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Abstract: Probabilistically analyzing runout distance of slope failure is important for landslides risk assessment since the consequence 
triggered by a landslide highly depends on the runout distance of the landslide mass. Currently, the research on probabilistic analysis 
for runout distance after slope failure based on mechanics-based methods is limited. In this paper, an efficient assessment framework 
based on response surface methods and material point methods is proposed to analyze the probable runout distance of slope failure. 
The framework is used to study a homogeneous 2D clay slope with uncertain strength parameters, namely, the cohesion and the internal 
friction angle. In this case, the relationship between the factor of safety and strength parameters is approximated based on the advanced 
classical response surface method, and the failure domain is derived. Then, the runout distances of samples in the failure domain are 
calculated via the material point method. Thereafter, the kriging-based response surface method is applied to approximate relationship 
between the runout distance and strength parameters in the failure domain. Finally, the frequency and exceedance probability of the 
runout distance are computed efficiently via the two RSMs. Through statistical analysis, the number of samples that keep the slope 
stable is about 61.40% with respect to total number of samples. For the failed samples, the chance of the runout distance firstly 
increases and then decreases as the runout distance increases. The probability that the runout distance < 11 m is about 99%. The 
proposed method provides an efficient and convenient tool to predict the probable runout distance of slope failure, and can help better 
assess landslide risk. 
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1. Introduction 
In the past decades, many studies have been conducted on 
probabilistic stability analysis of slopes (e.g., Christian et 
al., 1994; Ching et al., 2009; Huang et al., 2010; Gong et 
al. 2019), which have greatly enhanced the capability of 
the profession to evaluate the probability of slope failure. 
For quantitative risk assessment analysis, the runout 
distance of the slope failure should also be probabilistically 
analyzed, which is highly associated with the damages 
caused by a landslide. Currently, studies on probabilistic 
analysis for runout distance after slope failure based on 
mechanics-based methods is still limited. 

In the recent years, the material point methods (MPM) 
developed by Sulsky et al. (1994) has been increasingly 
used for runout distance analysis. MPM discretizes a 
continuum into a set of material points and the definition 
of a background computational mesh can better avoid the 
distortion during the computation process (e.g., Andersen 
and Andersen, 2010; Llano-Serna et al., 2016; Soga et al., 
2016). Additionally, MPM allows applying the boundary 
conditions relatively easily and is consistent with a 
common understanding of constitutive behavior (e.g., 
Yerro et al., 2015; Dong et al., 2017; Wang et al., 2018). 
Currently, the large deformation analysis of slope failure is 
often carried out in a deterministic way without explicit 
consideration of the uncertainties associated with the soil 
properties.  

This objective of this paper is to suggest an efficient 
method for probabilistic analysis of the runout distance of 
a landslide based on MPM. The structure of this paper is 
as follows. Firstly, a homogeneous 2D clay slope model 
with uncertain strength parameters is established. Based on 
the advanced classical response surface method (RSM), 
the failure domain of the slope can be identified. Thereafter, 

the runout distance of limit samples in the failure domain 
is analyzed based on MPM. Then, the kriging-based RSM 
is used to develop the relationship between the runout 
distance and strength parameters in the failure domain. 
Based on the two RSMs, the frequency and exceedance 
probability of the travel distance of the slope failure can be 
analyzed efficiently. The proposed framework provides an 
efficient tool to predict runout distance of slope failure 
probabilistically. 

2. Study slope 
A homogeneous 2D clay slope with a height of 20 m and 
with a slope angle of 45° is studied in this paper, as shown 
in Fig. 1.  

 
Figure 1. Geometry of the slope studied in this paper. 

