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Abstract:  

Accurately predicting the rail track degradation and breaks is the key for formulating the maintenance and renewal strategies of the 

railway tracks. However, few attempts have been made on the prediction of track break time and zones. This paper proposes a 

data-driven prediction approach of track break zones based on extreme learning machine. Real-time monitoring data of vertical 

deformation along the railway tracks are treated as the input, while the break degree that is closely related to the vertical deformation 

is defined and taken as the output of the system. Based on this, a prediction model of track break zones is constructed using a 

multi-objective optimization-based extreme learning machine. The difficulties in the determining an optimal number of hidden layer 

nodes and a rational activation function are overcome by using an orthogonal test method. The real rail break and non-break events 

of the Instrumented Coal Wagons (ICW) lines in the Hunter Valley of New South Wales, Australia are investigated to illustrate the 

effectiveness of the proposed approach. The results indicate that the proposed approach can well predict the break zones along the 

railway tracks based on a large-scale monitoring data. It is expected to be extended to actual projects for predicting the track breaks 

in the coming days or even several weeks based on the latest monitoring data.  

 

Keywords: railway track, data-driven, degradation prediction, track break, extreme learning machine. 

 

1. Introduction 

High speed train transport infrastructure which 
accommodates the movement of people and the mass 
transit constitutes the backbone of every nation’s 
economic and social development. However, heavy 
tonnages, small gaps and complex actions of forces on 
the tracks make the high speed railway tracks be prone to 
suffer from the wear, weld or insulated damages (e.g., Xu 
et al., 2013; Stenström et al., 2016). As a result, not only 
the track lifespan will be reduced and the railway 
inspection, maintenance and renewal costs will be 
increased, but also traffic accidents can be happen once 
the railway tracks are seriously damaged or broken. 
Therefore, accurately predicting the development of the 
track irregularities and the break zones along the railway 
tracks is the key for formulating the  maintenance and 
renewal strategies (e.g., grinding, renovation and 
replacement) and reducing the occurrence of traffic 
accidents.  

With the development of the information 
technology and artificial intelligence, it is feasible to 
predict the track break time and zones via performing 
real-time high-precision monitoring and inspection (e.g., 
Lidén, 2015; Khajehei et al., 2019; Falamarzi et al., 
2019a,b). In recent years, significant advances have been 
made in the prediction of the rail track degradation and 
breaks. For example, Koc (2012) designed the geometry 
of a rail track based on the continuous orbit satellite 
measurement data using the antennas installed on the 

moving vehicle. Vale and Lurdes (2013) presented a 
stochastic model for characterizing the railway track 
geometry deterioration process in the Portuguese railway 
Northern Line. Shen et al. (2015) constructed a detection 
model of rail head wear using the collected images from 
a charge-coupled device camera. Jamshidi et al. (2016) 
developed a probabilistic defect-based risk assessment 
approach for rail failures in the railway infrastructure. 
Chudzikiewicz et al. (2017) evaluated the track condition 
using axle-boxes and car-bodies motions described by 
acceleration signals on wheelset axle-boxes. Although 
some methods have been developed to predict the rail 
track degradation, how to accurately predict the track 
potential break zones remains an open question and has 
not been substantially investigated. 

As reported in the literature (e.g., Hall et al., 2011; 
Tan et al., 2017; Martey et al., 2017; Falamarzi et al., 
2019a,b), the machine learning approach can provide an 
effective means for the prediction of rail track 
degradation. For example, Sadeghi and Askarinejad 
(2012) established the relationship between the track 
geometry conditions and the automatic inspection data 
by the application of neural networks. Lasisi and 
Attoh-Okine (2018) developed a support vector machine 
(SVM) model for predicting the threshold of track 
quality index (TQI) based on the real-time monitoring 
data. Falamarzi et al. (2019b) adopted the random forest 
regression, support vector machine and artificial neural 
network models for the prediction of tram track 
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degradation based on the acceleration data. Lasisi and 
Attoh-Okine (2020) adopted an unsupervised machine 
learning method to evaluate the track performance based 
on the TQI and safety indicators. Typically, the collected 
inspection data along the railway tracks change 
spatiotemporally. However, the spatiotemporally varying 
monitoring data are rarely used for the construction of 
the prediction models for the rail track degradation or 
breaks. 

