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Abstract: Shear wave velocity is an important parameter in geotechnical engineering involving dynamic analysis and liquefaction 

evaluation. However, proper characterization of the shear wave velocity remains an area of difficulty, because shear wave velocity is 

a complicated function of a variety of parameters. In this regard, this paper attempts to model the association of shear wave velocity 

of sand with various sand parameters using Bayesian network. Bayesian network is a flexible method to construct a joint probability 

distribution of sand parameters, however training and prediction of Bayesian network is relatively complicated due to its non-linear 

nature. To train the Bayesian network, a database of shear wave velocity is compiled. The effects of particle shape (roundness and 

sphericity) and gradation are included. The prediction of Bayesian network is performed by the Just Another Gibbs Sampler (JAGS) 

package, with an application to the Natori river sand site, Japan. The case study shows that index properties and site-specific data can 

be integrated in a coherent manner to reduce the prediction uncertainty.  
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1. Introduction 
Shear wave velocity (Vs) of sand is an important parameter 
in geotechnical engineering, which is required for dynamic 
analysis and liquefaction assessment. It is also directly 
related to small-strain shear modulus (Gmax), which is an 
essential parameter in ground deformation analysis. Shear 
wave velocity is a complicated function of many factors 
such as confining stress, void ratio, stress history, fines 
content, mineralogy, particle shape, etc. Among them, 
confining stress is identified as a significant factor (Hardin 
and Richart 1963; Wichtmann and Triantafyllidis 2009). In 
particular, Vs depends on the effective stresses in the 
direction of polarization and propagation of the shear 
waves (Roesler 1979). The following average stress model 
can be adopted to model the stress dependency (Yu and 
Richart Jr 1984; Yan and Byrne 1990; Ku et al. 2016): 

𝑉𝑠 = 𝛼 (
𝜎⊥

′ + 𝜎∥
′

2
)

𝛽

(1) 

where α (m·s-1) is the shear wave velocity at 1 kPa, and β 
reflects the sensitivity of 𝑉𝑠 to the average of the effective 
stress in the direction of polarization (𝜎⊥

′ ) and propagation 
(𝜎∥

′) of the shear waves. The unit of stress is kPa. 
Previous studies (Cho et al. 2006; Payan et al. 2016) 

suggest that 𝛼 and 𝛽 may depend on the shape of sand 
particle. Two important parameters that reflect particle 
shape are sphericity and roundness (Krumbein and Sloss 
1963) (Fig. 1). Sphericity (S) indicates the similarity 
between the particle’s length, height and width, which is a 
ratio between the radius of the largest inscribed sphere in 
the particle to the radius of the smallest circumscribed 
sphere to the particle. Roundness (R) indicates the 
smoothness of the particle surface, which is the average 
radius of curvature of surface features to the radius of the 
largest inscribed sphere. 

 

Figure 1. Particle shape identification chart (adopted from 

Krumbein and Sloss (1963)). 

A systematic approach to incorporate the associations 
between the sand parameters (i.e., Vs, α, β, R, S) is to 
construct a joint probability distribution. A flexible 
approach to construct a joint probability distribution is by 
Bayesian network. Bayesian network can represent a 
probability distribution through an acyclic graph, where 
each node is a conditional probability distribution of a sand 
parameter. The links that converge to a node represent the 
parameters on which the distribution is conditioned. If the 
Bayesian network has 𝑁  nodes, i.e., 𝑿 = {𝑥1, … 𝑥𝑁} , 
then the joint distribution is given by (Bishop 2006): 

𝑃(𝑿) = ∏ 𝑃(𝑥𝑛|parent[𝑥𝑛])

𝑁

𝑛=1

 (2) 

where parent[𝑥𝑛]  denotes the parent nodes of 𝑥𝑛   
Implementing a Bayesian network involves two important 
stages: training and prediction  Training refers to learning 
the structure (i e , links) of the network using a database  If 
all the parameters in the network are discrete, then the 
structure can be learnt directly from the data without any 
prior assumptions (Scutari and Denis 2014)  However, the 
sand parameters have continuous values, and the training 
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process is non-trivial in terms of algorithm  This study will 
attempt to establish the network structure through 
investigating the empirical relationships proposed in 
previous literatures  This ensures the network structure 
matches with the geotechnical understanding  

