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Abstract: In conventional structural reliability evaluation, the probability distributions of the basic random variables are generally 

assumed to be known and their distribution parameters are usually assumed to be certain. However, since the probability 

distributions are estimated from statistical data of limited sample size, their distribution parameters or types may change as the 

amount of statistical data increases. If the parameter uncertainties are considered in structural reliability evaluation, the probability of 

failure and the corresponding reliability index become random variables, which are referred as the conditional failure probability and 

the corresponding conditional reliability index, respectively. Therefore, it is necessary to determine not only the mean but also the 

quantile or even the probability distribution of the conditional failure probability or conditional reliability index. Since the 

determination of the probability distribution of which is the focus of this study. For this purpose, the first four moments (i.e., mean, 

standard deviation, skewness and kurtosis) of the conditional reliability index are firstly computed by a point-estimate method based 

on bivariate dimension-reduction integration. The probability distribution of the conditional reliability index is then approximated by 

a four-parameter cubic normal distribution, in which four parameters in the probability distribution are directly defined in terms of 

its first four moments. Finally, an explicit formula for the quantile of the conditional failure probability is obtained by using the 

probability distribution of the corresponding conditional reliability index. The efficiency and accuracy of the proposed methodology 

for structural reliability assessment considering the uncertainties of distribution parameters are demonstrated through numerical 

examples, where Monte-Carlo simulations are utilized for comparison.  

 

Keywords: structural reliability, parameter uncertainties, conditional reliability index, point-estimate method, cubic normal 

distribution. 

 

1. Introduction 
A fundamental problem in structural reliability theory is 
the computation of the multifold probability integral 

 
( ) 0

( )X
X

x xf
G

P f d


=   (1) 

where Pf is the probability of failure, X = [X1, X2, …, Xn]T 
is an n-dimensional vector of random variables 
representing uncertain quantities such as applied loads, 
material properties, geometric dimensions, and boundary 
conditions. fX(x) represents the joint probability density 
function (PDF) for X. G(X) is the limit state function and 
failure occur when G(X) ≤ 0.  

The probability distributions of the basic random 
variables (i.e., the components of X in Eq. (1)) are 
generally assumed to be known and their distribution 
parameters are usually assumed to be certain. However, 
in practical application, one is faced with the problem that 
distribution parameters of some random variables 
considered in a limit state function are also uncertain. The 
effect of uncertainties in the distribution parameters of the 
basic random variables in X lead to uncertainty in the 
calculated failure probability and in the associated 
reliability index. 

Consistent with the Bayesian notion of probability, the 
uncertainty distribution parameters are modeled to be a 
random vector , thus fX(x) becomes a conditional 
distribution function fX,(X, ). The conditional failure 
probability is given by (Der Kiureghian 1996) 
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where G(X, ) is the performance function, fX, (x, ) is 
the joint PDF of X and , and the conditional failure 
probability Pf() is a function of the distribution 
parameters .  

It follows that, since the distribution parameters  are 
uncertain, the conditional failure probability and the 
corresponding conditional reliability index are also 
uncertain. The corresponding conditional reliability index 
() can be expressed as 

 ( ) ( )-1 1Θ ΘfP  =  −   (3) 

where -1 denotes the inverse of the standard normal 
cumulative probability function. As random variables, 
Pf() and () have probability distribution functions as 
well as statistical moments, such as means, standard 
deviations, skewnesses, and kurtosis. 

For vector X of the random variables in Eq. (2), 
whose joint PDF includes uncertain parameters , the 
overall probability of failure, denoted PF, is then defined 
as the expectation of the conditional failure probability 
Pf() over the outcome space of the uncertain parameters 
, which can be formulated as 
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In most circumstances, the integral in Eq. (4) cannot 
be evaluated because of the difficulty in determining the 
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explicit expression of the performance function G(X, ) 
and the joint PDF fX,(x,). This is because  represents 
the distribution parameters of X, but X is a function of . 
However, the conditional failure probability of the 
structural system for given distribution parameter values 
 =  can be evaluated readily using state-of-the-art 
techniques such as the first- and second-order reliability 
methods, moment methods and simulation methods (Choi 
et al. 2007; Ang and Tang 1984; Zhao and Ono 2001). 
Therefore, the overall probability of failure incorporating 
the uncertainties of the distribution parameters can be 
formulated generally as 

 ( ) ( )F fP P f d= 
    (5) 

where Pf() is the conditional probability of failure for a 
given  = , and f() is the joint PDF of . 