Let c and ϕ denote the cohesion and the friction angle 
of the soil, respectively. The mean and standard deviation 
of c and ϕ is summarized in Table 1. The variations of c 
and ϕ are assumed to obey the logarithmic normal 
distribution. The other deterministic parameters of soil 
properties are also shown in Table 1. In this study, the 
runout distance is defined as the distance between the toe 
of the initial slope and the toe after slope failure (Yerro et 
al., 2016). The task in this example is to assess the runout 
distance of the slope considering the uncertainty of the soil 
strength parameters. 
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Table 1. Parameters of the soil properties. 
Parameters Value 
Density (kg/m3) 1900 
Elastic modulus (kPa) 5000 
Poisson ratio 0.3 
Tension (kPa) 0 
c (kPa) Mean: 15   Std.: 3    
ϕ (°) Mean: 30   Std.: 6    

3. Methodology 
Runout distance analysis based on MPM is time 
consuming. When the slope is stable, the runout distance is 
zero. To reduce the computational time, we will first 
identify samples in the failure domain, i.e., samples with 
the factor of safety (FOS) less than 1.0, and will only 
analyse the runout distance of such samples with MPM. 
The traditional limit equilibrium methods or the shear 
strength reduction technique can be used to assess the FOS 
of the slope (e.g., Cheng et al., 2007; Zhang et al., 2011). 
When the number of samples is large and the numerical 
model is complex, evaluating the FOS with such methods 
could also be computationally expensive. To assess the 
runout distance efficiently, the method suggested in this 
paper consists of three: (1) develop the relationship 
between FOS and the uncertain strength parameters based 
on the advanced classical RSM, through which samples in 
the failure domain can be identified; (2) establish the 
relationship between the runout distance and strength 
parameters in the failure domain based on the kriging-
based RSM; and (3) calculate distribution of the runout 
distance based on MCS through the use of the advanced 
classical RSM and the kriging-based RSM. 

3.1 Advanced classical RSM 
Fig. 2 shows the finite difference model implemented in 
FLAC2D, using the elastic-perfectly plastic constitutive 
model described by the Mohr-Column yield criterion. As 
the slope stability model in a homogenous soil is often 
quite linear, the classical RSM based on a second order 
polynomial can be used to model the relationship between 
FOS and soil parameters with reasonable (e.g., Zhang et al., 
2011; Li et al., 2015). Therefore, the classical RSM will be 
applied. Zhang et al. (2015) suggested a method to 
construct the classical RSM around the design point, which 
is at the boundary between the stable and unstable domain. 
As the purpose of the current analysis is to identify soil 
parameters that will result in FOS < 1, we will use the 
method in Zhang et al. (2015) to construct the response 
surface. Let x denote the reduced variables of c and ϕ, and 
let g(x) denote the relationship between the reduced 
variables and FOS, which can be approximated as follows 
(Zhang et al., 2015): 

 ( )
2 2
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where xi = the ith element of x, k = dimension of x, and bi 
(i = 0, 1, ..., 2k) = unknown deterministic coefficients. To 
determine the (2k + 1) coefficients, the performance 
function can be first evaluated around a centre point xc = 
{xc1, xc2, ..., xck} and other 2k points around xc: {xc1 ± mσx1, 
xc2, ..., xck}, {xc1, xc2 ± mσx2, ..., xck}, ..., and {xc1, xc2, ..., xck 

± mσxk}, where m is a parameter determining the relative 
distance of the calibration points and σxi = standard 
deviation of xi. Equating the values of the performance 
function with those calculated using Eq. (1) at the 
prescribed (2k + 1) calibration points, the unknown 
coefficients can then be solved. In this study, m = 1 is used 
and the FOS of calibration points are calculated based on 
shear strength reduction technique via FLAC2D 

Let xD denote the design point found based on Eq. (1) 
using first-order reliability method (FORM) (Ji and Low, 
2012). To construct a RSM around the design point, the 
response surface can be updated based on a new set of 
calibration points with the centre determined as follows: 
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where µx = mean of x. Eq. (1) can then be calibrated again 
using responses of g(x) evaluated at the new calibration 
points. Such a process is iterated until the reliability index 
via FORM does not change within a tolerable error εb. In 
this study, εb = 0.01. 

 
Figure 2. Slope model based on FLAC2D. 

After the RSM is converged, Fig. 3 compares the FOS 
predicted from Eq. (1) and calculated according to FLAC2D 
for another 20 randomly generated combinations of c and 
ϕ. The correlation of these two sets of FOS is 0.998, which 
indicates the RSM can predict the FOS of the slope with 
reasonable accuracy.  

