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Abstract: Landslide susceptibility analysis is an essential part of landslide risk assessment and hazard mitigation. A high-resolution 
digital terrain model (DTM) and its derivatives can precisely capture and characterize the ground features of historical landslide 
locations. Also, machine learning has been proven to be a promising tool in landslide susceptibility analysis. In this paper, a machine 
learning based case study at Lantau Island, Hong Kong is performed to investigate the feasibility of landslide susceptibility analysis 
utilizing DTM and rainfall data. A DTM with a resolution of 2 m, natural terrain landslide records and hourly rainfall data of Hong 
Kong from 1984 to 2010 are used in this study. Results of this study reveal excellent capability of machine learning approaches in 
landslide susceptibility mapping based on DTM and rainfall data. The susceptibility map produced in this study can be an important 
tool for identifying zones where landslide mitigation measures are needed.  
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1. Introduction 
Landslide susceptibility analysis provides indispensable 
references for assessing landslide risk and designing 
hazard mitigation measures (Fell et al., 2008; van Westen 
et al., 2008; Reichenbach et al., 2018). Hong Kong, as a 
coastal city, is frequently affected by severe weather 
phenomena like typhoons and strong rainstorms, making 
it highly susceptible to natural terrain landslides (Gao et 
al., 2017a, b). From 1984 to 2010, the Geotechnical 
Engineering Office (GEO) of the Hong Kong SAR 
interpreted 11,382 natural terrain landslides from annual 
aerial photographs of Hong Kong (GEO, 1996; 
Maunsell-Fugro Joint Venture and GEO, 2007), of which 
62% are open hillslope landslides, 37% are channelized 
debris flows and the remaining 1% are costal landslides.  
Several pioneering researchers and engineers have 
investigated the susceptibility pattern of Hong Kong at 
different scales. Evans and King (1998) produced the first 
territory-wide landslide map in Hong Kong based on a 
correlation of landslide susceptibility with slope gradient 
and geology. Dai and Lee (2001) used logistic regression 
and geographic information system (GIS) to assess the 
susceptibility of Lantau Island of Hong Kong. Lee et al. 
(2001) investigated the feasibility of applying artificial 
neural network (ANN) to classify landslide susceptible 
and non-susceptible areas in the middle part of Lantau 
Island. Chau and Chan (2005) studied the regional bias of 
the landslide data in generating the landslide 
susceptibility of Hong Kong Island using logistic 
regression. Yao et al. (2008) utilized support vector 
machine (SVM) in evaluating the landslide susceptibility 

in a subarea of New Territories. Wang et al. (2019) 
proposed a novel physically-based landslide susceptibility 
updating method with a case study in western Lantau 
Island. Besides, with the advent of modern remote 
sensing and machine learning techniques, high-resolution 
digital terrain model (DTM) and modern machine 
learning algorithms become available and have been 
proven to be powerful tools in landslide studies (Li et al., 
2018; Li et al., 2019; Wang and Zhang, 2019; Wang et al., 
2020; Xiao and Zhang, 2020). High-resolution DTM 
carries the capability of charactering precious ground 
features of both landslide prone and non-prone areas. The 
application of high-precision DTM in landslide 
susceptibility analysis has not been fully explored inside 
Hong Kong. Hence, this study takes the largest outlying 
island of Hong Kong as the study area and aims to (a) 
investigate the robustness of applying only topographic 
and rainfall data to assess landslide susceptibility using 
machine learning and (b) compare the performance of 
different machine learning approaches and produce a 
susceptibility map of Lantau Island. 
 

2. Data and methods 

2.1 Data 
The study area is the whole Lantau Island and the 
boundary is shown in Figure 1. Lantau Island is the 
largest outlying island at southwestern Hong Kong, 
covering a total area of 147 km2. The data for this study 
are composed of three parts: landslide inventory from 
1984 to 2010 (Figure 1), 2-m resolution DTM based on 
Light Detection and Ranging (Lidar) product of 2010 and 
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hourly rainfall data from 1984 to 2010. First, the landslide 
inventory data consists of 4616 natural terrain landslides 
which are extracted from the Enhanced Natural Terrain 
Landslide Inventory of GEO. All landslide records are 
classified into three categories according to their ground 
characteristics; namely, open hillslope landslides (2385 
cases), channelized debris flow (2192 cases) and coastal 
landslides (39 cases). 