Prediction of the Bayesian network involves evaluating 
the probability distribution of the unobserved nodes given 
the observed nodes, i e , P (unobserved nodes| observed 
nodes)  In this study, the unobserved nodes correspond to 
shear wave velocity at untested locations  Prediction can 
be performed by Markov Chain Monte Carlo (MCMC) 
algorithm, which can draw samples from an arbitrary 
probability distribution  This study will apply a MCMC 
algorithm called Gibbs sampler (Geman and Geman 1984)  
The prediction process will be illustrated through a case 
study in Japan  

2. Database for shear wave velocity 
A database for shear wave velocity is compiled for 
establishing the Bayesian network, which is summarized 
in Table 1. The data are extracted from Cho et al. (2006) 
and Payan et al. (2016). In Cho et al. (2006), 𝑉𝑠  of the 
sand is measured in an oedometer cell fitted with bender 
elements. In Payan et al. (2016), a modulus Stoke-type 
resonant apparatus was used to measure 𝐺𝑚𝑎𝑥 . In this 
study, the reported 𝐺𝑚𝑎𝑥  values are converted to 𝑉𝑠 
through 𝐺𝑚𝑎𝑥 = 𝜌𝑉𝑠

2, while assuming the density of sand 
( 𝜌 ) is 1800 kg ∙ m−3 . In both studies, sphericity and 
roundness are determined by observing individual grains 
under an optical microscope, and then the observed 
geometry is compared to the identification chart (Fig. 1). 
The values reported in Table 1 are the average value based 
on 30 sand grains. For some cases, maximum and 
minimum void ratios ( 𝑒𝑚𝑎𝑥  and 𝑒𝑚𝑖𝑛 ) are measured 
together with sphericity and roundness. Also in this 
database, only the records with coefficient of uniformity 
(𝐶𝑢) smaller than 3.5 are included. 

3. Establishing the Bayesian network 
Based on empirical relationships reported in previous 
literature, the following Bayesian network (Fig. 2) is 
proposed to model the association between the various 
sand parameters. Vs,1,…,Vs,L represent the shear wave 
velocities at different locations, under a sand type with a 
given 𝛼 and 𝛽 value. The links of the network will be 
examined in detail in the rest of this section. 

Inspection of 𝛼  and 𝛽  against 𝑅  and 𝑆  (Fig. 3) 
indicates that as the roundness and sphericity of sand 
particle decreases, 𝛼 decreases and 𝛽 increases. Cho et 
al. (2006) suggested that the packing is looser for irregular 
sand particles, while the contacts between particles 
become more deformable. This leads to lower shear wave 
velocity (𝛼) and higher sensitivity to confining stress (𝛽). 
The following multiplicative model is fitted through the 
least square error criteria: 

𝛼 = 92.3𝑅0.392𝑆0.179 (3) 

𝛽 = 0.205𝑅−0.149𝑆−0.207 (4) 

 
 

Table 1. Vs database (Cho et al. 2006; Payan et al. 2016).  

Sand type D50 Cu R S emax emin α β 

1K9 crushed 0.3 3.4 0.2 0.4 1.16 -- 35 0.35 

1O2 crushed 0.25 2.9 0.25 0.8 0.83 -- -- -- 
1O6 crushed 0.21 2.8 0.3 0.7 0.77 -- -- -- 
2L6 crushed 0.28 3.5 0.25 0.8 0.84 -- -- -- 
30UB-70UBL 0.59 1.99 0.31 0.57 -- -- 50.5 0.275 

3C7 crushed 0.26 3.2 0.25 0.8 0.85 -- -- -- 
3P3 crushed 0.27 2.2 0.2 0.7 0.95 -- 41 0.28 

50UB-50UBL 0.54 1.96 0.36 0.61 -- -- 55.1 0.26 

5U1 crushed 0.32 3.5 0.15 0.7 0.84 -- 42.6 0.266 

6F5 crushed 0.25 3.3 0.25 0.8 0.91 -- -- -- 
70UB-30UBL 0.49 2.01 0.41 0.65 -- -- 59.8 0.25 

7U7 crushed 0.3 3.2 0.2 0.8 0.79 -- -- -- 
8M8 crushed 0.38 3.3 0.2 0.7 0.97 -- 55.7 0.262 

9C1 crushed 0.52 2.3 0.25 0.7 0.91 -- 54 0.297 

9F1 crushed 0.33 3.5 0.2 0.8 0.9 -- 41.8 0.31 

ASTM 20/30 0.6 1.4 0.8 0.9 0.69 -- 72.7 0.223 

ASTM graded 0.35 1.7 0.8 0.9 0.82 0.5 -- -- 
Blasting 0.71 1.9 0.3 0.55 1.025 0.698 -- -- 
Blue sand 1 1.66 1.41 0.24 0.51 -- -- 54.5 0.265 