In the past several decades, many researchers focused 
on the problems of the distribution parameters 
uncertainties and various approximation methods have 
been developed for the determination the probability of 
failure considering the uncertainties of distribution 
parameters.  

To evaluate the overall probability of failure, Hong 
(1996) proposed an efficient analysis procedure by using 
the point-estimate method to obtain the overall 
probability of failure. Later, Der Kiureghian (2008) 
derived a simple approximate formula by using the 
first-order approximation method to compute the mean of 
the conditional reliability index, and then the overall 
probability of failure was obtained. 

However, for the sake of transparency in 
communicating risk, it is necessary to determine not only 
the overall probability of failure but also the quantile or 
even the probability distribution of the conditional failure 
probability or conditional reliability index. For this 
purpose, Der Kiureghian (2009) obtained the probability 
distributions of the conditional reliability index and the 
corresponding conditional probability of failure for cases 
in which the explicit PDF of the conditional probability 
could be determined easily. However, in general, the 
explicit PDF of the conditional reliability index cannot be 
obtained in engineering practice. It is in this regard that 
Ang and De Leon (2005) utilized Monte Carlo simulation 
(MCS) to obtain both the mean and quantile of the 
conditional failure probability. However, it is 
time-consuming for large-scale structures because many 
samples are required. Recently, Zhao et al. (2018) 

approximate the probability distribution of the conditional 
reliability index by using a three-parameter square normal 
distribution with explicit expression. However, this 
distribution uses only the first three moments (i.e., mean, 
standard deviation, and skewness) of the conditional 
reliability index to approximate its probability 
distribution, so this distribution is not flexible enough to 
reflect the kurtosis of the conditional reliability index. 
The kurtosis as well as the mean value, standard deviation, 
and skewness of the conditional reliability index are 
essential to determine its probability distribution (Zhao 
and Lu 2008), and has impact on conducting the accurate 
analysis of the structural reliability. Therefore, a new 

method with good flexibility, accuracy, wide range of 
applications for structural reliability analysis under the 
condition of the probability distribution parameter 
uncertainties of fundamental random variables is 
required. 

In the present paper, an efficient method for 
evaluating the quantile or even the distribution of the 
conditional failure probability or conditional reliability 
index by utilizing a four-parameter cubic normal 
distribution (Zhao and Lu 2008) with high robustness for 
a wide range of applications under the condition of 
uncertainty in probability distribution parameters of 
fundamental random variables is proposed. 

2. Review Point-Estimate Method for Evaluating the 

Overall Probability of Failure 
It is obvious that the right-hand side of Eq. (5) represents 
the mean of the conditional failure probability E[Pf()]. 
Rewriting Eq. (5) in standard normal space 

 
1= [ ( )] [ ( )] ( )

u
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where T-1(u) denotes the inverse Rosenblatt 
transformation (Rackwitz and Fiessler 1978) and (u) 
denotes the PDF of standard normal variables. 

Practically, the integral in Eq. (6) cannot be evaluated 
analytically because of the high dimensionality and the 
complicated integration. In order to avoid this problem, 
the point-estimate method (Zhao and Ono 2000a) is used 
to solve the mean of Pf(), which is one of the moments 
of function Pf(). Using the standard point estimate, the 
mean of Pf() (i.e., PF) is estimated as 
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where n is the dimension of random vector ; c is a 
distinct combination of n items from group [1, 2, …, m]; 
m is the number of estimating points, ci is the ith item of 
c; uci is the cith estimating point; and Pci is the weight 
corresponding to uci. 

As all distinct combinations have to be considered, mn 
times of function calls for computing Pf() are required. 
The computations involved in Eq. (7), therefore, can be 
massive when n is large. In order to avoid this problem, it 
is necessary to adopt dimension-reduction inte-gration. 
Since only the first-order moment (i.e., the mean of Pf()) 
is considered, the univariate dimension-reduction method 
(Xu and Rahman 2004) is used here. The function Pf() 
may then be approximated by Pf*() as follows 

