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Abstract: Data assimilation methods are effective tools to estimate analytical models based on measurement data. Therefore, this 
study first evaluates seepage analysis models based on the field measurement data of volumetric water content using data assimilation 
methods. In existing studies, seepage behaviors were simulated by setting a free drainage boundary condition. However, during heavy 
rain, such simulations could not reproduce the field measurement data. Therefore, this paper proposes a method for estimating the in-
situ seepage analysis model, including the boundary condition, and discusses the validity of the proposed method. The simulation 
results obtained using the proposed method were significantly more accurate than the results of the previous studies that set the free 
drainage boundary condition, thus validating the proposed method to estimate the in-situ seepage analysis model. 
 
Keywords: data assimilation, seepage analysis model, boundary condition, field measurement data. 

 

1. Introduction 
With the progression of global warming, the intensity of 
rainfall experienced worldwide has increased, inducing 
multiple landslide disasters. Soil moisture conditions such 
as volumetric water content, pressure head, and 
groundwater level affect the occurrence of landslide 
disasters. Therefore, it is important to evaluate seepage 
analysis models to simulate soil moisture conditions. It 
includes unsaturated soil hydraulic properties, such as the 
soil-water characteristic curve, unsaturated hydraulic 
conductivity function, as well as initial and boundary 
conditions. Generally, laboratory tests help to determine 
the unsaturated soil hydraulic properties. However, there 
are various difficulties encountered while estimating in-
situ seepage analysis model.  
Recently, field monitoring systems, in which the soil 
moisture conditions can be observed in real-time, have 
been developed to assess the risk of landslide disasters 
(Koizumi et al. 2012, Sakuradani et al. 2018). The systems 
can not only measure present soil moisture conditions but 
also accumulate measurement data automatically. 
Predicting future soil moisture conditions utilizing these 
measurement data is valuable for the landslide disaster 
mitigation. Estimating the in-situ seepage analysis model, 
which can reproduce the field measurement data with high 
accuracy, is a necessity to achieve this. 
Data assimilation methods are inverse analysis methods 
that originate from modifying the numerical simulation 
model based on field measurement data. They have been 
developed in the field of meteorology and oceanography. 
Several data assimilation methods, such as 4D-VAR 
(Talagrand and Courtier 1987), ensemble Kalman filter 
method (Evensen 1994), particle filter (PF) method 
(Gordon et al. 1993), and merging particle filter (MPF) 
method (Nakano et al. 2007) have been proposed. In 
geotechnical engineering, the PF method is applied to 
identify the mechanical parameters of an elasto-plastic 
constitutive model based on the measurement data of 
consolidation settlements (Shuku et al. 2012). The authors 
applied the PF method to estimate the in-situ unsaturated 

soil hydraulic properties, based on field measurement data, 
at three slopes with different types of soils, and to validate 
the PF method (Ito et al. 2019).  
Figure 1 shows the simulated results in an existing study 
by Nishimura et al. (2019). The simulated results could not 
reproduce the field measurement data, due to boundary 
conditions. In this study, one-dimensional seepage analysis 
models were assumed and unsaturated seepage behaviors 
were simulated by setting the free drainage boundary 
condition at the bottom of one-dimensional models. 
However, during heavy rain, because of the rising 
groundwater level at the field slope, the simulation set with 
the free drainage boundary condition could not reproduce 
the field measurement data. 
In this paper, a method estimating the in-situ seepage 
analysis model has been proposed, including the boundary 
condition at the bottom of a one-dimensional model. In the 
proposed method, a seepage coefficient β is introduced as 
the parameter at the bottom of the one-dimensional model, 
and the MPF is adopted as the data assimilation method. 
The study discusses the validity of the proposed method 
through the data assimilation of the in-situ seepage 
analysis model.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Simulated results in the previous study by Nishimura 

et al. (2019). 



The Seventh Asian-Pacific Symposium on Structural Reliability and Its Applications (APSSRA2020) 
October 4–7 2020, Tokyo, Japan 

T. Takada, I. Yoshida & T. Itoi (editors) 

2. Analytical methods 

2.1 Unsaturated-saturated seepage analysis 
In this study, an unsaturated-saturated seepage finite 
element analysis is used to reproduce the soil moisture 
conditions. The following equation, Richards equation 
(Richards 1931), is applied in numerical analysis. 

 (1) 

Here, C (=∂θ/∂ψ) is the hydraulic capacity function, θ is 
the volumetric water content, ψ is the pressure head, and 
k(ψ) is the unsaturated hydraulic conductivity. The 
following van Genuchten model (van Genuchten 1980) is 
adopted to express the soil-water characteristic curve, and 
the Mualem model (Mualem 1976) is utilized to estimate 
the unsaturated hydraulic conductivity. 

