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Abstract: For large complex systems, it is of great importance to study effective approaches for reliability evaluation. In this paper, 

a system reliability evaluation method based on Bayesian theory and multi-source information is proposed. Firstly, model the 

reliability of system network, including the establishment of system reliability block diagram and the determination of the system 

and components’ life distributions. Then, the posterior distributions and posterior moments of component reliability are determined. 

With the posterior moments, failure information of components can be converted to the prior moment of the system reliability 

according to the system structure, and the system prior distribution can be obtained. Finally, combined with the system-level field 

data, the posterior distribution of system reliability can be obtained on the basis of Bayesian theory, and be utilized to evaluate the 

reliability of system. To fill out the shortage of field data, the proposed method in this paper can make full use of various 

quantitative and qualitative prior information with high accuracy. 
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1. Introduction

Reliability assessment of satellite platforms is an
important issue in satellite engineering. Due to the
limitation of test cost and time, the sample size of the
satellite is usually very small, and the problem of
non-failure often occurs. This makes it pretty risky to use
field information directly for reliability assessment.

For a satellite communication system, the availability, 
reliability, MTTF, cost effectiveness and sensitivity of a 
satellite communication system could be analyzed by 
using mathematical modeling (Nagiya and Ram 2013). 
Commonly used stochastic processes, including the 
compound Poisson, gamma, and inverse Gaussian 
processes, were adopted as the stochastic time scale 
under dynamic operating conditions of a system (Hong et 
al. 2019). Meanwhile, Markov process (Kumar and 
Kumar 2020) and semi-Markov process (Li et al. 2018) 
can also be applied to analyze dynamic systems. 

Many Bayesian melding approaches to combine 
multilevel information (Peng et al. 2013, Xu et al. 2019, 
Yang et al. 2020) have been proposed for reliability 
assessment of complex systems. There are also some 
methods aiming at system reliability improvement by 
using an N-modular redundancy framework (Baek et al. 
2019) and memetic algorithm (Ramezani et al. 2017). In 
addition, reliability models with cost consideration are 
often established to optimize satellite operation and 
maintenance strategy (Kim et al. 2012). 

Fault trees and Bayesian networks (BN) have strong 
modeling capabilities for complex systems. Based on the 
fault tree method, the estimate of system failure 
probability can be obtained by using Bayes theory and 
Markov chain Monte Carlo (MCMC) algorithm (Hamada 
et al. 2004). However, the fault tree-based analysis 
method cannot express the correlation between the 
system units, and the BN method can be used to describe 

the correlation between the components (Wilson and 
Huzurbazar 2007, Wang et al. 2019, Zheng et al. 2019). 
The polymorphism of each unit of a system (Li et al. 
2014) and a specific and complex missile system (Wilson 
et al. 2007) can also be modeled by BN method. 

The field data of satellite platform has the 
characteristics of small samples and no failure, which 
makes the classic reliability assessment methods into a 
dilemma. However, satellite units usually have a lot of 
prior information, so this paper uses Bayesian method to 
effectively integrate the prior information and field 
information, so as to effectively solve the problem of 
insufficient samples on site. In the case of independent 
component failure, the system reliability evaluation 
requires functional decomposition and structural analysis 
of the satellite platform, and then the reliability model 
can be established with different information. The 
method proposed in this paper is based on the two most 
typical reliability structures of satellite platforms, 
including series construction and parallel construction. 

The reminder of this paper is organized as follows. 
Section 2 details the proposed reliability model. Next, we 
verify the proposed models, and demonstrate the detailed 
analytical procedure with a specific case study in Section 
3. Finally, Section 4 concludes this paper.

2. Reliability Model

The satellite platform is a typical complex system with
multi-layer structure similar to a pyramid. The process of
evaluating its reliability fusing multi-source information
is shown in Figure 1.
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Figure 1. Procedure of system reliability evaluation 

2.1 Prior distributions and information fusion of the 
components 

It is assumed that according to different information 

sources such as expert information, historical life 

information, similar product information, performance 

monitoring information, etc., a point estimate of 

reliability can be given to determine the corresponding 

prior distribution as incomplete information. The 

incomplete information of the parameter R  described 

in the form of point estimate can be expressed as 
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Assuming that the parameters of the prior distribution 

of R  are a  and b , so the prior distribution is 

recorded as ( | , )R a b . Then from the principle of

maximum entropy method, a set of parameters a  and 

b  should be found to maximize the entropy of 

( | , )R a b  on the premise of satisfying Eq. (1). The 

constrained minimization problem can be expressed as 
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The parameters a and b can be solved by 
optimization algorithm, so that the incomplete 
information can be converted into the prior distributions. 

There are many uncertainties in multiple prior 
distributions obtained from multi-source information. In 
order to facilitate the inference of the posterior 
distribution, multiple prior distributions must be fused 
into a joint prior distribution to eliminate uncertainty, 
making the joint prior distribution more reasonable than 
a single prior distribution. 

The fusion method based on second maximum 
likelihood estimation (MLE-II) is more objective, and 
there is not much difficulty in calculation (Wu et al. 
2014). Therefore, the method based on MLE-II is 
considered to determine the weight of the multi-source 

prior distribution. 
This method assumes that the field data is generated 

by the marginal density of the prior distribution. The 
larger the value of the likelihood function generated by 
the marginal density of the field sample is, the greater the 
probability that the prior distribution is the true prior 
distribution of the parameter is, so its weight in the joint 
prior distribution should also be greater. 

