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Abstract: Uncertainty exists in geomaterials at contact, microstructural and continuum scales. To develop predictive, robust 

multi-scale models for geotechnical problems, the new challenge is to allow for the propagation of model/parameter 

uncertainty (conditioned on laboratory/field measurements) between micro and macro scales. We aim to first quantify these 

uncertainties using an iterative Bayesian filtering framework. The framework utilizes the recursive Bayes' rule to quantify the 

evolution of parameter uncertainties over time, and the nonparametric Gaussian mixture model to iteratively resample 

parameter space. Using the iteratively trained mixture to guide resampling, model evaluations are allocated asymptotically 

close to posterior modes, thus greatly reducing the computation cost. In this paper, we first respectively quantify the parameter 

uncertainty of models that are discrete and continuum in nature, namely a discrete particle and an elasto-plastic model. We 

then link the two models by conditioning their uncertainties on the same stress-strain response, thereby revealing micro-macro 

parameter correlations and their uncertainties. The micro-macro correlations obtained can be either general for any granular 

materials that share similar polydispersity or conditioned on the laboratory data of specific ones.  

Keywords: Uncertainty quantification, Bayesian filtering, Discrete element modeling, constitutive modeling, Micro-macro 

parameter correlations

1. Introduction
Geomaterials are discontinuous in nature and can behave
solid or fluid-like, depending on their internal states and
external loads (Jiang and Liu 2014). Recent advances in
computing power and material modeling have led to
several families of numerical and theoretical models
capable of describing complex mechanical behaviors of
geomaterials (Guo and Zhao 2016; Li and Dafalias 2012).
However, a common issue preventing modern
geomechnaical models from being practical and robust in
engineering applications is the uncertainty associated with
material parameters (Hicks et al. 2019). In most cases, the
ultimate use of these models becomes tedious trial-and-
error fitting against experimental data, without considering
uncertainty propagation to larger scales.

As far as constitutive behaviors are concerned, one 
could use a bottom-up, namely a micromechanical 
approach, by either formulating the evolution of 
force/contact networks based on statistical mechanics or 
directly simulating individual particles, so that the number 
of mechanical parameters is at the minimum. However, 
quantification of particle properties is highly uncertain as 
the measurements require high precision. 

Alternatively, a top-down approach, starting from 
macroscopic quantities, e.g., stress, strains, energies, etc., 
can have the same level of predictability as 
micromechanical approaches (Jefferies and Shuttle 2002; 
Gao and Zhao 2015), with some parameters directly 
measurable from in-situ/laboratory experiments. These 
models are computationally more efficient given their 
continuum nature. Nevertheless, the number of parameters 
is large, which makes the model structure (e.g., 
interdependence between parameters) unclear, causing 
great model uncertainty. Moreover, most top-down models 
have parameters lack of physical explanations. Some tried 
to justify their model as the macroscopic representation of 
microscopic states (Jiang and Liu 2016) but a direct link 

between micro and macro parameters is rarely provided, 
except for ideal particle systems. Furthermore, continuum 
models have strict assumptions compared with particle 
models: critical state soil mechanics cannot work for fast 
granular flows, whereas discrete particle models can 
capture both solid- and fluid-like behavior. 

It is possible and in fact appealing to derive continuum 
models of stress-strain relations following rigorously 
formulated evolution laws for microstructures. However, 
such elegant approaches do not work for realist particle 
systems, in terms of void ratio, polydispersity and inertial 
effects. In this work, we seek a statistical and later a 
Bayesian approach to link particle and continuum scale 
models via their parameters selected such that the stress 
and strain predictions are identical. The idea is to infer 
parameter correlations for a selected pair of micro and 
macro models, conditioned on all possible stress-strain 
behavior of a certain geomaterial like sand. This task is 
only possible with efficient Bayesian uncertainty 
quantification and propagation (UQ+P) or optimization 
tools that can accomplish the inference with small numbers 
of model evaluations. 