 ( ) ( )
1

( ) ( )= 1
n

f f f i f

i

P P P n P

=

 − −    (8) 

where 

 1( ) [ ( )]Θ Uf i f i f iP P P T −= =  (9) 

and  represents the vector in which all the random 
variables take their mean values; i = [1, …, i-1, i, 
i+1, …, n]T; Ui = [u1, …, ui-1, ui, ui+1, …, un]T, where 
uk, k = 1, …, n except i is the kth value of u, which is 
the vector in u-space corresponding to .  
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Since Pfi is a function of only one standard normal 
random variable ui for specific Pf*(), for independent 
random variables , Pfi can be expressed simply as                
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Observe that ui (i = 1, …, n) are independent and Pfi is 
a function of only ui; therefore, Pfi, i = 1, …, n are also 
independent. Hence, the mean of Pf*(), i.e., the mean of 
the conditional failure probability, can be written as 
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where Pfi is the mean value of Pfi and can be point 

estimated from 

 ( ) ( )  ( )1 1
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where ui1, ui2, …, uim are the estimating points of random 
variable ui, and P1, P2, …, Pm are the corresponding 
weights. 

The estimating points uik and their corresponding 
weights Pk can be readily obtained as 

 2 , k
ik k k

w
u x P


= =  (13) 

where xk and wk are the abscissas and weights for 
Hermite integration with the weight function exp(-x2) 
that can be found in Abramowitz and Stegum (1972). 

Specially, for a seven-point estimate (m = 7) in 
standard normal space (Zhao and Ono 2000), we have the 
following  

 4

1 13.7504397,   5.48269 10iu P −= − =   (14) 

 2

2 22.3667594,   3.07571 10iu P −= − =   (15) 

 3 31.1544054,   0.2401233iu P= − =  (16) 

 4 40,     0.4571427iu P= =  (17) 

 5 51.1544054,     0.2401233iu P= =  (18) 

 
2

6 62.3667594,  3.07571 10       iu P −= =   (19) 

 
4

7 73.7504397,  5.48269 10iu P −= =   (20) 

3. Methods of Moment for the Evaluation of Quantile 

of the Conditional Failure Probability 
In order to quantitatively estimate the uncertainty in the 
failure probability induced by the distribution parameter 
uncertainties, it is often necessary to obtain the quantile 
of the conditional failure probability. For this purpose, the 
distributions of the conditional failure probability need to 
be determined. Since conditional failure probability is a 
monotonic function of the related reliability index, the 
percentile values of conditional failure probability or 
related reliability index can be obtained utilizing the 
distribution of conditional failure probability or related 

reliability index. Since the variability of conditional 
reliability index is much smaller than that of conditional 
failure probability, the distribution of conditional 
reliability index, rather than that of conditional failure 
probability, is approximated in this study. 

3.1 First four moments of the conditional reliability 

index 
Using the standard point estimate, the first four moments 
of the conditional reliability index (), can be estimated 
as 
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where  , , 3, and4 are the first four moments, i.e., 
the mean, standard deviation, skewness, and kurtosis of 
(), respectively. 

Similar to the calculation of Eq. (7), the calculation 
involved in Eqs. (21)-(24) requires mn times of function 
calls to determine the conditional reliability index (). 
Therefore, the computation becomes excessive when n is 
large. In order to avoid this problem, dimension- 
reduction integration method will be adopted again. 
Since the first four moments of f () are considered, 
bivariate dimension-reduction (Xu and Rahman 2004)  
is used here. The function  () can then be 
approximated by *() as follows  
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where 
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where i,j is a two-dimensional function; i, j = 1, 2, …, n 
and i < j; i is a one-dimensional function; and 0 is a 
constant. 

Hence, using the inverse Rosenblatt transformation 
(Rackwitz and Fiessler 1978), the kth raw moments of 
(), k, can be formulated approximately as 
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where 

 ( )0 1, ..., , ...,    
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Using the point-estimate method (Zhao and Ono 
2000), the one-dimensional integral in Eq. (31) can be 
estimated as follow equation 

 ( ) 1
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1

, ..., , ...,   
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m k
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Similarly, the two-dimensional integral in Eq. (32) 
can be estimated as 

( ) ( ) , 1 2 1 2
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The estimating points and the corresponding weights 
can be found in the work of Abramowitz and Stegun 
(1972). For a seven-point estimate (m = 7) in standard 
normal space, these are given by Eqs. (14)-(20). 

Finally, the mean, standard deviation, skewness, and 
kurtosis of the conditional reliability index () can be 
estimated, respectively, as follows 

 1  =  (35) 

 
2

2 1    = −  (36) 

 3 3

3 3 2 1 1( 3 2 ) /          = − +  (37) 

 ( )2 4 4

4 4 3 1 2 1 14 6 3              = − + −  (38) 

3.2 Probability distribution of the conditional reliability 

index 
Since the first four moments of the conditional reliability 
index () are obtained, the probability distribution of 
() can be approximated by using a four-parameter 
probability distribution, in which the four parameters in 
the probability distribution are directly defined in terms 
of its first four moments.   

