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Abstract: The point strength of short columns (i.e. cement-treated columns) often exhibits significant spatial variability. Because of 

the high heterogeneity in the unconfined compressive strength of columns, the first-order second-moment method, second-order 

second-moment method and variance reduction approach for reliability assessment are generally adopted in practice. In this study, one 

of the main sources for the heterogeneity in the unconfined compressive strength of columns is considered, namely, the intra-column 

non-uniformity of point strength. This study presents a model for random strength distribution in columns, based on the assumption 

that spatial variation in strength arises from spatial variation in material strength. The point strength is simulated as a three-dimensional 

random field, which serves as the input parameter in finite element analysis. Based on such kind of finite-element analysis, the result 

of the probability of failure and reliability index is assessed. For comparisons, the reliability index is also calculated by the first-order 

second-moment method, second-order second-moment method and Monte-Carlo simulation with random variables. Comparison 

results indicate that the reliability assessed by finite element method with random field is generally greater than it is assessed by other 

methods. The results of this study are likely to offer guidelines for comparable projects in practice. 
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1. Introduction 
Cement-treated column is the method used to 

strengthen soft saturation soft clay foundation. It uses 
cement as the curing agent, through a special mixing 
machine, the soft soil and the curing agent are forced to 
mix in the depth of the foundation, and a series of physical 
and chemical reactions between the curing agent and the 
soft soil are used to make the soft soil harden into a high-
quality foundation with integrity, water stability and 
certain strength. At present, it is widely used in soft soil 
foundation treatment (Lee et al. 2013). 

For the cement-treated columns formed by forced 
mixing, it can be seen from the results of sampling that the 
strength of cement soil presents high heterogeneity (Liu et 
al. 2016). Lee et al. (2005) give the empirical relation, 
which is an extension of the relationship given by 
Gallavresi (1992), is adapted. In this relationship, the 
unconfined compressive strength, qu, is given by  

 0.62 3

u 0e
xq q y−=   (1) 

where x and y are soil-cement ratio and water-cement ratio 
in the soil-cement admixture, respectively. Hence, the 
heterogeneity of cement-treated column strength mainly 
comes from soil-cement ratio and water-cement ratio. The 
first-order second-moment method is widely accepted in 
solving the reliability assessment of cement-treated 
columns. However, the research and analysis show that 
when the nonlinear degree of the limit state equation is 
high, the convergence cannot be guaranteed (Gong et al. 
2003). For this reason, the second-order second-moment 
method (Breitung 1984), Monte-Carlo simulation with 
random variables (Rubinstein and Kroese 1981) and 
random finite-element method (Namikawa and Koseki 
2013) can be used in this situation. In this research, the 
cement-treated column is simulated as random field 
according to the heterogeneity of cement-treated column, 
and the unconfined compressive strength of the cement-
treated column is analyzed by random finite-element 

method. The result of random finite-element method is 
compared with the results of first-order second-moment 
method, second-order second-moment method and Monte-
Carlo simulation with random variables, which can 
provide reference for the design of piles. 

2. Methodology 
In structural reliability analysis, the limit state of a 

structure is generally described by a performance function. 
According to Eq. 2, the load effect is set to 1500 kPa, then 
the performance function, z is given by 

 0.62 3150e 1500xz y−= −   (2) 

The value of the performance function strictly 
distinguishes the working state of the cement-treated 
column into three different states: reliable state, limit state 
and failure state.  

If z > 0, the cement-treated column is in the reliable 
state; 

If z = 0, the cement-treated column is in the limit state; 
If z < 0, the cement-treated column is in the failure state. 
The probability that the performance function appears 

less than zero is called the failure probability of the 
cement-treated column, Pf. The performance function 
approximately obeys the normal distribution, so the 
probability density function of Z is given by  
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In Eq. 3 𝜇𝑧 represents the mean value of the random 
variable z. Integrate the part less than zero in Eq. 3, and the 
failure probability is given by 
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Table 1 Summary of some existing investigations on reliability 

assessment. 

Reference Method 
Investigation 

approach 
Research object 

Paloheimo& 

Hannus, 1974 

FOSM Analytical Composite 

members 

Rackwitz & 

Fiessler, 1978 

FOSM Analytical A section of a 

wall 

Hohenbichler & 

Rackwitz, 1981 

FOSM Analytical Composite 

members 

Augusti et al., 

1984 

MCS Numerical Structural 

engineering 

Faravelli, 1989 RS Analytical Composite 

members 

Schuëller & 

Bucher, 1989 

RS Analytical Frame structure 

Bucher, 1990 RS Analytical Frame structure 

Kim & Na, 

1997 

RS Analytical Structural and 

non-structural 

problems 

Das & Zheng, 

2000 

RS Analytical Stiffened plated 

structure 

Zheng & Das, 

2000 

RS Analytical Stiffened plated 

structure 

Namikawa & 

Koseki, 2013 

RFEM Numerical Cement-treated 

column 

Liu et al., 2018 RFEM Numerical Deep cement-

mixed clay 

Note: FOSM: First-order second-moment; SOSM: Second-order 
second-moment; MCS: Monte-Carlo simulation; RS: response 
surface; RFEM: Random finite element method. 

