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Abstract: We investigate the evaluation of structural reliability under imperfect knowledge about the probability distributions of 

random variables, with emphasis on the uncertainties of the distribution parameters. When these uncertainties are considered, the 

failure probability becomes a random variable that is referred to as the conditional failure probability. For the sake of transparency in 

communicating risk, it is necessary to determine not only the mean but also the quantile of the conditional failure probability. A 

novel method is proposed for estimating the quantile of the conditional failure probability by using the probability distribution of the 

corresponding conditional reliability index, in which a point-estimate method based on bivariate dimension-reduction integration is 

first suggested to compute the first three moments (i.e., mean, standard deviation and skewness) of the conditional reliability index. 

The probability distribution of the conditional reliability index is then approximated by a three-parameter square normal distribution. 

The numerical study shows that the computational efficiency of the proposed method was well above that of Monte Carlo 

simulations without loss of accuracy and show that neglecting parameter uncertainties will lead to the structural reliability being 

overestimated. The developed methodology provides a complete picture of structural reliability evaluation under imperfect 

knowledge about probability distributions.  

 

Keywords: structural reliability, parameter uncertainties, conditional failure probability, conditional reliability index, point-estimate 

method. 

 

1. Introduction 
A fundamental problem in structural reliability theory is 
the computation of the multifold probability integral 
(Shinozuka 1983) 
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where Pf is the probability of structural failure. In Eq. (1), 
X=[X1, X2, …, Xn]T (where T denotes matrix transposition) 
is an n-dimensional vector of random variables 
representing uncertain quantities such as loads, material 
properties, geometric dimensions, and boundary 
conditions. Furthermore, fX(x) is the joint probability 
density function (PDF) of X, G(X) is the limit state 
function or performance function, and G(X) ≤ 0 is the 
domain of integration, which denotes the failure region of 
the structure. 

One may regard Eq. (1) as a theoretical formulation of 
the structural reliability problem because the PDFs of the 
basic random variables (i.e., the components of X in Eq. 
(1)) are generally assumed to be known, and their 
distribution parameters in the PDFs are usually assumed 
to be certain. However, in practical engineering, one is 
faced with the problem of imperfect states of knowledge 
about such distributions. For example, the distribution 
parameters of the basic random variables involved in 
loads, environmental actions including chloride, 
temperature, oxygen, carbonation, moisture, and 
structural resistance are estimated from statistical data of 
limited sample size, and these distribution parameters 
may change as the amount of corresponding statistical 
data increases. All this results in uncertainties in the 
distribution parameters, and parameter uncertainties 

associated with the basic random variables in X lead to 
uncertainty in the calculated failure probability and in the 
associated reliability index. 

In order to consider the uncertainties in the 
distribution parameters of a structural system, such as the 
mean and standard deviation of the basic random 
variables in X, the distribution parameters are treated as a 
random vector  in the Bayesian approach, whereby fX(x) 
becomes a conditional distribution function fX, (x,). 
Therefore, the conditional probability of failure becomes 
(Der Kiureghian 1989) 
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where G(X,) expresses the performance function, fX, 

(x, ) is the joint PDF of X and , and the conditional 
failure probability Pf() is a function of the distribution 
parameters . Because the distribution parameters  are 
uncertain, the conditional failure probability Pf() is also 
uncertain. The corresponding conditional reliability index 
() is also uncertain and is given by 

 ( ) ( )-1 1Θ ΘfP  =  −   (3) 

where -1 denotes the inverse of the cumulative 
distribution function (CDF) of a standard normal random 
variable. Because Pf() and () are random variables, 
they have probability distribution functions as well as 
statistical moments, such as their means, standard 
deviations, and skewnesses. 

For vector X of the random variables in Eq. (2), 
whose joint PDF includes uncertain parameters , the 
overall probability of failure is then defined as the 
expectation of the conditional failure probability Pf() 
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over the outcome space of the uncertain parameters , 
which can be formulated as 
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In most cases, Eq. (4) cannot be solved because of the 
difficulty in determining the explicit expression of the 
performance function G(X, ) and the joint PDF fX,(x, 
). This is because  represents the distribution 
parameters of X, but X is a function of . However, the 
conditional failure probability of the structural system for 
given distribution parameter values  =  can be 
evaluated readily using state-of-the-art techniques such as 
the first- and second-order reliability methods, moment 
methods, and simulation methods (Ang and Tang 1984; 
Zhao and Ono 2001; Choi et al. 2007). Therefore, the 
overall probability of failure incorporating the 
uncertainties of the distribution parameters can be 
formulated generally as (Der Kiureghian 1996) 

 ( ) ( )F fP P f d= 
    (5) 

where Pf() is the conditional probability of failure for a 
given  =  (which can be evaluated from state-of-the-art 
techniques), and f() is the joint PDF of . 

