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Abstract: Real-world geotechnical reliability analysis is limited in practice partially because of computationally time-consuming 

complex deterministic models involved. Auxiliary random finite element method (ARFEM) is a representative reliability method 

that fully utilizes the correlation between simple and complex models to achieve efficient and consistent reliability analysis. To get 

rid of the complex model and further improve the computational efficiency of reliability analysis, this study proposes a corrected 

method using a simple deterministic model only. Impacts of calculation model and geomaterial on geotechnical response are 

deliberately decoupled so that the response in the complex model can be inferred indirectly from that in the simple model. Through 

two geotechnical reliability problems in 3-D spatially varying soils, it is found that the corrected analysis, purely based on the 

simple-model-based preliminary analysis of ARFEM, is able to gain approximately consistent reliability results as the 

complex-model-based target analysis of ARFEM does but without any additional computational effort. 

Keywords: Geotechnical reliability analysis; spatial variability; simple model; auxiliary random finite element method. 

 

1. Introduction 
Although reliability analysis has gained increasing 
interest in the geotechnical community (Phoon, 2020), its 
application for real-world geotechnical problems is still 
limited. This is partially because reliability analysis often 
requires repeated call of deterministic models and the 
computational burden is too heavy to afford particularly 
when a time-consuming model such as 3-D finite element 
model is adopted in a simulation-based reliability 
framework. Compared with simplified reliability methods 
(e.g., first-order reliability method) and surrogate- 
model-based methods (e.g., response surface method), 
simulation-based methods (e.g., Monte Carlo simulation) 
are often criticized for their inefficiency, but they do have 
many intrinsic advantages in characterizing complex 
uncertain systems, such as high-dimensional uncertainty 
modeling. In the geotechnical context, the random field 
modeling for spatially varying geomaterials is a typical 
example that advocates simulation-based reliability 
methods (Fenton and Griffiths, 2008). 

On the other hand, it is not uncommon that various 
deterministic models/methods are available for the same 
geotechnical problem. Taking slope stability analysis as 
an example, there are 2-D and 3-D limit equilibrium (with 
circular/noncircular slip surface) and finite element (with 
coarse/fine mesh) models, etc. These models have 
positive correlation to some extent. Some models (e.g., 
2-D limit equilibrium models) are simple and efficient, 
while others (e.g., 3-D finite element models) are 
complex and accurate. Correspondingly, the choice of 
reliability analysis using a simple or complex model is 
also a trade-off between accuracy and efficiency. The 
response conditioning method (Au, 2007) opens up the 
possibility to fully utilize the correlation between simple 
and complex models to achieve efficient and consistent 
reliability analysis. A complex-model-based target 
reliability analysis is strategically carried out with the aid 

of a simple-model-based preliminary reliability analysis. 
However, previous studies showed that the computational 
effort for target analysis still takes a vast majority of total 
effort, say more than 80% or even 98% (Li et al., 2016; 
Xiao et al., 2016). How to obtain a consistent reliability 
estimate without a complex model is an open question. 

This study aims to investigate the feasibility of 
consistent geotechnical reliability analysis using a simple 
deterministic model only. The consistency herein means 
the reliability estimate agree with that using a complex 
deterministic model. The impacts of calculation model 
and geomaterial on system response are deliberately 
decoupled. Finally, two geotechnical examples are 
conducted to validate the feasibility. 

2. Auxiliary random finite element method 
To incorporate the spatial variability of geomaterials into 
geotechnical reliability analysis, the widely-used random 
finite element method (RFEM) (Fenton and Griffiths, 
2008) adopts random field theory to model the spatial 
variability, Monte Carlo simulation for uncertainty 
propagation, and finite element method to assess the 
geotechnical problem. The auxiliary random finite 
element method (ARFEM) (Xiao et al., 2016) is an 
updated version that significantly improves computational 
efficiency within the framework of response conditioning 
method. It consists of a simple-model-based preliminary 
analysis and a complex-model (i.e., finite element model) 
-based target analysis. Since its accuracy has been 
validated against the traditional RFEM (Xiao et al., 2016), 
ARFEM will be used in this study as a benchmark of 
reliability analysis. 