Here the cubic normal distribution (Zhao and Lu 
2008) based on the four moment standardization function 
(Zhao and Lu 2007) is used 

 
( ) 2 3
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where s is the standardized random variable; Su(u) 
denotes the third polynomial of a standard normal random 
variable u; the coefficients l1, k1, and k2 are given as 
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From Eq. (40b), 4 should be limited in the range of 

 2

4 4(7 4 ) / 3   +  (41) 

The CDF of the conditional reliability index () 
corresponding to Eq. (39) can then be expressed as 

 ( ) ( )( )ΘF u  =   (42) 

and the PDF of the conditional reliability index () is 
expressed as 

 ( )
( )

( )2

1 1 2

( )
2 3

Θ
u

f
k l u k u









=

+ +
 (43) 

where (·) and (·) are the CDF and PDF of a standard 
normal random variable u. 

3.3 Quantile of the conditional failure probability 
According to the four-moment standardization function 
(Zhao and Lu 2007), the quantile of the conditional 
reliability index corresponding to the confidence level  
can then be determined by the following equation 

 ( ) ( )s       =  +  (44) 

where 

 ( ) 2 3

1 1 1 2( ) ( ) ( ) ( )s uS u l k u l u k u    = = − + + +  (45) 

where s(·) is the standardized random variable related to 
the confidence level ; u(·) is the standard normal 
random variable corresponding to the confidence level ; 
the coefficients l1, k1, and k2 are given by Eqs. (40a)- 
(40d). 

Therefore, the corresponding failure probability of 
the confidence level 1 −   is given as 

 ( ) ( )1fP   − = −    (46) 

4. Numerical Examples 
This example considers a steel rod with a circular 
cross-section, which has been investigated by Lu et al. 
(2011). The rod fails if the axial force exceeds the yield 
limit of material, and the limit state function is expressed 
simply as 

 
2( , , )

4
g R d P d R P


= −  (47) 

where P represents the axial force of the rod; R 
represents the yield limit of material; and d represents the 
diameter of the round rod.  

The axial force of the rod P, yield limit of material R 
and diameter of the round rod d are assumed as random 
variables, the probabilistic information of which is listed 
in Table 1. 

Table 1. Probabilistic information about the random variables 

Variable Distribution Mean Standard deviation 

P (kN) Gumbel 79.4 6.20 

R (kN•cm-2) Gumbel 10.5 1.00 

d (cm) Gumbel 5.8 3.00 
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The reliability analysis for the performance function 
as expressed by Eq. (47) can be readily evaluated using 
state-of-the-art techniques. Here, the well-known 
first-order reliability method (FORM) (Hasofer and Lind 
1974) is utilized, and the reliability index is readily 
obtained as 1.723, with a corresponding failure 
probability of 4.242×10−2. In this example, the mean of 
the three random variables, i.e., R, d, and P are 
assumed to be random variables, and their probabilistic 
information are listed in Table 2. Estimating the mean 
value and quantile of the conditional failure probability is 
described below. 

Table 2. Probabilistic information of the distribution parameters 

Variable Distribution Mean  Standard deviation 

R Lognormal 10 0.5 

d Gumbel 6 0.8 

P Lognormal 80 1 

 
Form Eq. (5), the overall failure probability can be 

obtained as 

 ,
( ,  ) 0

( , ) ( ) ( )X Θ Θ
X

x xF f
G

P f d d P f d


= =  
      (48) 

Based on Eq. (8), the conditional failure probability 
Pf() can be expressed as 

 ( )
3

1

( ) ( ) 2f f f i f

i

P P P P

=

 = −    (49) 

where 

 ( ) ( ) ( )1 2 3  =f f R f f d f f PP P P P P P  = =， ，   

Since Pf() is a function of the means of all three 
random variables, the original mean of the three random 
variables in Table 1 will be replaced by means of these 
parameters as given in Table 2, and Pf() can then be 
easily obtained as 0.0349 by using FORM. 