 (2) 

 (3) 

Here, Se is effective soil water saturation, θr is residual 
volumetric water content, θs is saturated volumetric water 
content, α and n are material parameters, and ks is saturated 
hydraulic conductivity. In this study, θs, θr, α, n, and ks are 
unknown parameters corresponding to unsaturated soil 
hydraulic properties. 

2.2 Boundary condition 
In the previous study by Nishimura et al. (2019), one-
dimensional seepage analysis models were assumed, and 
unsaturated seepage behaviors were simulated by setting 
the free drainage boundary condition at the bottom of the 
one-dimensional models. The free drainage boundary 
condition assumed that the diffusion flux was negligible. 
As Chen et al. (2018) highlighted, the free drainage 
boundary condition is suitable when there is slight 
variation in the moisture near the bottom of the soil, such 
as when the groundwater level is deeper than that in the 
one-dimensional model. The following equation presents 
the free drainage boundary condition. 

 (4) 

Here, Γ is the boundary at the bottom of the one-
dimensional model. The drainage flux, vout, equals the 
unsaturated hydraulic conductivity at the boundary Γ as 
given by the following equation. 

 (5) 
On setting the free drainage boundary condition, soil 
moisture condition in the seepage analysis model 
maintained an unsaturated condition as it drained a large 
amounts of pore water. To express raising the groundwater 
level, a new boundary condition, that reduced the amount 
of water being drained, was necessary. 
This study focuses on the tank model (Ishihara and 
Kobatake 1979) to propose a new boundary condition. 
Figure 2 shows a conceptual diagram of the tank model. 

The following equation expresses the amount of drainage 
Z.  

 (6) 
Here, β is the seepage coefficient and S is storage discharge. 
The seepage coefficient, β, controls the amount of drainage, 
Z, in the tank model. This study proposes a drainage 
boundary condition using the seepage coefficient β. The 
following equation gives the boundary condition. 

 (7) 
Here, the seepage coefficient, β, is 0 < β <	1. β equals to 1 
indicates the free drainage boundary condition at the 
bottom of the one-dimensional model, and β equals to 0 
indicates an undrained boundary condition. Introducing 
the seepage coefficient, β, can control the amount of 
drainage from the bottom of the one-dimensional model. 
The proposed method regards not only unsaturated soil 
hydraulic properties (θs, θr, α, n, and ks) but also the 
seepage coefficient β as an unknown parameter. These 
unknown parameters are estimated by the MPF based on 
field measurement data. 

2.3 Merging particle filter (MPF) 
The MPF (Nakano et al. 2007) is a sequential data 
assimilation method in which the probability distribution 
of a physical quantity is approximated with its realizations. 
Each realization is called a particle, and each set is called 
an ensemble. The MPF evaluates the particles at a discrete 
time, using Bayes’ theorem. Figure 3 schematically shows 
the computational procedure of the MPF. First, several 
numerical simulations, in which different sets of unknown 
parameters are applied for each particle, are conducted ((a) 
Prediction in Figure 3). When the number of particles is N, 
N Monte Carlo simulations are conducted. Second, the 
likelihood is evaluated for each particle by comparing 
measurement data and simulated results ((b) Filtering in 
Figure 3). The particles are then resampled into samples 
((c) Resampling in Figure 3). When the number of particles 
is N, l×N samples are drawn based on the likelihood. The 
particles with high likelihood are resampled more than l, 
and the samples of particles with low likelihood are 
decreased. Finally, the samples are merged into new 
particles ((d) Merging in Figure 3). Each particle is 
generated as a weighted sum of l samples from the l×N 
sample set as, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Conceptual diagram of the tank model. 
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 (8) 

where αj is the merging weight. The merging weights αj 
satisfy, 

 (9-a) 

 (9-b) 

where each αj is a real number. As demonstrated by 
Nakano (2007), the number of merged particles was set to 
l=3, and the weights αj were set as follows. 

 (10-a) 

 (10-b) 

 (10-c) 

Through iteration of these four steps (Prediction, Filtering, 
Resampling, Merging) each discrete time, the MPF 
modified the seepage analysis model based on field 
measurement data. 

