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Abstract: A Bayesian compressive sensing (BCS) based approach for estimating evolutionary power spectral density functions of 
non-stationary stochastic processes based on problematic data records is developed. In particular, a detailed derivation of generalized 
harmonic wavelet bases for the compact representation of non-stationary environmental processes measured on finite intervals is 
presented. This representation leads, next, to an evolutionary power spectrum estimation approach. In the presence of missing data, 
BCS can be employed to determine the required wavelet coefficients and to quantify the induced reconstruction uncertainties. Finally, 
a computationally efficient method for applying BCS to the application-specific optimization problems is introduced. A numerical 
example suggests that the proposed approach offers accurate estimation and propagates the inherent uncertainties reliably. 
 
Keywords: Discrete generalized harmonic wavelet transform, Bayesian compressive sensing, Evolutionary power spectra, Missing 
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1. Introduction 
The ability to model the performance of engineering 
structures that operate in dynamic environments (i.e. 
offshore wind turbines) is a requirement to assure the 
reliability and the availability of such systems and 
informing design decisions. Computer-based dynamic 
models relay on the capability of accurate estimation of 
environmental excitations. Hence, a clear understanding of 
the variations in operational and ambient conditions 
expected for the structures is of main interest. However, 
estimating statistical properties of stochastic processes 
associated with physical loads is particularly challenging 
in the light of corrupted or partially missing data. Reasons 
for problematic data can be sensor failures, bandwidth 
limitations or operating range exceedance of sensors in 
extreme operational conditions (Comerford et al. 2017). 

The time-varying frequency content of non-stationary 
stochastic processes can be characterized and modeled in 
terms of evolutionary power spectral density functions 
(Priestley 1967). In this regard, Evolutionary Power 
Spectra (EPS) generalize the physical meaning of 
traditional power spectra density functions which are 
appropriate only for stationary processes. Considering the 
problem of estimating EPS, a wavelet transform based 
approach has turned out to overcome certain limitations of 
other methods such as the Wigner-Ville method and 
window based schemes due to the beneficial properties of 
wavelets (Spanos and Failla 2004). Latter are the reason 
why wavelet analysis has found its way also into other 
fields of engineering. Further research efforts have focused 
on estimating EPS in the presence of missing data. 
Particularly worth highlighting is a Compressive Sensing 
(CS) based approach demonstrating superior performance 
compared with other state-of-the-art techniques 
(Comerford et al. 2016, Comerford et al. 2017). Here, the 
wavelet coefficients are determined following the signal 

processing concept of CS given a problematic signal of 
interest. The underlying signals can then be reconstructed 
and the EPS estimated. 

One point of criticism is the lack of information about 
the basis used to represent the signal. In particular, it is 
important to distinguish between the continuous and the 
discrete wavelet transform. Inasmuch as the discrete 
wavelet coefficients cannot offhand be utilized in the 
estimation formula derived for the continuous case. For 
this reason, the first part of the present paper provides a 
detailed derivation of the orthogonal wavelet basis with 
clearer notation. 

Another limitation of the CS based approach is the need 
to quantify uncertainties of the load characterization 
caused by the loss of information. This can be achieved by 
utilizing the framework of Bayesian Compressive Sensing 
(BCS), see e.g. (Ji et al. 2008). Attacking the sparse 
regression tasks from a Bayesian perspective provides 
posterior distributions for each of the basis coefficients 
naturally quantifying reconstruction uncertainties, instead 
of modest point estimates. Beyond that, enhanced variants 
have been proposed, e.g. (Huang et al. 2016), showing 
more robust performance in case of only approximately 
sparse signals and exploit statistical relationships between 
different data sets (Ji et al. 2009). 

This paper presents a novel approach for estimating the 
evolutionary power spectral densities of non-stationary 
stochastic processes based on problematic data records. In 
this context the remaining sections are structured as 
follows. As described above, section 2 initially derives the 
orthogonal wavelet basis for discrete signals measured on 
a finite range and elucidates the relationship between 
resulting coefficients and the EPS. Section 3 includes a 
brief review of CS and introduces a computational efficient 
way to apply BCS to the complex-valued optimization 
problem. The paper concludes with a numerical example, 
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which suggests that the proposed approach offers 
sufficiently accurate estimation and propagates the 
inherent uncertainties reliably. 

2. Wavelet Analysis 
This section concisely includes the theory of wavelet-
based EPS estimation. By representing arbitrary functions 
utilizing families of wavelets, one is able to decompose 
these functions into time-frequency space. In this way 
variations of power can be analyzed locally in time. 