Using a seven-point estimate in standard normal 
space as shown in Eqs. (14)-(20), the estimating points of 
Pf1, i.e., Pf(R) in original space, can be obtained as 
follows with the aid of an inverse Rosenblatt 
transformation 

1 2 3 4 8.281,   8.874,   9.428,   9.988R R R R   = = = =  

5 6 7 10.581,   11.241,   12.046R R R  = = =  

In the same way as the procedure to evaluate Pf(), 
we can use FORM to estimate the value of Pf(Ri), i = 
1, …, 7. Using the point-estimate method, the mean of 
Pf(R) or Pf1, Pfi, is readily obtained as 

 ( )
1

2
7

1

3.506 10=
fP k f Rk

k

P P  −

=

=   (50) 

Similarly, the means of Pf(d) or Pf2 and Pf(P) or Pf3 
are obtained as Pf2 =4.815×10−2 and Pf3 =3.492×10−2, 
respectively. 

Therefore, according to Eq. (11), the overall 
probability of failure, is readily estimated as 

 
3

2

1

= [ ( )] 2 ( ) 4.830 10
fiF f P f

i

P E P P −

=

 − =  μ   

The overall probability of failure is obtained as 
4.834×10−2 by using MCS with 1,000,000 samples.  

Based on Eq. (24), the conditional reliability index 
() can be approximated as 

 ( ) ( ) ( )
3

* * 1

, 0

1

Θ Θ U i j i

i j i

T     −

 =

  = = − +     (51) 

where 

 ( ) ( ) ( )1,2 1,3 2,3, , , , ,R d R P d P           = = =  

( ) ( ) ( )1 2 3, ,R d P        = = =  

( )-1

0 1 = 1.812fP  =  − μ  

Utilizing the point-estimate method based on 
bivariate dimension-reduction integration, i.e., Eqs. (29)- 
(38), in which the estimation of the reliability indices for 
determining 

i

k

 and
,i j

k

 in Eqs. (33)-(34) is evaluated 
from Eq. (47) using FORM, the first four moments of 
() are easily obtained as,  = 1.850,  = 0.578, 3 
=2.033, and 4 =12.262, respectively.  

Substituting the obtained first four moments of () 
into Eq. (43), the PDF of the conditional reliability index 
() is expressed as 

 ( )
( )

( )2
( )

0.578 0.662 0.437 0.265

u
f

u u



 =

+ +
Θ  (52) 

The histogram of the conditional reliability index () 
obtained by using the 1,000,000 MCS samples are shown 
in Figure 1 together with the PDF curve (denoted as the 
thick solid line)  obtained from the method proposed in 
this paper as shown in Eq. (52)., respectively. It can be 
seen from Figure 1 that the histogram of the conditional 
reliability index () is well behaved and can be 
approximated well by the PDF of the cubic normal 
distribution determined by using its first four moments.  

 

Figure 1. Histogram and PDF curve of the conditional reliability 

index. 

The histogram of the conditional failure probability 
Pf() obtained by the MCS with 1,000,000 samples is 
shown in Figure 2. It can be seen in Figure 2 that the 
histogram of Pf() is skewed to the right and is truncated 
when Pf() tends to zero, as has been shown in Figure 2, 
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which is difficult to approximate by well-known 
distributions. 

The 90% and 95% confidence levels of Pf() are 
listed in Table 3, obtained from MCS, three-parameter 
square normal distribution, and the proposed method 
based on the cubic normal distribution, respectively. It 
also can be seen that the results obtained from the 
proposed method are much more accurate than the results 
from the three-parameter square normal distribution. 

Table 3. Results of 90% and 95% confidence levels for Pf() 

Confidence level MCS 
Three-parameter 

distribution 
Present 

90% Pf() 0.100 0.108 0.095 

95% Pf() 0.117 0.109 0.115 

 
From the discussion above, it can be concluded that, 

the results estimated by the proposed method are almost 
the same as those obtained by MCS method. 

 

Figure 2. Histogram of the conditional failure probability. 

5. Conclusions 
This paper focuses on evaluating the quantile or even the 
distribution of the conditional failure probability or 
conditional reliability index by utilizing a four-parameter 
cubic normal distribution. It can give sufficiently accurate 
results and provided a complete picture of structural 
reliability analysis considering the parameter 
uncertainties. The accuracy of results obtained from the 
proposed method has been examined by comparisons 
with large sample Monte Carlo simulations (MCS). 

6. Statement 
This paper has been reported at the 13th International 
Conference on Applications of Statistics and Probability 
in Civil Engineering (ICASP13) held in Seoul, South 
Korea. 
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