This paper aims to propose an extreme learning 
machine-based approach for predicting the potential 
break zones along a rail track. The monitoring data of the 
vertical displacements along the rail track for the 
Instrumented Coal Wagons (ICW) lines in the Hunter 
Valley zones of New South Wales, Australia are taken as 
the input. An index termed track break degree which is 
closely related with the track deformation is defined and 
taken as the output of the system. With the proposed 
approach, the potential break zones along the rail track in 
the coming days or even several weeks can be predicted 
based on the latest monitoring data of the track vertical 
deformation.  

2. Approach for predicting track break zones 

2.1. Extreme learning machine 
Traditional neural networks such as BP neural network 
and SVM were widely used for predicting the rail track 
degradation, but they have some limitations, including 
bad generalization ability, slow convergence, multiple 
regulating parameters and easily falling into local 
minimum (e.g., Falamarzi et al., 2019a). In this study, an 
extreme learning machine is adopted to construct the 
model for predicting the break zones along a rail track. 
The extreme learning machine is a feedforward neural 
network with a single hidden layer (Huang et al., 2004).  

 

Figure 1. Structure of the extreme learning machine-based 

feedforward neural network. 

The structure of an extreme learning machine-based 
feedforward neural network with a single hidden layer is 
shown in Figure 1. It comprises of an input layer, a 
hidden layer and an output layer. For a given set of 
learning samples (xj, yj), xj = (xj1, xj2, ..., xjm)

T∈R
m
, yj = 

(yj1, yj2, ..., yjn)
T∈R

n
, j = 1, 2,…, N, in which m, n and N 

are the numbers of the input layer nodes, the output layer 
nodes and the learning samples, respectively. The 
feedforward neural network with t hidden layer nodes 
can be defined as 
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where g(.) is the activation function; bi is the threshold 
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in the output layer. The training goal of the extreme 

learning machine model is to minimize the output error, 

which can be expressed as 
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Eq. (2) can be rewritten as the following equation for the 
given wi, xj, bi:  
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For brevity, Eq. (3) can be simplified as 

H T                 (4) 

where H is the hidden layer output matrix with 
dimension of N×t, which represents the output of the 
hidden layer neurons relative to the input vectors x1, 
x2, ..., xN, which can be expressed as 
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β and T are given by 
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The training of the extreme learning machine model is 
equivalent to estimating the least square solution of Eq. 
(4) (e.g., Huang et al., 2006): 

min T


H                (7) 

The least square solution 


  of the above linear system 
can be estimated as 


 H T                 (8) 

where H
+
 is the Moore-Penrose generalized inverse of H. 

The norm of 


  that is obtained using Eq. (8) will be 
the smallest and unique (Huang et al., 2006). 

Determining an optimal number t of hidden layer 
nodes and a rational activation function is one key step 
for the construction of extreme learning machine-based 
prediction model. Three activation functions, namely 
Sigmoid, Sine and Hardlim, are frequently used in the 
extreme learning machine (e.g., Li et al., 2017). The 

O1

Oi

Ot

wji βik

Iuput 

layer

Hidden 

layer

Output 

layer

X1

Xj

Xm

Y1

Yk

Yn



The Seventh Asian-Pacific Symposium on Structural Reliability and Its Applications (APSSRA2020) 

October 4–7 2020, Tokyo, Japan 

T. Takada, I. Yoshida & T. Itoi (editors) 

generalization ability of the extreme learning machine 
could be different even if the same activation function is 
used. In this study, an orthogonal test method is adopted 
to determine t and the activation function (e.g., Zhang, 
2018). The design space of t is discretized into 20 
possible values ranging from 10 to 200 with an 
increment of 10. Achieving a minimal root mean square 
error (RMSE) is selected as an evaluation standard to 
find the optimal combination of t and the activation 
function. The RMSE is defined as (e.g., Su et al., 2020) 

 
2

1

1
RMSE

rn

actual predicted

tr

D D
n 

       (9) 

where nr is the number of input variables; 
actualD  is the 

actual value of output response; predictedD  is the 
predicted value of output response.  