Blue sand 2 1.94 2.8 0.24 0.51 -- -- 45.4 0.29 

Daytona Beach 0.23 1.4 0.62 0.7 1 0.64 -- -- 
Fraser River 0.3 1.9 0.25 0.5 1.13 0.78 -- -- 
Glass beads 0.32 1.4 1 1 0.72 0.542 -- -- 
Margaret river 0.49 1.9 0.7 0.7 0.87 -- 93.2 0.219 

Michigan dune 0.33 1.5 0.77 0.87 0.8 0.56 -- -- 
Nevada 0.15 1.8 0.6 0.85 0.85 0.57 56.3 0.242 

Newcastle 0.33 1.94 0.64 0.73 -- -- 72.9 0.24 

Ottawa # 90 0.27 2.2 0.4 0.6 1.1 0.73 -- -- 
Ottawa #20/30 0.72 1.2 0.9 0.9 0.742 0.502 -- -- 
Ottawa #20/70 0.53 2.4 0.76 0.81 0.78 0.47 -- -- 
Ottawa #45 0.57 2.1 0.45 0.68 1.11 0.75 -- -- 
Ottawa #60/80 0.21 2.4 0.65 0.78 0.85 0.55 -- -- 
Ottawa F-110 0.12 1.7 0.7 0.7 0.848 0.535 -- -- 
Sandboil 0.36 2.4 0.55 0.7 0.79 0.51 -- -- 
Syncrude 

Tailings 
0.18 2.5 0.47 0.62 1.14 0.59 -- -- 

Ticino 0.58 1.5 0.4 0.8 0.99 0.574 70.7 0.231 

Uniform 

Sydney 
0.36 1.18 0.61 0.76 -- -- 90.9 0.215 

White 0.24 1.69 0.71 0.76 -- -- 69.9 0.24 

 

 

Figure 2. Proposed Bayesian network for sand parameters. 
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Figure 3. 𝛼 and 𝛽 against roundness and sphericity. 

18 data points are used, and the R square values for 𝛼 and 
𝛽 are 0.68 and 0.72 respectively. In Cho et al. (2006), a 
regularity parameter (i.e., (R+S)/2) is adopted to fit 𝛼 and 
𝛽, which assumes 𝛼 and 𝛽 are equally sensitive to R and 
S. However, the multiplicative model (Eq. 3 and Eq. 4) 
suggests that 𝛼 is more sensitive to roundness, while 𝛽 
has similar sensitivity to both roundness and sphericity. 
The residuals of 𝛼  and 𝛽  (i.e., original value minus 
predicted value) are shown in Fig. 4. The residuals are 
assumed to be bivariate normal distributed, with standard 
deviation 𝜎𝛼 = 9.25m·s-1 and σβ = 0.0191. The residuals 
are correlated with correlation coefficient ραβ = -0.613. 
This residual correlation is reflected in the Bayesian 
network (Fig. 2) through the link joining node 𝛼 and node 
𝛽. 

 

Figure 4. 𝛼 and 𝛽 residuals against roundness and sphericity. 

Next, the relationship between 𝑒𝑚𝑎𝑥 , 𝑒𝑚𝑖𝑛  with 𝑅 
and 𝑆 is investigated (Fig. 5). Such relationship is useful 
because normally 𝑒𝑚𝑎𝑥  and 𝑒𝑚𝑖𝑛  are measured, rather 
than roundness and sphericity. Fig. 5 shows that the 
smaller 𝑅  and 𝑆  will increase 𝑒𝑚𝑎𝑥  and 𝑒𝑚𝑖𝑛 , 
indicating that irregular particle shape leads to looser 
packing. The following linear model is fitted: 

𝑒𝑚𝑎𝑥 = 1.515 − 0.012𝑅 − 0.822𝑆 (5) 

𝑒𝑚𝑖𝑛 = 0.885 − 0.224𝑅 − 0.209𝑆 (6) 

with the standard deviation of the residuals are 𝜎𝑒𝑚𝑎𝑥 = 
0.078 and 𝜎𝑒𝑚𝑖𝑛= 0.061. Again, the residuals are assumed 

normally distributed. Eq. 5 indicates that emax depends 
differently on R and S, suggesting that emax is primarily 
controlled by sphericity rather than roundness. Statistically, 
R is not a significant parameter to emax based on its p-value. 
Therefore, it suggests that regularity adopted by Cho et al. 
(2006) is not optimal to characterize the relationship 
between particle shape and emax. But, emin depends nearly 
the same on R and S, according to Eq. 6. 