The high correlation between simple and complex 
models is crucial to the success of ARFEM, which can be 
easily satisfied in the geotechnical context as mentioned 
earlier. At least two universal choices can be considered 
in practice: (a) coarsely and finely meshed finite element 
models, and (b) 2-D and 3-D models, as the simple and 
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complex models, respectively. The first choice has been 
applied by Xiao et al. (2016) and the second will be 
demonstrated later in this study. 

3. Corrected reliability analysis 
For a given geotechnical problem, the response g (e.g., 
safety factor of slope stability and foundation settlement) 
is the outcome of both calculation model and material. No 
matter which calculation model is used, the adopted 
material always coincides. This is why the material is 
taken as a bridge to link simple and complex models in 
the response conditioning method. 

As the selection of calculation model has no relation 
to material, it is intuitive to assume that impacts of model 
and material on the system response can be decoupled 
into two independent components as: 

 ( ) ( ) ( )1 2model,material model materialg f f f= =  (1) 

where f, f1 and f2 are implicit functions. For the sake of 
brevity, let gs,d be the response obtained from model s and 
material d. Consider two models s and c and two 
materials d and r. The impact of different models on the 
same material can be derived as: 
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which is independent of the material, as we expect. If 
models s and c are referred to simple and complex models, 
respectively, and materials d and r are referred to the 
deterministic material used in deterministic analysis (i.e., 
mean value) and the random material randomly generated 
in reliability analysis (i.e., one random field realization), 
respectively, we can directly correct the system response 
of one random realization from the simple model to the 
complex model by rewriting Eq. (2) as: 
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where k is a correction constant that needs to be 
determined from deterministic analysis. As a matter of 
fact, Eq. (3) holds approximately because some simple 
models cannot fully capture the impact of materials, such 
as taking a 2-D model as the simple model of a 3-D 
model. The accuracy of Eq. (3) improves as the 
correlation between simple and complex models increases, 
similar to ARFEM. 

By applying Eq. (3) to all samples generated in the 
preliminary reliability analysis of ARFEM, an 
approximately consistent reliability estimate using only 
simple model, referred to as corrected reliability analysis 
in this study, can be obtained easily without any extra 
computational effort. In theory, Eq. (3) can be applied to 
correct any simple-model-based reliability analysis. The 
reason for using ARFEM is because it also provides a 
target reliability analysis for further validation. 

4. Illustrative examples 
This section applies the corrected reliability analysis to 
evaluate the reliability of two geotechnical problems,  

Table 1. Soil properties in two examples. 

Soil property Footing Slope 

Cohesion, c (kPa) 20 30 

Friction angle, φ (°) 30 0 

Dilation angle, ψ (°) 20 0 

Unit weight, γ (kN/m3) 18 20 

Young’s modulus, E (MPa) 60 100 

Poisson’s ratio, v 0.3 0.3 

22
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2

(a) Unit: m

(b) Uc = 0.0327 m (c) Uc = 0.0307 m
 

Figure 1. Example of footing: (a) basic setting; (b) simple 

model: 2-D model; (c) complex model: 3-D model. 

including the settlement of a strip footing and the stability 
of a long embankment slope, in 3-D spatially varying 
soils. A squared exponential autocorrelation function with 
anisotropy in vertical and horizontal directions is used to 
describe the 3-D spatial variability. More details on the 
characterization and simulation of 3-D spatial variability 
can be referred to Xiao et al. (2018) and Li et al. (2019), 
respectively. Both problems are analyzed using 3-D finite 
element models developed in Abaqus, in which the soil is 
modeled by an elastic-perfectly plastic constitutive model 
with the Mohr-Coulomb failure criterion. The soil 
parameters in the two examples are given in Table 1. 

4.1 Strip footing 
The first example is to evaluate the reliability of a strip 
footing at serviceability limit state, adapted from Ahmed 
and Soubra (2012). The strip footing is 10 m long, 2 m 
wide, 0.5 m deep, and subjected to a vertical applied 
pressure of 500 kPa, as shown in Fig. 1(a). The tolerable 
central settlement is set as 2% of the width, i.e., 0.04 m. 
To apply ARFEM, a 2-D finite element model (Fig. 1(b)) 
is developed as the simple model of the 3-D finite 
element model (Fig. 1(c)). The central settlements (Uc) 
are 0.0327 m and 0.0307 m, respectively, in the 2-D and 
3-D models through deterministic analysis, leading to a 
correction factor of 0.939. The efficiency ratio of 2-D 
model to 3-D model is about 120, i.e., 12 s vs. 24 min. 