An advanced first-order second method, which 
developed from the first-order reliability method by 
introducing an auxiliary variable, for solving Eq. (5) has 
been proposed by Zhao and Jiang (1992), in which the 
effect of distribution parameter uncertainties on the 
overall probability of failure was discussed. An efficient 
analysis procedure was proposed by Hong (1996) to 
evaluate the overall probability of failure by using the 
point-estimate method to discretize the uncertain 
distribution parameters; the overall probability of failure 
was then obtained by weighting the conditional 
probability of failure at each discrete point. Later, Der 
Kiureghian (2008) derived a simple approximate formula 
by using the first-order approximation method to compute 
the mean of the conditional reliability index. It should be 
noted that the aforementioned studies were focused 
mainly on evaluating the overall probability of failure, 
which is defined essentially as the mean of the 
conditional failure probability Pf() when the parameter 
uncertainties of basic random variables X are considered. 

For the sake of transparency in communicating risk, it 
is necessary to determine not only the mean value but 
also the quantile or even the probability distribution of the 
conditional failure probability Pf(), or the corresponding 
conditional reliability index (). Der Kiureghian (2009) 

obtained the probability distributions of the conditional 
reliability index () and the corresponding conditional 
probability of failure for cases in which the explicit PDF 
of () could be determined easily. However, in general, 
the explicit PDF of the conditional reliability index () 
cannot be obtained in engineering practice. It is in this 
regard that Ang and De Leon (2005) utilized Monte Carlo 
simulation (MCS) to obtain both the mean and quantile of 
the conditional failure probability Pf(). However, this is 
time-consuming for large-scale structures because very 
many samples are required. 

The objective of the present paper is therefore to 
develop an efficient method for evaluating the quantile or 
even the distribution of the conditional failure probability 
Pf(), or the corresponding conditional reliability index 
(). This paper is organized as follows. In Section 2, a 
point-estimate method based on univariate dimension 
reduction integration is used to approximate the mean of 
the conditional failure probability. In Section 3, a novel 
method is proposed for estimating the quantile of the 
conditional failure probability by using the probability 
distribution of the corresponding conditional reliability 
index. In the same section, a point-estimate method based 
on bivariate dimension-reduction integration is first 
suggested to compute the first three moments (i.e., mean, 
standard deviation and skewness) of the conditional 
reliability index. The probability distribution of the 
conditional reliability index is then approximated by a 
three-parameter square normal distribution (Zhao et al. 
2001), in which three parameters in the probability 
distribution are directly defined in terms of its first three 
moments. In Section 4, to demonstrate the accuracy and 
efficiency of the proposed methodology for evaluating 
structural reliability under imperfect knowledge about the 
probability distributions, we present a numerical example 
of conditional failure probability with implicit expression, 
and we conduct MCS for comparison. Finally, we 
summarize the main conclusions of the present paper in 
Section 5. 

2. Point-estimate Method for Evaluating the Mean of 

the Conditional Failure Probability 
We note that the right-hand side of Eq. (5) represents the 
mean of the conditional failure probability EPf(). 
Therefore, the overall probability of failure incorporating 
the uncertainties of the distribution parameters is 
essentially the problem of estimating the mean of the 
conditional failure probability Pf(). Rewriting Eq. (5) in 
standard normal space, we obtain 

 
1= [ ( )] [ ( )] ( )

u
u u uF f fP E P P T d−=   (6) 

where T-1(u) denotes the inverse Rosenblatt 
transformation and (u) denotes the PDF of each 
standard normal variables. 

Equation (6) gives the mean of the conditional failure 
probability Pf(), which is a function of the random 
vector . In practice, the integral in Eq. (6) cannot be 
evaluated analytically because of its high dimensionality 
and the complicated integration required. To avoid this 
problem, we use the point-estimate method (Zhao and 
Ono 2000a) to solve Eq. (6), i.e., we evaluate the mean of 
Pf(), which is one of the moments of function Pf(). 