Figure 1. Spatial distribution of landslide incidents of Hong 
Kong from 1984 to 2010. 

In addition, the yearly distribution of landslide incidents 
in Lantau Island is examined in Figure 2. It can be found 
that 1992, 1993, 1999 and 2008 are the four years which 
have the highest numbers of natural terrain landslide 
events. 

Figure 2. Yearly distribution of landslide incidents in Lantau 
Island. 

Second, the DTM utilized in this study is resampled to a 
resolution of 2 m based on the original product of 
air-borne Lidar scan conducted from December 2010 to 
January 2011. As shown in Figure 3 (a-d), apart form the 
DTM, three more data layers are also produced with the 
GIS platform, namely, slope gradient (SG), aspect and 
curvature. These three predictors have been proven to be 
important factors related to landslide hazard (van Westen 
et al., 2008). 
Third, the hourly rainfall data are provided by the Hong 
Kong Observatory (HKO) and GEO. With 50 rain gauges 
of HKO and 91 rain gauges of GEO, the total 141 rain 
gauges produced comprehensive historical rainfall data 
over the entire Hong Kong. In order to consider the worst 
historical rainfall conditions, the rainfall data in this study 

is transformed to the form of 4-hour (4h) and 24-hour 
(24h) maximum rolling rainfall (MRR). The 4h and 24h 
MRR of each rain gauge is first calculated with the 
original hourly rainfall data, then the inverse distance 
weighting approach is used to interpolate the rainfall for 
the entire Lantau Island. The detailed distributions of 4h 
and 24h MRR are presented in Figure 3 (e and f). It can 
be found that areas with the highest 4h MRR are located 
in the western and middle part of Lantau Island. The 
highest areas for the 24h MRR are similar with those for 
the 4h MRR but the middle peak has moved slightly 
towards the north. 
In total, six data layers are generated for the susceptibility 
analysis of this study; namely, DTM, SG, aspect, 
curvature, 4h MRR and 24h MRR. The six data layers 
can then form a data cube, as each data layer consists of 
12,637 x 9737 cells with each cell representing an area of 
2 x 2 m2, the data cube’s dimensions are 12,637 x 9737 x 
6. 
Then, landslide and non-landslide samples can then be 
extracted form the data cube for learning. For landslide 
samples, the landslide cells are first obtained by mapping 
the landslides on the data layer and then finding which 
cells contains landslides. If a cell contains a landslide, it 
is then defined as a landslide cell. Then, the data of the 
landslide cell and its neighboring region from the same 
spatial location in the data cube constitute a landslide data 
cube sample (H x H x 6, H is the side length). Similarly, 
non-landslide data cube samples are extracted from areas 
with no landslide records. To determine the side length H, 
the length records of landslide source area are 
summarized in Table 1, a value of 30 m is chosen which 
could accommodates 99.28% of landslide incidents. 

Table 1. Summary of length of landslide sources. 
Length intervals of 

landslide source area (m) 
Number Proportion 

0 to 10 3599 77.97% 
10 to 20 877 19.00% 
20 to 30 107 2.32% 
30 to 117 33 0.72% 

 
Overall, 4589 landslide data cube samples are obtained, 
and the same number of non-landslide samples are also 
extracted. Very few costal landslides have a distance less 
than 30 m from the coastline, so these records are 
excluded from the databases. By combining both, a 
dataset for machine learning is constructed, the dataset is 
then normalized to resolve the inconsistent data layer 
magnitude problem.  

