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Abstract: In slope risk analysis, random field theory is often utilized to characterize the inherent spatial variability of soil properties. 

Most of the researches neglect the actual site investigation data at certain locations. In order to incorporate those available data from 

site investigation into simulation, a conditional random field is employed in this study. The influence range of available data is related 

to the scale of fluctuation. By virtue of Monte-Carlo simulations, the factors of safety and the probability of failure of a slope modelled 

by unconditional and conditional random field are analyzed in a statistical manner. The results suggest that, compared with the 

unconditional random field simulations, a conditional random field yields reduction in the spatial variability. This finding is of practical 

importance if site investigation is conducted on a specific project. 
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1. Introduction 
The spatial variability in material properties is often 

described by a second-order random field. Various 
applications considering the spatial variability have been 
reported, such as slope stability analyses (Griffiths and 
Fenton 2004, Vanmarcke 1977b, Li and Lumb 1987, El-
Ramly et al. 2002, Li et al. 2015), geotechnical site 
characterizations (Vanmarcke 1977a, Fenton 1999), 
aseismic-response analyses (Yeh and Rahman 1998), 
foundation–settlement assessments (Fenton and Griffiths 
2002), liquefaction risk analyses (Fenton and Vanmarcke 
1998), and groundwater levels analyses (Delhomme 1979). 
A second-order random field can be characterized by the 
mean, standard deviation and correlation function of 
material properties. In some cases, the material properties 
at some portions are available by virtue of site 
investigations or sampling. When ignoring the available 
information, an unconditioned random field is likely to 
overestimate the variability of the field (Tsutomu 2016). 
As such, a conditional random field shall be more 
applicable for these cases.  

Various investigations can be found in literature on 
adopting the concept of conditional random field. 
Vanmarcke and Fenton (1991) extended the methodology 
of Kriging to simulation of a local field of earthquake 
ground motions. Baker et al. (2008) evaluated the potential 
spatial extent of liquefaction by using sample data. Wang 
et al. (2010) described a Bayesian approach for 
probabilistic characterization of soil properties from a 
limited number of tests. In addition, Cao et al. (2013) 
applied this method to provide information on the number 
or thicknesses/boundaries of the statistically homogenous 
layers of soil. Li et al. (2016) combined 3-D Kriging with 
an existing random field generator to identify optimum 
sampling locations and the cost-effective design of a slope. 
Liu et al. (2017) discovered that the ratio of the sample 
distance to the autocorrelation length is an important factor 
to ensure the uncertainty reduction by the conditional 
simulation. Gong et al. (2018) adopted the Hoffman 

method to generate conditional random field of soil 
properties for probabilistic analysis of tunnel longitudinal 
performance. Johari and Gholampour (2019) presented an 
approach by conditional random finite element method for 
reliability analysis of slopes in unsaturated soils. Huang et 
al. (2019) investigated the effect of rotated anisotropy on 
slope reliability evaluation that considers conditional 
random field. Gholampour and Johari (2019) extended the 
application of conditional random fields into the reliability 
analysis of braced excavation in unsaturated soils. These 
researches drew a common conclusion that conditional 
random field simulations yield reduction in the spatial 
variability, and subsequently offer more reasonable 
parameters of the material in modelling.  

It is found that the accurate simulation of the 
conditional random field depends highly on the ratio of the 
sample distance and the autocorrelation distance (Liu et al. 
2017). While, in some situations, there are usually few 
values based on site investigations, and the statistical data 
used to generate unconditional random field are often 
obtained through empirical estimation. In the process of 
generating conditional random field, the overall 
parameters, such as the mean value, coefficient of variation 
(COV) fluctuate with few measurement point values, 
which are inconsistent with the previous estimated one, 
thus, it may erroneously estimate the spatial variation of 
soil properties. Therefore, the effect of the true values 
should be limited to a smaller range in such cases. 

This study adopts a patching algorithm for conditional 
random field in modelling material properties. Available 
data from site investigation are incorporated into 
simulation. By virtue of Monte-Carlo simulations, the 
factors of safety and the probability of failure of a slope 
modelled by unconditional and conditional random field 
are calculated. 

2. Methodology 

2.1 Simulation of unconditional random field 
Regarding the simulation of a stationary random field, 

several methods are available in the literature, such as 
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Karhunen–Loève expansion, spectral representation 
method (SRM), local average subdivision method, and 
Cholesky decomposition technique. The SRM is adopted 
in this study due to its theoretical elegance and relative 
simplicity in implications (Shinozuka and Deodatis 1996). 