2.1 Generalized Harmonic Wavelets 
An exceptional family of wavelets are the generalized 
harmonic wavelets (GHW). Each of these complex-valued 
functions 𝑤(#,%),(')(𝑡)  is defined by three parameters. 
The first two determine the scale and prescribe the 
frequency range of the GHW. The third parameter 
specifies its position in time. More precisely, 𝑘 shifts the 
function. GHW feature a box-shaped frequency spectrum. 
Originally developed to precisely achieve this manipulable 
band-limited property (Newland 1993), this structure 
simplifies the exploration of frequency specific content. If 
the parameters are chosen appropriately, the family of 
GHW provides a complete set of orthogonal basis 
functions for signal analysis (Newland 1994a). 

2.2 Circular Generalized Harmonic Wavelets 
Unfortunately, aforementioned theory holds only true for 
(continuous) functions defined on an infinite domain. The 
reason is that GHW do not form a set of orthogonal basis 
functions on a finite interval (Spanos et al. 2016). Since no 
measured signal can fulfill this condition, the present paper 
employs periodization of GHW to make ensuing analysis 
implementable. Circular or periodized GHW (PGHW) 
with period 𝑇+	are defined (Daubechies 1992, Newland 
1993, 1994a, Spanos et al. 2016) as infinite sum of this 
wavelet shifted by multiples of 𝑇+ . In this manner, the 
finite energy of the wavelet, which exists beyond the 
considered time period [0, 𝑇+] , is transmitted into this 
interval. Transformations provide the analytical 
representation 
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with ΔE ≔ 2𝜋/𝑇+ . Note, that the summation index 
derived here dissent from the representation in (Spanos et 
al. 2016). As can readily be seen, PGHW are sums of 
harmonic functions with underlying frequencies of 
𝑚ΔE,… , (𝑛 − 1)ΔE.  Compatible with this observation, 
the Fourier transformation of Eqn. 1 reveals the PGHW in 
the frequency domain 
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2.3 Discrete Generalized Harmonic Wavelet Transform 
Since measurements in real-life applications as a rule 
provide time-discrete signals, this paper exclusively 
considers sampled functions 𝑓S ≔ 𝑓(𝑡 = 𝑟 · ∆=), 𝑟 =
0, . . . , 𝑁+ − 1 hereinafter, with ∆=∶= 𝑇+/𝑁+. For this case, 

the discrete harmonic wavelet transformation (DGHWT) 
is deduced as 
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Note that Eqn. 3 generalizes the discrete Fourier 
transformation (DFT), e.g. (Newland 1994b). Both 
definitions correspond for 𝑠 = 𝑚 and band width 1. The 
wavelet representation of the discrete function using 
PGHW results as 

												𝑓S =66𝑎(#_,%_)(')
[0 ∙
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where 1 ≤ 𝐿 ≤ 𝑁+ depicts the number of frequency 
bands with 𝑏b ≔ 𝑛b −𝑚b − 1. Furthermore, Eqn. 4 gives 
the inverse DGHWT respectively. The partition of the 
wavelet coefficients 𝑃 ≔ [𝑚B, 𝑛B;𝑚M, 𝑛M,… ,𝑚a, 𝑛a] , 
with 𝑚B = 0, 𝑛a = 𝑁+  and 𝑛b = 𝑚b − 1  for 𝑙 =
2,…,L controls the trade-off between time and frequency 
resolution of the ensuing analysis. Depending on the 
objective of the application, 𝑃 can be chosen as required. 
Beyond that, the Fourier coefficients of the input sequence 
can be expressed by means of the DFT of the wavelet 
coefficients in turn 
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with 𝑠 = 𝑚b, … , 𝑛b − 1.  These operations can be 
combined for all frequency bands in a single block 
diagonal matrix 𝑊m. Therefore, the inverse problem 

𝑓 = 𝔉>B ∙ 𝑊m ∙ 𝑎 =:Ψm ∙ 𝑎 (6) 

reveals the structure of the searched for orthogonal PGHW 
basis 𝛹m . In the aforementioned equation, 𝔉>B  depicts 
the inverse DFT matrix and the vector 𝑎 consists of all 
PGHW coefficients. The orthogonality of the DFT 
matrices in conjunction with the block diagonal shape of 
𝑊m  yields the orthogonality of the derived basis matrix. 