As a benchmark case, the Young’s modulus of soil is 
assumed to be lognormally distributed with a coefficient 
of variation (COV) of 0.15 and horizontal and vertical 
autocorrelation distances of 10 m and 1 m, respectively. 
Besides, three additional soil variability cases are also 
considered, as shown in Table 2, to explore the impact of  
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Table 2. Soil variability cases. 

Case Variable Distribution COV 
Autocorrelation 

distance [lh, lv] (m) 

Case 1 E 

Lognormal 

0.15 [10, 1] 

Case 2 E 0.3 [10, 1] 

Case 3 E 0.15 [20, 2] 

Case 4 E, v 0.15 [10, 1] 

Table 3. Calculation of corrected reliability analysis for Case 1. 

Uc (preliminary) Uc (corrected) Cumulative probability 

0.0274 0.0257 1.000 

0.0279 0.0262 0.998 

… … … 

0.0399 0.0375 3.18×10–3 

0.0400 0.0375 3.16×10–3 

… … … 

0.0426 0.0399 1.52×10–4 

0.0427 0.0400 1.50×10–4 

… … … 

 

Figure 2. A typical 3-D random field realization of Case 1. 

soil variability on the performance of corrected reliability 
analysis. 

For comparison, all cases are analyzed using ARFEM 
with the same parameters (m = 4, N = 500, p0 = 0.1 and Ns 
= 10; more details can be referred to Xiao et al. (2016)). 
A total of 1850 simple models and 50 complex models 
are generated in the preliminary and target analyses, 
respectively, which takes about 7 h and 14 h, respectively, 
using parallel computing. A typical 3-D random field 
realization of Case 1 is shown in Fig. 2. The 2-D random 
field used in the simple model is extracted from the 
central section of 3-D random field so that the 2-D and 
3-D models can be connected through material.  

The failure probabilities of Case 1 are estimated as 
3.16×10–3 and 1.90×10–4 in the preliminary and target 
analyses, respectively, of ARFEM. Then, Eq. (3) with a 
correction factor of 0.939 is used to correct the failure 
probability from 3.16×10–3 to 1.50×10–4, which is 
consistent with the complex-model-based target failure 
probability (i.e., 1.90×10–4). The calculation procedure is 
provided in Table 3, in which the cumulative probability 
is estimated from preliminary analysis and it remains 
unchanged since the rank of each sample does not change. 
It is worth noting that no extra computational effort is 
needed for the corrected reliability analysis. In spite of 
the high efficiency of ARFEM, compared with 
conventional Monte Carlo simulation-based RFEM 
(about 50,000 3-D finite element analyses are required 
and need 1.6 years by estimation), the corrected reliability 
analysis further cuts the computational time by two thirds.  
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Figure 3. Cumulative distribution function of central settlement. 

0.02 0.03 0.04 0.05 0.06 0.07
0.02

0.03

0.04

0.05

0.06

0.07
Case 1

Case 2

Case 3

Case 4

Preliminary vs Target

Corrected vs Target

 

 

C
e

n
tr

a
l 
s
e

tt
le

m
e

n
t 

in
 3

-D
 (

m
)

Central settlement in 2-D (m)

Deterministic

 

Figure 4. Central settlement calculated by different models. 

It benefits from the fact that only a simple deterministic 
model is involved in the reliability analysis. 

Similar results can also be obtained in the other three 
cases. Fig. 3 presents the cumulative distribution function 
of the central settlement in all cases. Since a smaller 
central settlement is more preferable, the cumulative 
distribution function represents the failure probability of 
the central settlement exceeding any specific threshold. 
As shown in Fig. 3, although the preliminary analysis 
overestimates all curves, the corrected analysis 
successfully updates them to agree well with the target 
analysis at all probability levels. Note that a uniform 
correction factor is adopted in all cases. This implies that 
the performance of the corrected reliability analysis will 
not be significantly affected by the soil variability. 