A second-order normal random field with zero mean 
value and unit variance can be simulated by SRM as 
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where x1 and x2 are position vectors in the horizontal and 
vertical directions, respectively; ω1n and ω2n are the 
corresponding wave numbers in the horizontal and vertical 
directions, respectively; G(ω1n, ω2n) and G(ω1n, -ω2n) are 
one-side power spectral density functions (PSDF); ω1u and 
ω2u are the upper cut-off wave numbers in the horizontal 
and vertical directions, respectively;       and      are 
independent random phase angles uniformly distributed in 
the range [0,2π].

      
 

A second-order Gaussian correlation function is utilized 
in this study and defined as  
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where  τ1=|x1m-x1n| and τ2=|x2m-x2n| are the absolute 
distances between two position vectors; θ1 and θ2 are the 
autocorrelation distances in the horizontal and vertical 
directions, respectively. 

The corresponding PSDF (Wiener-Khintchine 
transform of correlation function) is 
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The simulated random field is shown in Fig. 1. This 
method can be easily applied to multidimensional 
stochastic field with arbitrary distribution and multiple 
variables. 

 

Figure 1. Simulation of unconditional random field. 

2.2 Simulation of conditional random field 
A patching algorithm (Ouyang et al. 2020) for 

conditional random field is utilized in this study. There are 
ne values at ne points to be determined, in which p values 
have been measured from practice. A second-order 
conditional random field f C(x1, x2)  is generated to 
simulate the soil properties with the following steps:  

Step 1: Generate an unconditional random field 
f (x1,x2) using the SRM described in the proceeding section. 

Step 2: Assume that the coordinate of the first known 
point (x1k1, x2k1) (k1 = 1) is (20, 20), at which replace the 
value with real value, as shown in Fig. 3.  

 

Figure 3. Simulation of the conditional random field 

Step 3: Assume that the autocorrelation distance is 
equal to 10√π, and the influence range of known point is 
illustrated in Fig. 2. The points within the range are 
unknown points to be interpolated (x1k3, x2k3) (k3 = 1 ~ 
ne-p).  

Step 4: On the edge of the influence range, find the 
interpolation point (x1k2, x2k2) (k2 = 1 ~ ne-p) 
corresponding to each unknown point, which meets both 
of the following conditions: 

(1) The interpolation point and the unknown point are 
located on the same side of the known point. 

(2) The interpolation point, the unknown point and the 
known point are located on the same line. The schematic 
diagram of linear interpolation is shown in Fig. 2. 

  

Figure 2. Schematic diagram of linear interpolation. Radius of 

the influence range is 10√π/√π  = 10 (see Ouyang et al. 2020). 

Step 5: The value at the unknown point is calculated 
through a linear interpolation method: 
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where E and F are the distances between the interpolation 
point and the unknown point, and between the known point 
and the unknown point, respectively.  

Step 6: For each other known point  (x1k1, 
x2k1) (k1=2~p) , repeat step 2 to step 5, and finally the 
conditional random field f C(x1, x2)

 
is generated, which is 

shown in Fig. 3. 
Note that, the conditional random field exactly 

matches the known data. As (√F/(F+E))
2
+(√E/(F+E))

2
=1 , 

after linear interpolation, the values of all points follow the 
normal distribution with mean value equal to 0 and 
variance value equal to 1. 

3. Illustrative example 

3.1 Basic model 
For illustration, a hypothetical cohesion-frictional 

slope model is used as the basic model. The slope has also 
been successively studied in the literature (Cho 2010, Li et 
al. 2015, Liu et al. 2017). The geometric dimensions of the 
slope are shown in Fig. 4. Following previous researches, 
related parameters of soil properties are summarized in 
Table 1.  

Table 1. Statistics of soil properties. 

Parameters Mean COV Distribution Cross-correlation 

c (kPa) 10 0.3 Lognormal ρc,φ=-0.5 

φ (°) 30 0.2 Lognormal ρc,φ=-0.5 

γ (kN/m3) 20 - - - 

 
The cohesion c and friction angle φ are modeled as 

lognormal random fields with a cross-correlation 
coefficient ρc,φ=-0.5, and the horizontal and vertical 
autocorrelation distances are chosen as lh=20 m and lv=2 
m, respectively. The finite element model is discretized 
into 1765 elements with 1859 nodes, consisting of 4-noded 
quadrilateral elements. Based on the mean values of c and 
φ, the deterministic slope stability model provides a similar 
FS value (1.186) to the value (1.210) calculated by 
Bishop’s simplified method. The plastic strain magnitude 
(PEMAG) at the failure of slope is also schematically 
shown in Fig. 4. 