It is worth noting, that the vector 𝑎  constitutes an 
approximation (Newland 1994c) of the GHW coefficients 
of the truncated wavelet representation (Newland 1994a). 
In this context, the Nyquist frequency enforces the 
truncation. 

3. Evolutionary Power Spectra Estimation 
Concerning the problem of estimating EPS 𝑆(𝜔, 𝑡)  of 
non-stationary stochastic processes, (Spanos and 
Kougioumtzoglou 2012) and (Wang 2018) derived in 
different ways the GHW based formula 
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More precisely, Eqn. 7 is the averaged EPS over the 
frequency-time interval [𝑚ΔE, 𝑛ΔE) × [

'
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(Wang 2018). Considering wavelet maps (e.g. Newland 
1994a), the PGHW based formula can be derived 
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analogously to (Spanos and Kougioumtzoglou 2012). 
Regarding discrete finite and non-stationary stochastic 
processes, EPS estimation results as 
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�t��w(x,y)(z)

�� ��
|

(%>#)
, (8) 
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Note that Eqn. 8 matches the estimate in (Spanos et al. 
2005). In practice, the expected value is estimated by 
means of available realizations (measurements) of the 
stochastic process under consideration. 

4. Compressive Sensing 
Compressive sensing (CS) is a branch of signal processing 
which has become a research field under great attention. 
On condition that a signal is sufficient sparse in any 
incoherent transform domain, CS enables reconstruction of 
this signal notwithstanding a significantly reduced number 
of required incoherent measurements, even below the 
Nyquist rate. In this context, (approximative) signal 
sparsity means, that only a few dominant coefficients can 
represent the underlying signal in an orthogonal transform 
basis. CS covers not only compressed sensing, i.e. 
strategies to acquire a significantly reduced number of data 
directly compressed at the sensor, but also the theory of 
their traceability as well as algorithms to reconstruct the 
signal (e.g. Donoho 2006). 

Missing data can be understood as unintentionally 
additional compression. This involuntarily character 
unfortunately withdraws the control from the sensing 
process. Depending on its distribution, the probability of a 
successful reconstruction deteriorates. In this regard, large 
connected sequences of missing data impose escalating 
uncertainty and worsen the results. Nevertheless, CS 
already demonstrates comparatively strong performance in 
the considered cases of missing data (Comerford et al. 
2016, Comerford et al. 2017). 

Next, consider the situation of a given compressed 
sensing strategy including data loss. In this context, the so-
called measurement matrix 𝛷  projects a regularly 
sampled underlying signal 𝑓 onto the actually measured 
one 𝑔. The first matrix in Fig. 1 reveals the structure of 𝛷 
in the case of 50% uniformly distributed missing data 
points without further compression. Since the underlying 
signal is presumed to be sparse, the vector 𝜔 can  
represent 𝑓 relative to 𝛹. All in all, this results in the 
under-determined system of linear equations with the 
compressive sensing matrix 𝛩. 

The basic idea of CS, utilizing the properties sparsity 
and incoherency, to reconstruct 𝜔  (and thus 𝑓 ) by 
solving the optimization problem 

min
E
‖𝜔‖+ 					𝑠. 𝑡.					‖𝑔 − Θ𝜔‖M ≤ 𝜖 (9)  

with 𝜖 small in the presence of noise. Unfortunately, Eqn. 
9 is a NP-hard problem. For this reason, algorithms simply 
seek a good match for the sparest solution, mostly by 
relaxing the norm and solving the resulting convex 
optimization problem in a simple way (Orović et al. 2016). 

4.1 Bayesian Compressive Sensing 
Bayesian Compressive Sensing is a certain class of 
solution algorithm. Here, the constraint of the CS 
optimization problem is understood as Bayesian linear 
regression task. With the aid of a sparse-promoting prior, 
the solution of the optimization problem is provided as a 
posterior distribution for the coefficients. Quantification of 
the reconstruction uncertainty is determined by means of 
error bars, which correspond to the standard deviation 
around the expected value. This framework is also known 
as sparse Bayesian learning and Relevance Vector 
Machine. Further, (Ji et al. 2008) proposes a hierarchical 
Bayesian framework which provides a conjugate prior. 
The posterior results as multidimensional normal 
distribution, which can be calculated analytically given the 
hyperparameters. Furthermore, the propagated distribution 
of the reconstructed signal can be determined by means of 
simple matrix multiplications. For the sake of efficiency, 
an empirical Bayesian procedure is employed to point 
estimate the hyperparameters in a fast manner. If this is 
based on several data sets, we speak of multi-task BCS 
(MTBCS) (Ji et al. 2009). MTBCS tries to exploit 
presumed correlation between the sets. The single-task 
variant is hereinafter referred to as STBCS. 