Fig. 4 compares the central settlements calculated by 
both 2-D and 3-D models for those samples used in target 
analysis. The correlation coefficient between 2-D and 3-D 
models is as high as 0.99, no matter which case is 
considered, indicating that the 2-D model is a very good 
simplified model for the footing problem. Through the 
correction of Eq. (3), the settlements in 2-D and 3-D are 
well distributed along the 1:1 line, which validates the 
accuracy of Eq. (3) and shows that such a correction is 
insensitive to soil variability again. 

4.2 Long embankment slope 
The second example on a long embankment slope has 
been studied by Xiao et al. (2016) using ARFEM. Its  
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Figure 5. Example of slope: (a) basic setting; (b) simple model: 

coarse mesh; (c) complex model: fine mesh. 

geometry is shown in Fig. 5(a) and the soil property is 
given by Table 1. Since the 3-D spatial variability results 
in irregular slip surface in both shape and location, it is 
not easy to choose a reasonable 2-D profile for 
simplification. Alternatively, a coarsely meshed finite 
element model (Fig. 5(b)) is taken as the simple model of 
a finely meshed model (Fig. 5(c)). This strategy is 
available for any finite element model. According to 
deterministic analysis, the factors of safety (Fs) of slope 
stability are estimated as 1.651 and 1.593, respectively, in 
the coarse and fine models using shear strength reduction 
technique. As a result, the correction factor is determined 
as 0.965. The efficiency ratio of coarse model to fine 
model is about 40, i.e., 48s vs. 35 min. 

The soil cohesion is considered as a random field and 
modeled by a lognormal distribution with a COV of 0.3 
and horizontal and vertical autocorrelation distances of 20 
m and 2 m, respectively. One ARFEM run is carried out 
with parameters m = 4, N = 500, p0 = 0.1 and Ns = 25. The 
preliminary and target analyses spend 7 h and 37 h, 
respectively, for analyzing 1850 coarse models and 125 
fine models. The corrected analysis does not need 
additional effort compared to the target analysis. 

Fig. 6 provides the cumulative distribution function 
and scatters of safety factor in both coarse and fine 
models. It can be seen that the preliminary analysis 
underestimates the failure probability at every safety level, 
while the corrected and target analyses nearly overlap 
with very high agreement. Regarding the safety margin of 
1.0, the failure probabilities in the preliminary, target and 
corrected analyses are 8.84×10–4, 2.80×10–3 and 
2.06×10–3, respectively, as shown in Table 4. Besides, the 
corrected safety factor using coarse model is almost 
identical with that using fine model (see Fig. 6), with a 
correlation coefficient higher than 0.99, similar to the 
observation in footing example. 

5. Conclusions 
This study proposes a corrected method for consistent 
geotechnical reliability analysis with a simple 
deterministic model and on the basis of auxiliary random 
finite element method (ARFEM). It assumes that impacts 
of calculation model and geomaterial on geotechnical 

Table 4. Reliability analysis results in two examples. 

Analysis Model 
Failure probability, Pf 

Footing (Case 1) Slope 

Preliminary Simple 3.16×10–3 8.84×10–4 

Target Complex 1.90×10–4 2.80×10–3 

Corrected Simple 1.50×10–4 2.06×10–3 
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Figure 6. Results of slope reliability analysis. 

response can be decoupled into two independent 
components. By this means, the response in the complex 
model can be inferred indirectly from that in the simple 
model. The corrected analysis is purely based on the 
simple-model-based preliminary analysis of ARFEM and 
is able to gain approximately consistent reliability results 
as the complex-model-based target analysis of ARFEM 
does, but without any additional computational effort. 

Two geotechnical reliability problems on the 
settlement of a strip footing and the stability of a long 
embankment slope in 3-D spatially varying soils are 
investigated to validate the feasibility of corrected 
reliability analysis. It is found that the corrected response 
and cumulative distribution function using simple model 
are almost identical with those using complex model. 
Besides, the performance of the corrected reliability 
analysis is insensitive to material variability as long as a 
proper simple model is selected. 

The illustrative examples also validate the feasibility 
of two universal simple models in ARFEM, say a 
coarsely meshed model and a 2-D model as the 
simplification of a finely meshed model and a 3-D model, 
respectively. Although the target analysis is necessary 
sometimes, such as risk assessment in which both failure 
probability and failure mechanism are needed, the 
corrected analysis is still a powerful tool to provide 
efficient and consistent reliability estimation and facilitate 
the implementation of target analysis. 
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