Using the standard point estimate, the mean of Pf() 
(i.e., PF) is estimated as 

 ( ) 1

1

1
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F f ci f c ci cn
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P E P P P T u u u−

=

 =    (7) 

where n is the dimension of random vector , c is a 
distinct combination of n items from group [1, 2, …, m], 
m is the number of estimating points, ci is the ith item of 
c, uci is the cith estimating point, and Pci is the weight 
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corresponding to uci. 
Because all distinct combinations have to be 

considered, mn function calls are required to compute 
Pf(). Therefore, the computations involved in Eq. (7) 
can be massive if n is large. To avoid this problem, we 
need to adopt dimension-reduction integration (Xu and 
Rahaman 2004). Because only the first-order moment 
(i.e., the mean of Pf()) is considered, the univariate 
dimension-reduction method (Rahaman and Xu 2004) is 
used here. The function Pf() may then be approximated 
by Pf*() as follows 

 ( ) ( )
1

( ) ( )= 1
n

f f f i f

i

P P P n P

=

 − −    (8) 

where 

 1( ) [ ( )]Θ Uf i f i f iP P P T −= =  (9) 

and  represents the vector in which all the random 
variables take their mean values. In addition, Pf () is a 
constant because it is the function of the mean of each 
random variable. Furthermore, we have i = [1, …, i-1, 
i, i+1, …, n]T; Ui = [u1, …, ui-1, ui, ui+1, …, un]T, 
where uk, k = 1, …, n except i is the kth value of u, 
which is the vector in u-space corresponding to . Finally, 
Pfi is a function of only ui for specific Pf*(). For 
independent random variables , Pfi can be expressed 
simply as                
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Observe that ui (i = 1, …, n) are independent and Pfi is 
a function of only ui; therefore, Pfi, i = 1, …, n are also 
independent. Hence, the mean of Pf*(), i.e., the mean of 
the conditional failure probability, can be expressed as 
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= [ ( )] [ ( )] ( 1) ( )
fi
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where Pfi is the mean value of Pfi and can be point- 

estimated from 

 ( ) ( )  ( )1 1
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where ui1, ui2, …, uim are the estimating points of random 
variable ui, and P1, P2, …, Pm are the corresponding 
weights. 

The estimating points uik and their corresponding 
weights Pk can be readily obtained as 

 2 , k
ik k k

w
u x P


= =  (13) 

where xk and wk are the abscissas and weights, 
respectively, for Hermite integration with the weight 
function exp(-x2) that can be found in Abramowitz and 
Stegum (1972).  

3. A Novel Method for the Evaluation of Quantile of 

the Conditional Failure Probability 

In order to quantitatively estimate the uncertainty in the 
failure probability Pf() induced by the parameter 
uncertainties, it is often necessary to obtain the quantile 
of Pf(). For this purpose, the distributions of Pf() need 
to be determined. Because Pf() is a monotonic function 
of (), the same values of the quantile of Pf() or () 
can be obtained using the distribution of Pf() or (). 
Because the variability of () is much smaller than that 
of Pf(), in this paper we will approximate the 
distribution of () rather than that of Pf().  

3.1 First three moments of the conditional reliability 

index 
Using the standard point estimate, the first three moments 
of conditional reliability index () can be estimated as 
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where  , , and 3 are the first three moments, i.e., 
the mean, standard deviation, and skewness of (), 
respectively. 

Like the computation of Eq. (7), the computation 
involved in Eqs. (14)-(16) requires mn function calls to 
determine the conditional reliability index  (); hence, 
the computation becomes excessive if n is large. To avoid 
this problem, we again adopt dimension-reduction 
integration. Because the first three moments of f () are 
considered, bivariate dimension-reduction is used here.  

The function  () can then be approximated by *() 
as follows 
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where 

 ( ) ( )1 1
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where i,j is a two-dimensional function, i, j = 1, 2, …, n 
and i < j. Furthermore, i is a one-dimensional function 
and 0 is a constant. 

Hence, using the inverse Rosenblatt transformation 
(Rackwitz and Fiessler 1978), the kth raw moments of 
(), k, can be formulated approximately as 
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where 

 ( )0 1, ..., , ...,    
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Using the point-estimate method (Zhao and Ono 
2000a), the one-dimensional integral in Eq. (23) can be 
estimated as follows 

 ( ) 1

1

1

, ..., , ...,   
i

m k
k
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P T u   −
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Similarly, the two-dimensional integral in Eq. (24) 
can be estimated as 

( ) ( ) , 1 2 1 2

1 2
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, 1

1 1

, ..., , ..., , ...,   
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The estimating points and the corresponding weights 
can be found in the work of Abramowitz and Stegun 
(1972). 

