accuracy is obtained by RBFN. 

Conversely, when the available CPT number reduces 

from 11 to 4. Performances of RBFN and MPF 

deteriorate significantly with MAPE increasing from 

about 10% to over 35%. In comparison, the interpolation 

performance of BCS is relatively insensitive to the 

number of CPT and exhibits a mild increase in MAE. 

Moreover, when MAE is used as the comparison measure 

(see Fig.7b), RBFN performs best when more 

measurements are added. BCS achieves the best 

performance when only limited CPT soundings are 

available. Similar trends of MAPE and MAE along B-B’ 

and C-C’ sections are shown in Figs. 7c-7f.   

 

Fig.7 Comparison of interpolation performance with different 

measurement numbers along selected profiles: (a) MAPE along 

A-A’ section; (b) MAE along A-A’ section; (c) MAPE along 

B-B’ section; (d) MAE along B-B’ section; (e) MAPE along 

C-C’ section; (f) MAE along C-C’ section; 

7. Summary and conclusion 

The performance of three non-parametric data-driven 

approaches, namely ensemble Radial Basis Function 

Network (RBFN), Multiple Point Statistics (MPS) and 

Bayesian Compressive Sensing (BCS), in interpolating 

spatially varying non-Stationary and non-Gaussian cone 
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pressure profiles from sparse measurements was 

compared in this study. Moreover, the evolutions of best 

estimate and associated interpolation uncertainty with 

different line measurements (i.e., 4, 6, 11 and 21 CPT 

soundings) are explicitly investigated. 

 It is found that the ensemble RBFN and MPS 

outperforms BCS in reconstructing CPT profiles when 

more than 11 CPT soundings are taken as measurements. 

Conversely, when the number of available CPT profiles 

reduces to 4, the performance of ensemble RBFN and 

MPS deteriorates. In comparison, BCS interpolation is 

less sensitive to the number of measurement data and 

achieves superior interpolation performance when only 

sparse and limited measurements are available. 
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