Assuming that there are m sources of information, the 

m prior distributions obtained from the prior information 

are ( ), 1,2, ,i i m  = , respectively. And the joint prior 

distribution is 
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where 
i denotes the weight of i-th prior distribution in 

the joint prior distribution, and 
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From the multi-source prior distributions and the joint 
prior distribution, their marginal distribution are 
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Regarding the field data 
1 2, , , nx x x as being 

generated by the marginal distribution ( | )im x  , the 

likelihood function of field sample D is 
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According to the principle of MLE-II, the larger the 

value of ( | )iL D m , the greater the weight of the 

corresponding prior distribution ( )i   in the fusion 

prior distribution. And the fusion weight is 
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2.2 Joint posterior distribution and moments of the 
components 
After obtaining the joint prior distribution, with the field 
samples of the components, the posterior distributions of 
the unknown parameters can be obtained. When ( )   
denotes the prior distribution of   and ( | )P D   
denotes likelihood function of   in field information, 
Bayes formula is 
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From Eq. (3)(7)(8), it can be expressed as 
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where the weight of i-th information source is 
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and ( | )i D   is the i-th posterior distribution of  . 

That is to say, the joint posterior distribution is equal to 

the weighted sum of the posterior distributions 

corresponding to each information source. 

In particular, for the exponential distribution, the 
prior distribution of reliability is following a negative log 
gamma (NLG) distribution as 
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where a  and b  are the parameters of the NLG 
distribution determined from known information. 
Through derivation, the posterior distribution can be 
obtained as 

( | ) ( , ),
T

R D NLG a r b


= + + (11) 

where T , r  and   denote the total test time of field 
data, the failure number of field samples and the mission 
time required to assess reliability, respectively. Therefore, 
the component reliability and the fore M-th order 
moment at the mission time are 
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2.3 Prior moments of the system 

Focusing on the two most common system structures, 

series system and parallel system, the fore M-th order 

moment of unit reliability (1 ,1 )ik i n k M      are 

utilized to determine the system reliability moment. 

For the series structure, each moment of the system is 
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For the parallel structure, each moment of the system 
is 
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2.4 Posterior distribution and reliability estimation of 
the system 
Due to the complexity of the satellite platform, the 
distribution of the system is difficult to obtain. In 
practical engineering, Beta or NLG distribution are 

usually used to fit the reliability of the system. 
Specifically, when the test of platform system is 
frequency-counted, the Beta distribution is used to fit its 
reliability distribution; when the test of platform system 
is time-counted, the NLG distribution is used to fit its 
reliability distribution. In this case, the recursive least 
squares (RLS) method could be used to obtain the 
parameters of the distribution. 

On the condition that the fore M-th order moment of 

the satellite platform ( ), 1,2, ,k

k E R k M = = have 

been obtained, the optimization problem becomes 
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where ( , )k    denotes the k-th order moment of 

( ; , )R   or ( ; , )rNLG R   . 

After obtaining the value of the parameters   and 
 , the prior distribution of the system reliability can be 
determined. Then, similar to the operation in 
component-level, combined with the field data of the 
system, the posterior distribution of the system reliability 
can be deduced, so as to calculate the system reliability. 

3. Case Study

This section uses simulation study to verify the 

effectiveness of the proposed method. Assume that the 

lifetimes of the components C1, C2 and C3 all follow 

exponential distributions, and their average lifespans are 

1 60 = , 
2 70 = and 

3 80 = . The system structure is 

shown in Figure 2. According to the calculation 

principles of series and parallel constructions, the 

reliability of the system at the beginning can be obtained 

that is 0.9665. 

Figure 2. Reliability block diagram of the system 

In the stochastic simulation, it is assumed that the 

system has been working for time 2 =  when the 

system just started working soon. The field information 

of each component is Type-Ⅱ censoring life test data 

whose number of test samples is 15 and the number of 

failures is 10. By using three exponential distribution 

models, a set of field data is randomly generated as 

1 644.6T = , 
2 680.24T = and 

3 797.28T = . Let the prior

distributions of the three units are all information-free 

priors which is (0,0)NLG , and the posterior 

distributions of the three units can be obtained that are 

1( ) (10,322.3)R NLG , 
2 ( ) (10,340.12)R NLG

and 
3( ) (10,398.64)R NLG , respectively. Therefore, 

the fore 5th order moments of the reliability of each unit 
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and system can be obtained as shown in Table 1. 

Table 1. The fore 5th order moments of the reliability of 

components and system 

Order 1st 2nd 3rd 4th 5th 

C1 0.9695 0.9400 0.9115 0.8839 0.8573 

C2 0.9710 0.9430 0.9159 0.8896 0.8642 

C3 0.9752 0.9512 0.9277 0.9049 0.8828 

System 0.9688 0.9386 0.9095 0.8814 0.8542 

When the order of moments reaches the 5th order, the 
fitting effect can achieve good accuracy. Hence, in 
practical engineering, the order of the moments can be 
taken to the 5th order. It can be seen that the system 
reliability evaluation result at this time is 0.9688, which 
proves the feasibility of this method. 

4. Conclusions

In this paper, a Bayesian reliability assessment method of
the satellite platform is studied. The satellite platform is a
typical complex system whose system-level data is
usually rare. Therefore, the underlying component data
of the system is converted to the system-level for
evaluation. The proposed method combines the Bayesian
melding and the multi-source information to make full
use of the prior information to evaluate the systematic
reliability. It can provide a feasible idea for the reliability
assessment of the satellite platform system and be
applied to engineering practice. Subsequent research may
consider analyzing more complex system structures and
expanding the applicability of evaluation method.
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