2.2. Definition of break degree 
The ICW train lines for the coal transportation in the 
Hunter Valley zones of New South Wales, Australia with 
a large-scale monitoring data are taken for illustration. 
The extreme learning machine is used to construct the 
prediction model of the break zones along a rail track. 
The monitoring data of the vertical displacements of the 
rail track, namely LP1~LP4, are taken as the model input. 
Figure 2 presents a schematic diagram of 4 pairs of ICW 
train wheels and the layout of monitoring points. 

 

Figure 2. Layout of the monitoring points of vertical 

displacements for ICW train. 

An index termed break degree that is closely related 
to the vertical deformation of the rail track will be treated 
as the model output. The break degree is defined as 
follows: (1) The break degrees corresponding to the 
railway track before the potential break locations are set 
as negative values, and their magnitudes are equal to the 
absolutes of the corresponding vertical displacements. (2) 
The break degrees corresponding to the railway track 
after the potential break locations are set as positive 
values, and their magnitudes are also equal to the 
absolutes of the corresponding vertical displacements. (3) 
The break degrees corresponding to the potential break 
locations are set as zero.  

Take the rail track break event of 80798 for an 
example, Figure 3(a) shows the variations of the vertical 
displacements LP1~LP4 measured by the ARTC03 train 
on April 13, 2017. The horizontal ordinate represents the 
track position (km) while the vertical rdinate represents 
the vertical displacements of the rail track (mm). The 
study interval is 215.305~215.405 km. The track was 

broken at the middle of the study interval on April 26, 
2017. Figure 3(b) shows the variations of the 
corresponding break degrees F1~F4 with the track 
position. As defined, the values of the break degrees 
associated with the non-break zones are negative, and 
those for the zones after the break locations are positive. 
The magnitudes are exactly equal to the absolutes of the 
corresponding vertical displacements.  
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(a) Monitoring data of vertical displacements LP1~LP4 
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(b) Break degrees F1~F4 

Figure 3. Variations of the monitoring data of vertical 

displacements and the corresponding break degrees with the 

track position. 

3.  Model construction and verification 

3.1. Construction of prediction model 
The monitoring data of vertical displacements from the 
30 rail track break events and 20 non-break events are 
selected as the training samples. As mentioned earlier, 
the number (t) of the hidden layer nodes and the 
activation function need to be determined prior to the 
construction of the prediction model. Figure 4 shows the 
RMSE values for different combinations of t and 
activation functions calculated from the orthogonal test 
method. It can be observed that the lowest value of 
RMSE = 0.253 corresponds to the combination of t =110 
and activation function of “Sin”. Therefore, t=110 and 
“Sin” function are adopted in the following model 
construction and verification. Note that the number (m) 
of the input layer nodes is set to equal that (n) of the 
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output layer nodes in this study. 
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Figure 4. Orthogonal test results for different combinations of 

the number of hidden layer nodes and the activation function. 

3.2. Model testing for break events 
The monitoring data of vertical displacements from the 
other 10 rail track break events and 10 non-break events 
are employed for the model testing. For example, the 
break event of 80799 is taken to test the prediction model. 
The rail track broke at 252.781 km on April 26, 2017 for 
this break event. The study interval is 252.731~252.831 
km and the period is from March 24, 2017 to June 5, 
2017. Figure 5 presents variations of the vertical 
displacements monitored by the ARTC03 train with the 
time and track position. As observed from Figure 5, an 
asymptotic trend toward the track break in the neighbor 
of the track position of 252.781 km can be observed from 
March 24, 2017 to April 25, 2017. The vertical 
displacements particularly LP1 and LP4 in these regions 
change significantly. The potential break zones along the 
rail track can be roughly inferred according to the 
variation trends of the vertical displacements. Based on 
the analysis of the spatiotemporally varying data in 
Figure 5, the maintenance time and strategies for 
preventing the track break can be determined. The model 
prediction accuracy of the break zones along the rail 
track can be further increased if more updated 
monitoring data are incorporated for constructing the 
prediction model. 
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(b) LP2 
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(c) LP3 
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(d) LP4 

Figure 5. Variations of the monitoring data of vertical 

displacements with time and track position for the break event 

of 80799. 