 
Figure 3. Comparison of FOS from the advanced classical RSM 

and FLAC2D. 

3.2 Kriging-based RSM 
Based on MPM, a total number of 19640 particles are used 
to establish the slope model as shown in Fig. 4, with an 
initial particle radius of 0.5 m. The grid spacing of the 
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background mesh is set to be 1 m and the time step is equal 
to 0.2 second. The slope model via MPM uses the elastic-
perfectly plastic constitutive model described by the 
Drucker-Prager yield criterion (e.g., Koo et al., 2017; Luo 
et al., 2019). 

 
Figure 4. Slope model based on MPM. 

To reduce the computational efforts involved in the 
MPM analysis, the kriging-based RSM is used in this study 
to model the relationship between the runout distance and 
the uncertain strength parameters in the failure domain, 
d(x), based on samples in the failure region. In the kriging 
model, d(x) is decomposed into a deterministic trend 
function t(x) and a random error function ε (x) as follows 
(Cressie, 1993): 

 ( ) ( ) ( )d t ε= +x x x   (3) 

 ( )E 0ε  = x   (4) 

 ( )2COV ( ), ( )i j i jRεε ε σ  = − x x x x   (5) 

where σε is the point standard deviation of the random 
function; xi and xj are two points in the parameter space 
and R(xi - xj) is a correlation function. In this study, the 
constant trend function, i.e., t(x) = a, and the Gauss 
correlation function are adopted as follows (Lophaven et 
al. 2002): 

 ( ) ( )2
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k
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R x xδ
=

 − = − −∑  
x x   (6) 

where δm denotes a correlation parameter that reflects the 
degree of association between the predictions at two points 
along the mth axis; xmi = the mth element of xi; xmj = the 
mth element of xj; and k = dimension of x.  

To calibrate the kriging-based response surface model, 
200 samples of x are drawn uniformly via Latin hypercube 
sampling from the range defined by xi,min < xi < xi,max (i = 1, 
2), where xi,min and xi,max are -4 and 4, respectively. Out of 
the 200 samples, 54 points are found to be in the failure 
domain. Then, the runout distances of these samples are 
analyzed based on the MPM. Based on the runout distance 
of these 54 samples, the kriging model can be calibrated 
through the maximum likelihood method (Lophaven et al., 
2002). To check the accuracy of the kriging model, another 
20 randomly generated samples are simulated through 
MPM as the test points. Fig. 5 compares the runout 
distances of the slope failure predicted based on the kriging 
model and those based on MPM. The correlation 
coefficient between the two sets of runout distance is 0.999, 
indicating the kriging model can approximate the 
relationship between the runout distance and uncertain 
strength parameters with reasonable accuracy. 

 
Figure 5. Comparison of runout distance from the kriging-based 

RSM and MPM. 

4. Results and discussions 

4.1 Distribution of the runout distance 
10000 samples are randomly generated via MCS (Ang and 
Tang, 2007). Based on the two RSMs above, the runout 
distance of these samples can be analyzed efficiently. 
Through statistical analysis, the runout distance of all 
samples has a mean of 2.21 m and a standard deviation of 
3.00 m. The number of samples with FOS > 1 accounts for 
61.40% with respect to the total samples. The runout 
distance of these samples with FOS > 1 is assumed as 0 m. 