Finally, the standard deviation of 𝑉𝑠  residual is 
assigned to be 5m·s-1, and the distributions of 𝑅 and 𝑆 
nodes are assumed uniform with ranges (0.1, 1) and (0.3, 
1) respectively.  

 

Figure 5. 𝑒𝑚𝑎𝑥 and 𝑒𝑚𝑖𝑛 against roundness and sphericity. 

 

4. Prediction using the Bayesian network 
The trained Bayesian network can be used to predict the 
shear wave velocity at unobserved locations. If some nodes 
are observed (such as index properties, in-situ testing), 
they can be fixed. Through the association between the 
nodes (i.e., links), the nodes that correspond to shear wave 
velocity at unobserved locations can be updated to their 
posterior distribution. The updating is implemented by 
Gibbs sampler (Geman and Geman 1984). Gibbs sampler 
aims to generate samples from the posterior distribution, 
based on the conditional probability distribution of each 
node. Bayesian network utilizes the Markov blanket 
property to obtain the conditional probability distribution. 
Markov blanket of a node consists of its parents, its 
children, and all other nodes sharing its children: 
 

𝑃(𝑥𝑛|𝑿 except 𝑥𝑛) 

∝ 𝑃(𝑥𝑛|parent[𝑥𝑛]) ∏ 𝑃(𝒀|parent[𝒀])

𝒀∈children[𝑥𝑛]

 

 
(7) 

 

This study uses an open source package called Just 
Another Gibbs Sampler (JAGS), which is developed by 
Martyn Plummer (Plummer 2015). Through the JAGS 
interface, Bayesian network can be defined conveniently, 
and then Gibbs sampling can be executed. During Gibbs 
sampling, only one out of 𝑘 Gibbs samples is retained, 
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where 𝑘 is the thinning interval. This is to eliminate the 
autocorrelation in the Gibbs samples. 
 

5. Application on Natori river sand site 
The prediction capability of the Bayesian network is 
illustrated via a case study in Japan, the Natori river sand 
site (Suzuki et al. 2003; Mimura 2003; Mayne 2006). The 
data of Natori river sand is not included when training the 
Bayesian network. Fig. 6 shows a boring log of the site. 
The fine and coarse sand layers are overlain by silt and clay 
layers. The sands are of Holocene origin, and mostly 
compose of quartz, feldspar and mica. A soil sample was 
extracted using ground freezing method at a depth of 8.4m 
(Mimura 2003), and Table 3 shows its testing data. 𝐺𝑚𝑎𝑥 
of the sample is measured by a resonant column test, while 
the peak friction angle (𝜙′)  is measured by a drained 
triaxial compression test. The sand practically does not 
contain fines, as the fines content (FC) is very low. The 
𝐺𝑚𝑎𝑥  profile is also obtained using the PS logging 
technique (Suzuki et al. 2003). Assuming the soil is fully 
saturated under the groundwater table, 𝐺𝑚𝑎𝑥  data is 
converted to 𝑉𝑠 using a density of 1888 kg·m-3, obtained 
based on the void ratio (𝑒0) and specific gravity (𝐺𝑠) of 
the sample. The 𝑉𝑠 profile is used to validate the Bayesian 
network prediction. 

 

Figure 6. Boring log and shear wave velocity profile of Natori 

river sand site. 

Table 3. Information of the soil sample. 

Depth 𝐷50 𝐶𝑢 𝑒0 𝑒𝑚𝑎𝑥 

8.4m 0.22 2 0.857 1.167 

𝑒𝑚𝑖𝑛 𝐺𝑚𝑎𝑥 𝜙′ 𝐺𝑠 FC 

0.765 78MPa 40.9o 2.65 0.23% 

  
The prediction of 𝑉𝑠 will be from the depth of 5 m to 

16 m, with 0.5 m interval. Therefore the total number of 
𝑉𝑠 nodes is 23. Two prediction cases will be considered. 
For prediction case 1, only 𝑒𝑚𝑎𝑥  and 𝑒𝑚𝑖𝑛  are known 
and their nodes are fixed. For case 2, in addition to 𝑒𝑚𝑎𝑥 

and 𝑒𝑚𝑖𝑛, the 𝑉𝑠 node that corresponds to depth 8.5 m is 
fixed to 203.2 m·s-1, which is converted from the 𝐺𝑚𝑎𝑥 
value of the sample. To assign the lateral effective stress 
(i.e. 𝜎⊥