Two sets of the monitoring data of vertical 
displacements monitored from March 24, 2017 to April 
25, 2017 acquired at different track positions are taken as 
the testing samples to validate the prediction model. 
Figures 6(a) and (b) present the corresponding prediction 
results of the break degrees. To enable a better 
distinction of the results, the regions with the break 
degrees being negative values are assigned as green, 
while the regions with the break degrees being positive 
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values are assigned as blue. The red line represents the 
real track break position. It can be seen from Figure 8 
that the proposed approach can well predict the potential 
break zones along railway tracks even if different model 
inputs are used. It confirms the effectiveness of the 
proposed approach. 
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(a) Model testing results for the first set of testing samples 
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(b) Model testing results for the second set of testing samples 

Figure 6. Testing results of the prediction model for the break 

event of 80799. 

Moreover, the computational time taken by the 
proposed approach for the model training and testing is 
about 60 and 2.2 seconds, respectively, on a desktop with 
8 GB RAM and one Intel Core E5 CPU clocked at 3.2 
GHz. It indicates that the proposed approach is quite 
efficient to predict the potential break zones along the 
rail track. Due to the complexity of the model input and 
the high dimensionality (79) of learning samples, the 
under-fitting may be induced for the extreme learning 
machine model because of complicated least squares 
regression (e.g., Bartlett, 1998; Chapelle, 2002). These 
limitations shall be overcome in the future study. 

3.3. Model testing for non-break events 
In this section, the non-break event of 342 is further 
selected to test the prediction model. Figure 7 shows the 
vertical displacements of the rail track monitored on May 
25, 2017, which are used as the testing samples. Figure 8 
presents the prediction result of the break degrees. The 
average Faverage of the four break degrees is also plotted 
in Figure 8 to judge where the track break zones are. It 

can be seen from Figure 8 that the obtained four break 
degrees are almost smaller than 0 along the rail track, 
and the average Faverage of these four break degrees are 
also negative values. It indicates the predicted results are 
consistent with the engineering practice wherein this rail 
track was not been damaged. This further illustrates the 
effectiveness of the prediction approach. 
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Figure 7. Variation of the monitoring data of vertical 

displacements with the track position for the non-break event of 

342. 
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Figure 8. Testing results of the prediction model for the 

non-break event of 342. 

4.  Conclusions 

In this paper, an extreme learning machine-based 
approach for predicting the break zones along a rail track 
is proposed. The monitoring data of vertical 
displacements of the rail track are taken as the input. The 
break degree that is closely related to the vertical 
displacements is defined and taken as the output of the 
system. The ICW lines with a large-scale monitoring data 
in the Hunter Valley zones of New South Wales, 
Australia are used for illustrate the effectiveness of the 
proposed approach. The monitoring data of vertical 
displacements from the real 40 track break events and 30 
non-break events are used as training samples and testing 
samples to construct and test the prediction model. It is 
confirmed that the proposed approach can efficiently 
predict the potential break zones along the rail track. It 
can be extended to actual projects for predicting the track 
breaks in the coming days or even several weeks using 
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the latest monitoring data. Based on these, the 
maintenance and renewal strategies for preventing the 
track degradation and breaks can be formulated. 
Additionally, the variation trends of the monitored data 
of vertical displacements of the rail track can be used to 
roughly determine the track irregularities, but they 
cannot be directly used to predict the potential break 
zones along the railway track.  
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