Finally, the mean, standard deviation, and skewness 
of the conditional reliability index () can be estimated, 
respectively, as follows 

 1  =  (27) 

 
2

2 1    = −  (28) 

 3 3

3 3 2 1 1( 3 2 ) /          = − +  (29) 

3.2 Probability distribution of the conditional reliability 

index 
After the first three moments of the conditional reliability 
index () are obtained, the probability distribution of 
() can be approximated by using a three-parameter 
probability distribution, in which the three parameters in 
the probability distribution are directly defined in terms 
of its first three moments. Here the square normal 
distribution (Zhao et al. 2001) based on the third-moment 
standardization function (Zhao and Ono 2000b) is used, 
and the PDF of the conditional reliability index () can 
then be expressed as 

( )
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and the CDF of () is expressed as 
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where (·) is the CDF of a standard normal random 
variable u. 

3.3 Quantile of the conditional failure probability 

Assuming that the confidence level of the conditional 
failure probability Pf() is , the fractile of the 
conditional reliability index () will be 1 − . The 
quantile corresponding to the confidence level  can then 
be determined by the following equation 

( )
( )2 2

3 3 3
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1 1 1
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    =  + + − − = −    
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Therefore, the quantile corresponding to the 
confidence level  is given as 

( ) ( ) ( )
23 31 11 1

6 6

 

 

 
     − − 

 = + − +  − +  −  
 

 (33) 

Therefore, the corresponding failure probability of 
the confidence level 1 −  is given as 

 ( ) ( )1fP   − = −    (34) 

4. Application Example 
This example considers an existing reinforced concrete 
T-beam bridge as shown in Fig. 1, which has been 
investigated by Wang et al. (2015). The bridge consists of 
a 19.5-m simply supported span and five beams spaced 
equally at 1.6-m intervals. The reinforcement diameter is 
32 mm. The thickness of the wearing surface (asphalt) is 
5.0 cm. The initial yield strength of the reinforcement is 
280 MPa. Considering the randomness of the resistance 
and load effects, the flexural limit state function in the 
midspan cross-section can be written as 

 ( ) 0
2

g g

P g g G Q

c i

f A
Z G K f A h - S S

f b

 
= =  − − 

 
X  (35) 

where R is the resistance of the bar and S is the applied 
load. where KP is normally distributed with a mean of 
1.098 and a standard deviation of 0.078. Furthermore, fg 
is the yield strength of the corroded reinforcement: fg = 
fg0(1 − ), where  is the steel strength loss, and fg0 is the 
initial yield strength of the reinforcement. In addition, Ag 
is the area of reinforcement, fc is the concrete strength, SG 
is the effect of the dead load, SQ is the effect of a live 
load, h0 = 1.1 m, and bi = 1.6 m. 

160
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 Figure 1. Cross-section of the concrete bridge (cm) 

The concrete strength fc (MPa), steel strength loss 
 ()  dead load effect SG (kN·m), and the live load 
effect SQ (kN·m) are assumed as random variables, the 
probabilistic information of which is listed in Table 1. 

The reliability analysis for the performance function 
as expressed by Eq. (35) can be readily evaluated using 
state-of-the-art techniques. Here, the well-known 
first-order reliability method (FORM) (Hasofer and Lind 
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1974) is utilized, and the reliability index is readily 
obtained as 5.341, with the corresponding probability of 
failure as 4.614× 10−8. 

Table 1. Probabilistic information about the random variables 

Variable Distribution Mean Standard deviation 

fc (MPa) Normal 20 1.45 

 () Normal 22 2.04 

SG (kN·m) Normal 613.18 26.45 

SQ (kN·m) Gumbel 535.42 84.08 

 
In this example, the distribution parameters (i.e., mean 

and standard deviation) of the four random variables, 
i.e., fc, η, SG, SQ, fc, η, SG, and SQ are assumed to 
be random variables, and their probabilistic information is 
listed in Table 2. Estimating the mean value and quantile 
of the conditional failure probability is described below. 

Table 2. Probabilistic information for distribution parameters 

Variable Distribution Mean Standard deviation 

fc Normal 21.34 1.72 

η Normal 22.08 2.56 

SG Normal 597.03 28.36 

SQ Normal 610 7.14 

fc Lognormal 1.51 0.072 

η Lognormal 2.67 0.12 

SG Normal 25.32 2.16 

SQ Normal 96.23 4.68 

 
According to Eq. (5), the overall failure probability 

can be formulated as 

 ,
( ,  ) 0

( , ) ( ) ( )F f
G

P f d d P f d


= = X Θ
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x x
 

      (36) 

According to Eq. (8), the conditional failure 
probability Pf() can be approximated as 

 ( )
8

1

( ) ( ) 7f f f i f

i

P P P P

=

 = −    (37) 

Although explicit expressions for Pfi and Pf() are not 
available, they can be easily estimated by using FORM. 
Because Pf() is a function of the means of all eight 
random variables, we replace the original mean and 
standard deviation of the four random variables in Table 1 
by means of these parameters as given in Table 2, 
whereby Pf() can then be easily obtained as 5.919 × 10−7 
by using FORM. 