′  in Eq. 1 assuming shear wave propagates 
downward), the lateral stress coefficient at rest (𝐾0 ) is 
assigned as 0.345, based on Jaky’s formula: 𝐾0 = 1 −
sin 𝜙′, and assume the soil is normally consolidated, as the 
stress history of the site is not clear. Uncertainty of 𝐾0 
poses a limitation to this analysis, and direct measurement 
of 𝐾0 from self-boring pressuremeter, total stress cell or 
hydraulic fracture should be used if it is available. For 
Gibb’s sampling in both prediction cases, the Markov 
chain length is 100000, with a thinning interval of 10. 

Based on the samples generated by Gibb’s sampler, the 
mean and standard deviation (SD) of the sand parameters 
are evaluated, which are summarized in Table 4. The SD 
of 𝑉𝑠 is the average SD of all the 𝑉𝑠 nodes. Meanwhile, 
the prediction interval of 𝑉𝑠 is displayed in Fig 7, which 
consists of mean ± one standard deviation. The actual 𝑉𝑠 
profile is also plotted for validation. For the depths where 
the 𝑉𝑠  value jumps (such as depth 5.5m in Fig. 6), the 
average of two 𝑉𝑠 values are taken. 

For prediction case 1, Bayesian network indicates that 
the sand grain is quite irregular with small roundness and 
sphericity, since both 𝑒𝑚𝑎𝑥  and 𝑒𝑚𝑖𝑛  are large. The 
prediction interval envelopes the actual 𝑉𝑠 profile, but the 
mean prediction has a systematic bias, and underestimate 
the true value. Also the width of the prediction interval is 
relatively large (34.2 m·s-1). This is due to the large 
uncertainty of 𝛼, which is solely derived based on 𝑒𝑚𝑎𝑥 
and 𝑒𝑚𝑖𝑛. 

For prediction case 2, when a piece of site-specific data 
is included, the uncertainty of 𝛼 decreases by half, and 
the uncertainty of 𝑉𝑠  decreases significantly from 34.2 
m·s-1 to 7.36 m·s-1. The prediction bias is also corrected. 
The prediction interval broadly envelopes the true profile, 
except at the shallow region (depth 5-7 m) that corresponds 
to gravelly sand layer. Gravelly sand may exhibit different 
𝑉𝑠  behavior than fine sand (Chen et al. 2019), and the 
database in this study does not contain gravelly sand. The 
𝑉𝑠 prediction at that region is expected to improve if the 
Bayesian network further incorporates the behavior of 
gravelly sand.  

Table 4. Statistics of the Gibbs samples. 

 Case 1 Case 2 

Mean of 𝛼 49.8 64.7 

SD of 𝛼  13.5 7.18 

Mean of 𝛽 0.301 0.284 

SD of 𝛽 0.031 0.027 

Mean of 𝑅 0.33 0.46 

SD of 𝑅 0.17 0.17 

Mean of 𝑆 0.42 0.40 

SD of 𝑆 0.07 0.07 

SD of 𝑉𝑠 (m·s-1) 34.2 7.36 
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Figure 7. Shear wave velocity prediction for case 1 (left) and 

case 2 (right). 

 

6. Conclusion 
This study proposes a Bayesian network approach to 
model the shear wave velocity of sand in a probabilistic 
manner. To establish the Bayesian network, a database of 
shear wave velocity is compiled. In the Bayesian network, 
the 𝑉𝑠  parameters (i.e., 𝛼, 𝛽 ) are associated with 
roundness and sphericity of soil particles, which in turn are 
associated with maximum and minimum void ratio. 
Prediction of the Bayesian network is performed by Gibbs 
sampler, which is implemented in the Just Another Gibbs 
Sampler package. In the Natori river sand case study, the 
index parameters (𝑒𝑚𝑎𝑥 and 𝑒𝑚𝑖𝑛) and site-specific data 
(e.g., soil sample) can be integrated coherently in the 
Bayesian network. The case study also shows that 
including a single site-specific data can correct the 
prediction bias, and significantly reduces the prediction 
uncertainty of shear wave velocity. 
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