To figure out the distribution law of the runout distance, 
the distributions of the failed samples between 2 m and 4 
m, 4 m and 6 m, and 6 m and 8 m, are investigated as shown 
in Fig. 6. As can be seen from Fig. 6, the number of the 
failed samples between 2 m and 4 m is relatively small, 
accounting for 2.99% with respect to the total samples. For 
the failed samples between 2 m and 4 m, the cohesion is 
mainly in the range of 12 kPa and 16 kPa while the friction 
angle is mainly in the range of 27° to 31°. The number of 
failed samples between 4 m and 6 m is significantly larger 
than that between 2 m and 4 m, accounting for 25.93% with 
respect to total samples. This is mainly because that the 
range of the failed samples between 4 m and 6 m is 
significantly larger than that between 2 m and 4 m. For the 
failed samples between 4 m and 6 m, the cohesion is 
mainly in the range of 9 kPa and 19 kPa while the friction 
angle is mainly in the range of 20° to 31°. The number of 
failed samples between 6 m and 8 m becomes smaller 
comparing with that between 4 m and 6 m, accounting for 
5.17% with respect to total samples. This is mainly because 
that the failed samples with larger runout distance are far 
away from the sample with mean values, hence have the 
smaller occurrence probability. It should be noted that 
there is no failed samples between 0 m and 2 m. This 
phenomenon is mainly induced by computational errors 
between FLAC2D and MPM, that the stable samples with 
the FOS close to 1 when calculated via FLAC2D have 
triggered the displacement of the slope when calculated via 
MPM. 

According to the analysis above, it can be found that 
the number of failed samples firstly increases and then 
decreases when the runout distance increases. To clearly 
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illustrate this law, Fig. 7 shows the histogram of the runout 
distance of all samples. As can be seen from this figure, for 
the failed samples, the normalized frequency indeed firstly 
increases and then decreases when the runout distance 
increases and the most failed samples also fall between 4 
m and 6 m. When the runout distance is larger than 12 m, 
the normalized frequency can be ignored. 

 
Figure 6. Distribution of failed samples between 2 m and 4 m; 4 

m and 6 m; and 6 m and 8 m. 

 
Figure 7. Histogram of the runout distance of all samples. 

4.2 Exceedance probability of the runout distance 
Based on the obtained histogram of the runout distance, the 
exceedance probability of the runout distance can be also 
conveniently calculated, as shown in Fig. 8. As can be seen 
from Fig. 8, when the runout distance increases, the 
exceedance probability firstly remains stable and then 
decreases with a fast rate, which is because that the 
frequency of the runout distance between 0 m and 4 m is 
small and the frequency of runout distance between 4 m 
and 6 m is the largest. For the more than 6 m runout 
distance range, the decrease trend of the exceedance 
probability slows down, which is due to the decreasing of 
the frequency with the increasing of the runout distance. 
The chance of runout distance smaller than 6 m is about 
90% and the chance of runout distance smaller than 11 m 
is about 99%. The obtained exceedance probability 
provides a quantitative tool for decision making in 
engineering practice of slope failure hazard analysis. For 
example, if there is a building located at 15 m away from 

slope toe, the probability that sliding mass affects this 
building is less than 0.1 %. 

 
Figure 8. Exceedance probability of the runout distance. 

5. Conclusions 
This study develops a new efficient assessment framework 
based on RSM and MPM for probabilistic analysis of 
runout distance of slope failure. A 2D homogeneous clay 
slope with uncertain strength parameters is studied using 
the proposed framework. The advanced classical RSM is 
suggested to identify the failure domain, and the runout 
distance of failed samples are analyzed based on MPM. 
Then, the kriging-based RSM is used to develop the 
relationship between the runout distance and the strength 
parameters in the failure domain. Based on the two RSMs, 
this method significantly reduces the number of samples 
that required for large deformation numerical simulation, 
which provides a computationally efficient tool to obtain 
the probable runout distance of slope failure associated 
with uncertainties. Through the proposed framework, the 
frequency and the exceedance probability of the runout 
distance can be conveniently derived. In this case, for the 
failed samples, the chance of the runout distance firstly 
increases and then decreases as the runout distance 
increases. The probability of the runout distance smaller 
than 6 m is about 90% and the probability of the runout 
distance smaller than 11 m is about 99%. It should be noted 
that the applicability of the proposed method needs two 
numerical simulation tools where one is to calculate FOS 
and another is to calculate runout distance, thus analysis 
results will be significantly affected by the calculation 
errors between the two tools. In the future studies, the 
relationship between FOS and runout distance obtained 
based on two different tools or more accurate codes of 
MPM should be developed to reduce the calculation errors. 
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