 

The area shaded in Fig. 1 (a) is the failure probability, 

Pf. By transforming Y = 
(𝑍−𝜇𝑧)

𝜎𝑧
 , convert Z from the 

normal distribution Z ~ N (𝜇𝑧, 𝜎𝑧) to the standard normal 

distribution Y ~ N (0,1). The failure probability is given by 
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It can be seen from Fig. 1 (b) that the distance from the 
origin O to the average Y can be measured by the standard 
deviation z 

z
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where β is a dimensionless number, termed the reliability 
index. Therefore, Pf can be expressed as 

f ( ) ( )P Φ β Φ β= - =1-   (7) 

2.1 First-order second-moment method 
The factors that affect the reliability of the structure are 

complex, but the mean and variance of random variables 
are easier to obtain. The first-order second-moment is a 

method that uses a mathematical model with only mean 
and standard deviation to solve structural reliability. The 
center-point method of the first-order second-moment 
method expands the performance function at the mean 
point with a Taylor series, and linearize it to calculate the 
reliability of the structure. 

 

          (a)                    (b) 

Figure 1. Relationship between failure probability and reliability 

index. 

Eq. 1 is the performance function, and the soil-cement 

ratio x follows normal distribution with mean  𝜇𝑥  = 0.2 

and standard deviation 𝜎𝑥 = 0.051962, and water-cement 

ratio y also follows normal distribution with mean 𝜇𝑦 = 

0.4 and standard deviation 𝜎𝑦 = 0.070711. Performing 

first-order Taylor expansion for x = 0.2 yields 
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Performing first-order Taylor expansion for y = 0.4 

yields 
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− −
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The mean value of z is given by 

 ( ) ( , )z x yE z g  = =   (10) 

The variance of z is given by (𝑥1 =  𝑥, 𝑥2 =  𝑦 ) 
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The reliability index of the structure 𝛽𝑐 in the center-
point method can be calculated as 
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The failure probability  𝑃f is given by 

f ( ) 0.2061cP Φ = − =   (13) 

2.2 Second-order second-moment method 
The first-order second-moment method does not 

consider the local nature of the performance function in the 
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vicinity of the design checking point. When the 
nonlinearity of the performance function is high, a large 
error may occur. The second-order second-moment 
method uses the gradient of the nonlinear performance 
function and calculates the nonlinear properties such as the 
curvature of its second derivative near the checkpoint, thus 
improving the reliability of the analysis accuracy. 

Performing second-order Taylor expansion for x = 0.2 
yields 
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Performing second-order Taylor expansion for y = 0.4 
yields 
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The reliability index of the structure in the center-point 
method can be estimated as 
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Iterations are conducted based on the following 
equations. 

 * cos
ii x c ix x  = +   (17) 
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If the difference of |𝑥𝑖
∗| between the two sequential 

iterations is less than 0.1, the iteration process is 
considered to be completed.          
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where 𝛽 is the reliability index of the structure in second-
order second-moment method. 

The failure probability, Pf is given by 

f ( ) 0.119cP Φ = − =         (20) 

2.3 Monte-Carlo simulation   
Monte-Carlo simulation is to randomly sample random 

variables that affect its reliability, and then substitute these 
sampled values into the performance function group by 
group to determine whether the structure fails. After 
carrying out a large number of tests, the failure probability 
of a structure is the frequency at which the number of 
structural failures accounts for the total number of 
samplings. When the number of samples is large enough, 
the frequency is approximately equal to the probability. 

Sampling N times, if the number of times z ≤ 0 is M, 

then the failure probability of the problem, 
f = /P N M . The 

random variables X, Y which follow the normal distribution 

are sampled 100,000 times, and these samples are brought 

into the performance function z for calculation. 
The frequency distribution histogram and cumulative 

distribution curve of 𝑞𝑢  are shown in Fig. 2 and Fig. 3 
when 𝑞u < 1500, z < 0, respectively. 

 

Figure 2. Frequency distribution histogram of 𝑞𝑢.  