2.2 Machine learning models 
Three machine learning algorithms are used in this case 
study; namely, support vector machine (SVM) with 
Gaussian kernel, logistic regression (LR), and random 
forest (RF). The three machine learning algorithms have 
been widely adopted and accepted in geotechnical 
applications and landslide susceptibility studies. A 5-fold 
cross validation method is used for assessing the overall 
performance of the trained machine learning models. 
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2.3 Model evaluation 
In this study, the problem is treated as a binary 
classification task to classify a sample into landslide 
(positive) and non-landslide (negative) categories. The 
probability of a sample being positive is taken as its 
susceptibility, ranging from 0 to 1. The accuracy of a 
model is given by Eq. 1: 

( ) / ( )Accuracy TP TN TP FP TN FN= + + + +  (1) 

where TP represents true positive predictions, which 
means the prediction and sample true category are both 
positive; FP represents the false positive predictions, 
indicating that the prediction is positive but the sample is 
indeed a negative one; TN are true negative predictions 
and FN are false negative predictions. In addition, a 
receiver and operating characteristic (ROC) curve is 
another popular machine learning evaluation tool. By 
plotting the true positive rate (TPR, Eq. 2) against the 
false positive rate (FPR, Eq. 3) at different threshold 

Figure 3. Data layers of the study area: (a) digital terrain model (DTM); (b) slope gradient (SG); (c) aspect; (d) curvature; 

(e) 4-hour maximum rolling rainfall (4h MRR) and (f) 24-hour maximum rolling rainfall (24h MRR) 
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settings, the ROC curve is able to describe relative 
trade-offs between true positive and false positive of the 
classifier. From the ROC curve, the area under the curve 
(AUC) can be calculated, which is equal to the 
probability that the classifier will give a higher rank to a 
positive sample compared with a negative one, where 
both samples are randomly chosen. 

= / ( )TPR TP TP FN+            (2) 

/ ( )FPR FP TN FP= +           (3) 

3. Results 

3.1 Performance of machine learning models 
The performance of the three trained machine learning 
models are summarized in Table 2 with the 
corresponding ROC curves presented in Figure 4. The 
SVM model with gaussian kernel has the highest 
accuracy, reaching 86.4%, followed by the RF, 85.5%, 
and LR, 82.2%. According to the results of AUC, the 
same ranking can be observed: 0.94 for SVM, 0.92 for 
RF and 0.89 for LR. 

Table 2. Performance summary of machine learning models. 
Machine learning 

models 
5-fold cross 

validation accuracy 
Area under 
the curve 

SVM 86.4% 0.94 
LR 82.2% 0.89 
RF 85.5% 0.92 

Figure 4. ROC curves for the three trained machine learning 
models 

3.2 Landslide susceptibility map of Lantau Island 
As the Gaussian SVM has the highest performance in 
classifying landslide and non-landslide samples, it is then 
used to produce the landslide susceptibility map of the 
entire Lantau Island. The SVM predicted susceptibility 
map is shown in Figure 5. With reference to Dai et al. 
(2001), the probability of landside occurrence given by 
the model is taken as the landslide susceptibility, ranging 
from 0 to 1. Then, the spatial landslide susceptibility is 
divided into five classes: (a) very low (0 to 0.1), (b) low 
(0.1 to 0.3), (c) moderate (0.3 to 0.55), (d) high (0.55 to 
0.75) and very high (over 0.75). For historical landslide 
incidents, 92.42% incidents are located in “high” or 

“very high” area, indicating that the confidence level of 
SVM predicted landslide susceptibility map is high. 
 

Figure 5. Landslide susceptibility map produced by trained 
SVM model 

4. Summary and conclusions 
This study investigated the performance of three machine 
learning models (i.e., SVM, LR and RF) in the task of 
landslide susceptibility assessment. The SVM model with 
Gaussian kernel outperforms the other two in the 
classification task, achieving an accuracy of 86.4%. Then, 
the SVM model is used to produce the landslide 
susceptibility map of Lantau Island. 92.42% of landslide 
area is successfully classified into “high” or “very high” 
area of susceptibility, proving the robustness of 
susceptibility analysis utilizing only DTM and rainfall 
data. The susceptibility map of Lantau Island produced by 
this study can serve as an important tool for identifying 
zones where landslide mitigation measures may be 
needed. 
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