 

Figure 4. The geometry of the slope, layout of known points and 

calculation results of the deterministic model 

For conditional random field simulations, virtual 
samples are used as replacements of known data of soil 

properties at particular locations. Referring to Liu et al. 
(2017), Fig. 4 shows the layout of the five virtual samples, 
which are marked consecutively as A, B, C, D and E. Shear 
strength values are assigned to each of the samples, which 
are determined based on the statistical properties of soil 
properties, as illustrated in Table 2. With these known data, 
conditional random field can be simulated using the 
method suggested in this study. The influence range of 
each known value is an ellipse with long axis equal to 
20/√π m and short axis equal to 2/√π m (see Ouyang et 
al. 2020). A typical realization of friction angle φ based on 
unconditional and conditional random field is shown in 
Figs. 5 and 6, respectively. Besides, A typical realization 
of cohesion c based on unconditional and conditional 
random field is revealed in Figs. 7 and 8, respectively. 

Table 2. The known data of the five virtual samples 

 A B C D E 

c (kPa) 9.07 9.80 9.38 7.82 9.16 

φ (°) 32.30 33.60 29.96 42.20 28.15 

 

Figure 5. A typical realization of friction angle based on 

unconditional random field. 

 

Figure 6. Conditional random field of Fig. 5 with five known 

data. 

 

Figure 7. A typical realization of cohesion c based on 

unconditional random field. 


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Figure 8. Conditional random field of Fig. 7 with five known 

data. 

3.2 Results and discussions 
In this study, the number of known data points (Nd) in 

each case is set to 0, 2, 3 and 5, as listed in Table 3. Monte 
Carlo simulations (MCS) are conducted for numerical 
analysis. It is essential to choose a proper MCS realization 
times Nsim. As the statistics of the FS present little 
difference when Nsim is chosen as 200 and 500, Nsim is 
selected as 200. For these cases, the factor of safety (FS) 
and the probability of failure (Pf) of slopes are obtained, 
which are summarized in Table 3, and shown in Figs. 9 and 
10, respectively.  

Table 3. Statistical results of random finite element analysis. 

No. of 

case 
Nd 

Known 

point 

Factor of Safety 

Pf 
Mean 

Coefficient of 

variation (COV) 

Case1 0 / 1.185 0.183  0.14 

Case2 2 A, E 1.202 0.161 0.12 

Case3 3 A, C, E 1.195 0.127 0.07 

Case4 5 
A, B, C, 

D, E 
1.214 0.123 0.05 

 

Figure 9. Mean and COV of FS calculated using unconditional 

and conditional random field for various cases.  

It is observed that the mean value of FS increases as the 
number of known point considered increases of the whole. 
When Nd=3, the small value may be due to the point C is 
close to the slope slip surface and the known value is 
relatively small. Meanwhile, the COV of FS decreases 
indicating that the simulation variance of the conditional 
random field can be efficiently reduced by the known data, 
and more known data result in the spatial variation of soil 
properties being better represented.  

 

 

Figure 10. Comparison of   calculated using unconditional and 

conditional random field for various cases. 

Moreover, the Pf of slope decreases by the known value 
increases, which reflects that the Pf may be overestimated 
by the traditional unconditional random field simulations, 
so that the conditional random field simulation can 
effectively reduce the uncertainties and provide more 
reasonable results.  

Some studies have found that the relationship between 
the sample interval and the autocorrelation distance is 
critical to the establishment of the conditional random field. 
When the sample interval is greater than the 
autocorrelation distance or the autocorrelation distance is 
too small, the advantage of some conditional random field 
simulations is not evident, for example, the Kriging 
random field commonly used (Wu et al. 2009, Li et al. 
2016, Liu et al. 2017). In general, the mean value, COV et 
al. of known data are not consistent with the overall 
statistical parameters. For these simulation methods, if 
there is no sufficient known information provided, the 
volatility cannot be offset; thus, it may erroneously 
estimate the spatial variation of soil properties. While for 
the patching algorithm method proposed in this paper, after 
considering known points, all points of the random field 
follow the original distribution, so that it will not be limited 
by the number and spacing of known points. 

4. Conclusions 
In this paper, a patching algorithm is proposed to 

combine MCS for assessing the reliability of a slope in 
spatially variable soils where some known data at 
particular locations are available. Several cases have been 
performed to investigate the effects of different layouts of 
known samples on the FS and Pf, for comparison, the 
results obtained by the unconditional random field 
simulations are also provided herein. Based on the present 
study, several conclusions can be drawn: 

(1) The unconditional random field underlying the 
soil properties can be effectively simulated by the SRM. 
Through the patching algorithm method, the conditional 
random field simulated exactly matches the known data 
and follows the original normal distribution. 

(2) The conditional random field can effectively 
reduce the simulation variance of the random field and the 
Pf of slopes, indicating that after taking the known data into 
consideration, the spatial variation of soil properties can be 
better represented.  

fP
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(3) Compared with other simulation methods of 
conditional random field, the method proposed in this 
paper does not need to be limited by the autocorrelation 
distances and the number and spacing of known points. 
Thus, it is more efficient and more suitable for slopes with 
relatively fewer known data. 
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