 

Figure 3. Cumulative distribution curve of 𝑞𝑢. 

f 0.11844
N

P
M

= =                 (21) 

When it is necessary to compare the degree of 
dispersion of multiple sets of data, if the data scale or data 
unit of the two sets of data is different, it is not appropriate 
to use the standard deviation directly, and the coefficient 
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of variations (COV) can eliminate the influence of the 
measurement scale and data dimension.  

It can be seen in Fig. 4 that the COV of the y has a great 

influence on the COV of the 𝑞𝑢, while the COV of the x 

has little influence on the COV of the 𝑞𝑢. 
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Since 𝜇𝑥 = 0.2 and 𝜇𝑦 = 0.4 and the COV ranges of 

variables x and y are both [0,1], the ranges of 𝜎𝑥 and 𝜎𝑦 

are [0,0.2] and [0,0.4], respectively. According to Eq. 23, 

the coefficient before 𝜎𝑦
2  is much greater than the 

coefficient before 𝜎𝑥
2. Therefore, the main influence factor 

of 𝐶𝑂𝑉𝑞𝑢
 is the COV of y. 

 

Figure 4. Relationship among coefficients of variation of x, y 

and 𝑞𝑢.                      

2.4 Random finite-element method 
This research mainly considers the reliability analysis 

of the pile under vertical load. As shown in Fig. 5, the 
cement-treated column model with a diameter of 3 m and 
a height of 5 m is established. A displacement of 0.5 m is 
applied on the upper surface of the pile to calculate the 
unconfined compressive strength of the pile surface. The 
unconfined compressive strength of the cement-treated 
column follows the normal distribution, and the specific 
parameters are shown in Table 2. 

 

Figure 5. Cement-treated column model. 

Table 2 Unconfined compressive strength of cement-treated 

column 

Average 

value 

𝜇𝑞u
 

 (MPa) 

Standard 

deviation 

𝜎𝑞𝑢
  

(MPa) 

Auto-

correlation 

lengths along X 

and Y direction 

(m) 

Auto-

correlation 

lengths along 

Z direction 

(m) 

2609.06 1355.75 0.50 2.00 

 
According to the above parameters, 100 random finite-

element simulations are carried out. The schematic 
diagram of the random field generation and calculation 
results of unconfined compressive strength of the cement-
treated column is shown in Fig. 6. 

 

Figure 6. Finite element analysis results of cement-treated 

column. 

The results of 100 random finite element simulations of 
the unconfined compressive strength of the cement-treated 
column in this example is counted. The histogram of 
frequency distribution of unconfined compressive strength 
of the cement-treated column is shown in Fig. 7. 
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Figure 7. Histogram of frequency distribution of unconfined 

compressive strength. 

According to the above calculation results, the 
cumulative distribution function graph of the simulation 
results of 100 random finite elements can be drawn as 
shown in Fig. 8. 

 

 Figure 8. Cumulative distribution function graph of unconfined 

compressive strength.  

3. Results and Discussions 
The reliability index calculated by the first-order 

second-moment, second-order second-moment, Monte-
Carlo simulation and random finite-element method is 
shown in Table 3.  

Table 3 Unconfined compressive strength of cement-treated 

column 

Failure 

probability 
FOSM SOSM MCS RFEM 

Pf 0.2061 0.1190 0.1184 0 

 
It can be seen from the above table that the calculation 

result of the second-order second-moment method is closer 
to the calculation result of Monte-Carlo simulation. This is 
because the first-order second-moment method does not 
take into account the local nature of the performance 
function in the vicinity of the checkpoint, and at the same 
time, the nonlinearity of the performance function in this 
research is high, resulting in a large error. 

In the process of random finite-element simulation, 
although there are some elements with relatively high 
unconfined compressive strength in the pile, the 
unconfined compressive strength of each element in the 
same simulation process generally follows a normal 
distribution. At the same time, the numerical values of the 
unconfined compressive strength of the elements in the 
range of relevant length are similar. The higher strength 

elements support the cement-treated columns, resulting in 
the consequence that there is no damage to the cement-
treated columns. 

4. Conclusions 
According to the above calculation process, it can be 

seen that the simulation of the first-order second-moment 
method, second-order second-moment method and Monte-
Carlo simulation can only simulate the situation when the 
unconfined compressive strength of a single cement-
treated column is a fixed value. 

The non-uniformity of the unconfined compressive 
strength of the cement-treated column was characterized 
by the random field method. The random finite-element 
simulations that the uneven spraying of the cement pastes 
makes the unconfined compressive strength has a strong 
randomness. This random finite-element method can 
calculate the failure situation of the cement-treated column 
which is closer to the actual engineering situation. 
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