MATLAB code of an accelerated version is available 
online at https://github.com/shihaoji/bcs and used to run 
BCS in the next chapter. See (Ji et al. 2009). 

4.2 Application-specific BCS 
Both the DGHWT matrix derived in section 2.3 and the 
wavelet coefficients are complex-valued consequently. For  
this reason, the posterior distribution to be determined 
must be complex normally distributed. 

A natural choice is to reformulate the CS problem as  
2𝑁+ − dimensional real-valued one. The subsequent 
application of BCS yields the desired distribution for 𝑋 ∶
= 	 [𝑈?, 𝑉?]?,  where 𝑈  represents the real and 𝑉  the 
imaginary part of the coefficient vector. This procedure is 
referred to as CBCS hereinafter. 

Figure 1: Compressive sensing framework in the context of missing data. This basis is the 
split DFT matrix according to the procedure described in subsection 4.3. 
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To prevent such an inflation of the dimension, this 
section introduces a more computationally efficient 
variant. First, the real and imaginary parts of the CS matrix 
𝛩  form a new matrix 𝑅 . This matrix is then used to 
determine the row reduced echelon form 𝐸 

𝑅 ≔ [𝑅𝑒(Θ)				𝐼𝑚(Θ)] 			→ 			𝐸 ≔ [𝐸B				𝐸M]. (10) 

With the help of 𝐸 it is easy to identify 𝑁+ columns 
of 𝑅  which span a real-valued basis 𝑌. The remaining 
𝑁+  columns of 𝑅  can be expressed as linear 
combinations of the columns of 𝑌. Applying BCS to the 
proxy problem with new CS matrix 𝑌  yields a 
𝑁+ −dimensional normal distribution with expected value 
µ� and covariance matrix 𝛴�. 

Assuming 𝑋  is 2𝑁+ − dimensional normally 
distributed as in CBCS, its expected values µ�, µ� and 
the covariance matrix 𝛴� result as 

𝜇� = �
𝜇�
𝜇�� = �𝐸B −𝐸M

𝐸M 𝐸B
 
>B
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£
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Note that the respective solutions generally do not 
correspond. This is not an issue in so far as both are sparse 
and physically meaningful solutions to the optimization 
problem. 

In addition, the invertibility of the matrix remains to be 
shown in general. 

Once the posterior distribution of X is determined, the 
resultant distribution of EPS can be propagated through 
Eqn. 8 by means of Monte Carlo simulation. While doing 
so, merely normally distributed samples need to be drawn. 

5. Numerical Example 
In this section the BCS based EPS estimation approach is 
applied to simulated earthquake time histories. Their 
underlying non-stationary stochastic process is 
characterized by the non-separable EPS (Spanos and 
Kougioumtzoglou 2012; see also Comerford et al. 2016)  

𝑆(𝜔, 𝑡) = <E
¤N
A
M
𝑒(>+.B¤=)=|𝑒><

:
¥¦A

|
=. (13) 

 
Figure 2: Non-separable underlying spectrum plotted from  

Eqn. 13. 

Fig. 2, shows the spectrum directly plotted from Eqn. 
13. During the first seconds Eqn. 13 has a relatively broad 
spectrum of power. However, the width of the frequency 
band decreases rapidly and stabilizes evolutionary over the 
remaining period under consideration. The greatest 
concentration of energy/power is evident between second 
6 and 7 in a relatively low frequency range. 

First, process records compatible with the underlying 
EPS are generated utilizing the concept of spectral 
representation (Liang et al. 2007). Concerning this matter, 
a non-stationary stochastic process with zero mean can be 
represented by an infinite sum of EPS evaluations and 
independent uniformly distributed random phase angles. 
Truncation of this sum together with realizations of the 
involved random variables yields an even sampled 
simulation of the stochastic process with great 
computational efficiency. By this means, a total number of 
500 process records are simulated with 𝑁+ 	= 	512 
sample points each at a period of 𝑇+ = 20. This choice 
results in a Nyquist frequency of 𝜔\ = 80.42 [rad/s]. 