3. Field measurement data 
Photo 1 shows the field monitoring system at the target 
slope. The slope has an angle of ~35 degrees, and the 
surface layer is composed of weathered granite. Table 1 
shows the physical properties of the sample at the slope. 
Figure 4 shows the result of a portable cone penetration test 
at the target point of this study. The portable cone 
penetration test investigates hardness at each depth. The Nd 
value indicates the number of falling of portable cone. The 
layer from the ground surface up to a depth of 140 cm has 
a small Nd value, while the layer below it is a hard layer. It 
can be presumed that the difference of the hardness near 
the depth of 140 cm may generate groundwater. 
A rain gage was used to measure the amount of rainfall and 
soil moisture sensors were used to measure the volumetric 
water content at each depth. Photo 2 shows the method for 
installing the soil moisture sensors. Vertical trenches were 
dug, and the sensors were installed at right angles to the 
trenches to measure the in-situ unsaturated infiltration 
behaviors. The sensors were installed at depths of 40 cm, 
80 cm, and 100 cm. The monitoring system measured the 
amount of rainfall and volumetric water content at ten- 
minute intervals since November 2017. Figure 5 shows the 
field measurement data used. The heavy rain from July 5-
7 raised groundwater level over 40 cm depth temporarily, 
and the soil moisture condition, at 100 cm depth, remained 
saturated until July 9. It was reported that the heavy rain 
had caused several surface failures near the target slope.  
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Computational procedure of the MPF. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Photo 1. Field monitoring system at the target slope. 
 
 

Table 1. Physical properties of the sample. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Result of a portable cone penetration test. 
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4. Analytical results 
4.1 Analytical conditions 
Figure 6 shows the one-dimensional analytical model. The 
model was divided into three layers (upper, middle, and 
bottom layer), corresponding to the depth of the installed 
soil moisture sensors. The top of the model inputted 
rainfall boundary conditions, and the bottom of the model 
inputted drainage boundary conditions, introducing the 
seepage coefficient β. As the initial condition, the upper 
layer had the initial value of volumetric water content of 
θt=040cm, measured at 40 cm depth, the middle layer set the 
value of θt=080cm, measured at 80 cm depth, and the bottom 
layer set the value of θt=0100cm, measured at 100 cm depth. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Photo 2. Installation of the soil moisture sensors. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Field measurement data – daily variation of volumetric 

water content in the soil and the rainfall received. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. One-dimensional analytical model. 

This study used 500 particles. In the MPF, the set of 
particles approximate probability distribution of unknown 
parameters. The upper and the middle layers had 
information of only five parameters (θs, θr, α, n, and ks), 
while the bottom layer included information of all six 
parameters (θs, θr, α, n, ks, and β). Table 2 shows the 
minimum and maximum values of each parameter. All 
particles were generated randomly within a range. The 
observation noise followed a three-dimensional normal 
distribution. Assuming that all observation errors were 
independent of each other, covariance matrix Rt was set as 
follows. 

 (11) 

Here, the non-diagonal covariance terms were assumed to 
be zero.  

4.2 Data assimilation results 
Figure 7 shows the comparison of field measurement data 
with data assimilation results. The data assimilation results 
indicate the variation of the posterior distribution of 
volumetric water content. As the number of Monte Carlo 
simulations corresponded to the number of particles, the 
mean values and standard deviations of the simulated 
volumetric water content could be calculated. From the 
results of Figure 7, the proposed method could express 
raising the groundwater level after the heavy rain and could 
reproduce falling groundwater level and decreasing 
volumetric water content with enough accuracy. Moreover, 
the data assimilation results of Figure 7 were significantly 
more accurate, than in the previous study (Figure 1), 
setting the free drainage boundary condition at the bottom 
of the one-dimensional models. This result revealed that 
introducing the seepage coefficient β was a valid method 
to estimate the in-situ seepage analysis model. 
Figure 8 shows the histograms of the distribution of 
parameters. All particles had a seepage coefficient β less 
than 0.1, and many were in the order of one in one-
thousandth. Thus, some pore water was drained from the 
drainage boundary condition after introducing the seepage 
coefficient β. As shown in Figure 8, the MPF estimated the 
posterior distribution of unknown parameters, to evaluate 
the soil moisture condition probabilistically.  
 
 
 

Table 2. Minimum and maximum values of each parameter. 
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 5. Conclusions 
 This paper proposed a method for estimating the seepage 
analysis model, including the seepage coefficient β. The 
validity of the proposed method is then discussed through 
the data assimilation of the in-situ seepage analysis model. 
The main conclusions of this study are summarized as 
follows: 
1. The proposed method could express raising the 

groundwater level after the heavy rain. 
2. The proposed method could also reproduce falling 

groundwater levels and decreasing volumetric water 
content with sufficient accuracy. 

 
3. The simulated results obtained using the proposed 

method were significantly more accurate than the 
results of existing studies that set the free drainage 
boundary condition at the bottom of one-dimensional 
models. 

4. The proposed method, introducing the seepage 
coefficient β, was a valid method to estimate the in-situ 
seepage analysis model. 

 
 
 

(a) 40cm (a) 40cm 

(b) 80cm (b) 80cm 

(c) 100cm (c) 100cm 

Figure 7. Comparison of field measurement data 
with data assimilation results at the selected depths from 

ground surface. 

Figure 8. histograms of the distribution of parameters. 
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