Therefore, according to Eq. (11), the overall 
probability of failure, i.e., the mean of the conditional 
failure probability, is readily estimated as 

 
8

6

1

= [ ( )] 7 ( ) 1.001 10
fiF f P f

i

P E P P −

=

 − =  μ  (38) 

Using the MCS with 1,000,000 samples, the overall 
probability of failure, i.e., the mean of the conditional 
failure probability, is obtained as 1.052×10−6. One can see 
that the result obtained by using the proposed method is 
almost the same as that of MCS. The mean of the 

conditional failure probability when considering the 
parameter uncertainties (1.001 × 10−6) is larger than the 
failure probability without considering the parameter 
uncertainties (4.614×10−8). 

According to Eq. (17), the conditional reliability 
index () can be approximated as 

 ( ) ( ) ( )
8

* * 1

, 0

1

6 21i j i

i j i

T     −

 =

  = = − +   Θ Θ U  (39) 

Using the proposed point-estimate method based on 
bivariate dimension-reduction integration, i.e., Eqs. 
(21)–(29), in which the estimation of the reliability 
indices for determining 

i

k

 and
,i j

k

 in Eqs. (25) and (26) 
is evaluated from Eq. (35) using FORM, the first three 
moments of () are easily obtained as,  = 4.856, = 
0.218, and  = -0.023, respectively. Substituting the 
obtained first three moments of () into Eq. (30), the 
PDF of () is expressed as 

 ( )
( )( )

( )

13.76 43. 448 9 0.63 3.86

49 .8.6 60 3
f

 




 −    =  
−  

− − −

−

Θ

Θ
Θ

 (40) 

The histogram of the conditional reliability index () 
obtained by using the MCS with 1,000,000 samples is 
shown in Fig. 2, together with the PDF curve (denoted as 
the thick solid line) obtained from Eq. (40). It can be 
seen from Fig. 2 that the histogram of the conditional 
reliability index () is well behaved and can be 
approximated well by the PDF of the square normal 
distribution determined by using its first three moments.  

 

Figure 2. Histogram and PDF curve of the conditional 

reliability index 

The histogram of the conditional failure probability 
Pf() obtained by using the MCS with 1,000,000 samples 
is shown in Fig. 3. It can be seen in Fig. 3 that the 
histogram of Pf() is skewed to the right and is truncated 
when Pf() tends to zero, which is difficult to 
approximate by well-known distributions. 

According to Eq. (33), the 10% and 5% fractiles of 
() can be obtained as (0) = 4.576 and (0) = 
4.496, respectively, which are also shown in Fig. 2. Then, 
according to Eq. (34), the corresponding 90% and 95% 
confidence levels of Pf() are readily obtained as Pf (0.9) 
= 2.370 × 10−6 and Pf (0.95) = 3.462 × 10−6, respectively. 
Using MCS, the 90% and 95% confidence levels of Pf() 
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are easily obtained as Pf (0.9) =2.369 × 10−6 and Pf (0.95) 
= 3.463 × 10−6, which are also shown in Fig. 3. 

 

 

Figure 3. Histogram of the conditional failure probability 

From the discussion above, it can be concluded that 
although it is very simple to determine the quantile of 
Pf() by utilizing the proposed probability distribution 
for the conditional reliability index, the results estimated 
by the proposed method are almost the same as those 
obtained by MCS method. 

5. Conclusions 
We have investigated the evaluation of structural 
reliability under imperfect knowledge about the 
probability distributions of the basic random variables, 
with emphasis on the uncertainties of the distribution 
parameters. The main contributions and conclusions are 
summarized as follows. 
1) A point-estimate method based univariate dimension- 
reduction integration was used to approximate the mean 
of the conditional failure probability. 
2) A novel method was proposed for estimating the 
quantile of the conditional failure probability by using 
the probability distribution of the corresponding 
conditional reliability index. In this approach, the 
point-estimate method based on bivariate dimension- 
reduction integration was first suggested for computing 
the first three moments of the conditional reliability 
index. The probability distribution of the conditional 
reliability index was then approximated by a three- 
parameter square normal distribution with explicit 
expression. 
3) A numerical example was studied: conditional failure 
probability and the corresponding reliability index with 
implicit expression. It was found that the results obtained 
from the proposed method were in close agreement with 
those from MCS. It also showed that neglecting 
parameter uncertainties led to the structural reliability 
being overestimated. 
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