In the following examples, estimations are based on 
PGHW coefficients according to Eqn. 8. To obtain a well-
balanced time-frequency resolution, a wavelet basis Eqn. 6 
with equidistant partition of 𝑛 −𝑚 = 16  is chosen. 
Altogether this corresponds to a resolution of ∆(#,%)=
5.03 [rad/s] in the frequency and ∆(')= 1.25 [s] in the 
time domain. 

Fig.4 depicts the PGHW based EPS estimation without 
missing data based on the simulated process records. 

 
Figure 3: EPS estimation acc. to Eqn. 8 based on 500 process 

records without missing data. 

In light of the inevitable partitioning, Eqn. 8 provides 
an accurate estimation of Eqn. 13. Although the power 
peak is overestimated in terms of surface area, location and 
magnitude of the identified frequencies are correct. 
Likewise, Fig. 3 captures the evolutionary structure of the 
underlying EPS clearly. The erroneously detected low 
frequencies at the beginning can be explained by the 
leakage effect. Note that a more appropriate partition, 
which requires in a sense knowledge of the underlying 
EPS, would improve the result. To that effect, high 
frequency definition in the lowest frequencies reduces the 
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plot to zero. This is possible as no time resolution is needed 
there. In the same way, a higher resolution in time at the 
beginning of the process is able to capture the fast 
evolution in the higher frequencies better. 

Note that each of the squares in Fig. 3 corresponds to 
an identified wavelet coefficient. It is common to render 
interpolated plots. The resulting images show more 
realistic EPS estimations. However, they do not conform 
to Eqn. 8. Post-processing of the estimations is beyond the 
scope of this paper. Due to the limitations described above, 
Fig. 3 is considered the target spectrum for the case of 
missing data. 

Next, the loss of data is simulated. Per record 160 out 
of 512 data points are deleted independently of each other 
in uniformly distributed locations. This equals 31.25% 
missing data. 

STBCS and MTBCS are employed to estimate the 
underlying EPS based on the ensemble of process records 
with imposed missing data. Fig. 4 and 5 show the absolute 
differences to the target spectrum Fig. 2.  

 
Figure 4: Error of the STBCS based EPS estimation with 500 

process records and 31.25% missing data. 

 
Figure 5: Error of the MTBCS based EPS estimation with 500 

process records and 31.25% missing data. 

Despite the lack of information due to the missing data, 
both methods demonstrate excellent results. In this 

example the accumulated error is slightly smaller for 
STBCS. Furthermore, Fig. 6 and 7 show these outcomes 
combined with their propagated error bounds. 

As can easily be seen, STBCS quantifies and 
propagates the uncertainty induced by missing data more 
realistically than MTBCS. Not only does the STBCS have 
significantly lower error bounds, but its quantile 
completely encloses the target spectrum, in contrast to 
MTBCS. Other constellations of missing data (e.g. in small 
intervals) with the same realizations strengthen these 
observations. A potential explanation for larger error 
bounds and their chaotic arrangement in MTBCS is a 
pronounced variability of EPS estimates within individual 
realizations. However, this remains to be investigated. 

 
Figure 6: Error bars (quasi-transparent red) of the STBCS based 

EPS (blue) estimation (blue) with 500 process records and 
31.25% missing data. 

 
Figure 7: Error bars (quasi-transparent red) of the MTBCS 
based EPS estimation (blue) with 500 process records and 

31.25% missing data. 

6 Conclusions 
In this paper, a BCS and DGHWT based approach for 

evolutionary power spectrum estimation in the presence of 
missing data has been proposed. In particular, the 
orthogonal DGHWT matrix has been deduced, which 
directly enables a further processing and its 
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interpretability. Relying on the properties of circular 
GHW, a relationship between their coefficients and EPS 
has been derived. The example demonstrates the 
quality/capacity of this estimation method in the case of 
non-stationary stochastic processes discretely realized on a 
finite interval. Further, the proposed proxy optimization 
problem and the subsequent ascription allow for an 
efficient application of BCS for EPS estimation. The 
numerical example suggests, that STBCS is an appropriate 
method for both EPS estimation and quantifying the 
reconstruction uncertainties in the presence of missing 
data. The multitask approach, on the other hand, performs 
inferiorly, at least in the application case. Reasons for this 
remain to be investigated. 

In this regard, further work is planned on modifying the 
hierarchical framework of the BCS. On the one hand, the 
advantages of the multitask approach shall be exploited (in 
the context of EPS) and on the other hand, side information 
shall be incorporated into the reconstruction process. 
Latter is intended to counteract escalating uncertainties, 
which may occur due to large sequences of missing data. 
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