We use an iterative Bayesian filtering framework 
(Cheng et al. 2019) to quantify parameter uncertainty at 
both scales. At the particle scale, the discrete element 
method (DEM) is used to capture the collective behavior 
of particle assemblies by tracking the kinematics of 
individual particles. At the continuum scale, we use the 
NorSand model which is one of classical critical state soil 
mechanics (CSSM) models available in most commercial 
software. Bayesian inference and machine learning models 
are respectively employed to quantify and model the 
probability distribution of parameters, conditioned on 
some reference data. This conditional probability 
distribution (posterior) is recursively updated in time. 
Before a certain level of accuracy is reached, the Bayesian 
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updating process is repeated with samples redrawn from a 
new proposal distribution. 

The remainder of this paper is organized as follows. We 
first summarize the iterative Bayesian framework in Sec. 
2. We then quantify the parameter uncertainty of the DEM 
and the NorSand models in Secs. 3 and 4, respectively. 
Within the same framework, we link the two models by 
conditioning their uncertainties on the same stress-strain 
response, thereby revealing micro-macro parameter 
correlations and their uncertainties (Sec. 5). The micro-
macro correlations are either kept general or conditioned 
on experimental measurements of a geomaterial. 
Conclusions are drawn in Sec. 6. 

2. Iterative Bayesian filtering 
The joint posterior probability distribution function (PDF) 
of model states and parameters are approximated by 
sequential Monte Carlo methods (van Leeuwen 2010) 
which is necessary for time-dependent inverse problems. 
To efficiently approximate the posterior PDF, we first 
sample a parameter space uniformly using quasi-random 
numbers. In iterative Bayesian filtering, new samples are 
drawn from a non-parametric Gaussian mixture model 
trained with posterior probabilities obtained from the 
previous iteration. The algorithm implemented in an open-
source code GrainLearning (Cheng et al. 2019) allows to 
iteratively sample near potential posterior modes, until 
posterior expectations converge. Here, only key ideas and 
variables will be introduced for brevity. 

A known issue with sequential Monte Carlo methods is 
weight degeneracy, i.e., all weights become zero except for 
one. GrainLearning circumvents this issue by reinitializing 
the ensemble (and weights) with new parameter samples 
drawn from a proposal density and then continuum 
Bayesian updating again in time. In this work, only the first 
iteration uses a non-informative proposal. Samples in all 
iterations afterwards are drawn from the proposal density, 
i.e., the nonparametric Gaussian mixture trained with 
weights that approximate the previous posterior PDF. 
Figure 1 shows the training of the Gaussian mixture model 
and the resampling scheme.  
 

 

Figure 1 (a) Initial samples, (b) A mixture model trained with 

weights on the samples, (c) resampling. 

3. Uncertainty quantification for the DEM model 
DEM represents geomaterials as packings of solid particles 
with simplified geometries and vanishingly small 
interparticle overlaps. Governed by springs, dashpots and 
sliders upon collision, the kinematics of the particles are 
updated within the explicit time integration scheme, based 
upon the net forces and moments resulting from particle 

interactions. To mimic the effect of surface roughness, 
rolling/twisting stiffness is typically adopted in addition to 
normal and tangential stiffnesses. Both interparticle 
tangential forces and contact moments are bounded by 
Coulomb type yield criteria. 

Here, the Hertz-Mindlin contact law derived from the 
elasticity of two contacting spheres is used. Five micro 
parameters, namely contact-level Young's modulus 𝐸𝑐 
and Poisson’s ratio 𝜈𝑐, rolling stiffness 𝑘𝑟 and rolling and 
sliding friction 𝜇𝑟, and 𝜇𝑠, are kept unknown, because of 
their relevance to quasi-static responses. Following the 
random packing generation procedure in (Cheng et al. 
2018), the particle assembly in periodic boundary 
condition was created almost stress-free (null overlaps), 
which results in a maximum void ratio 𝑒𝑚𝑎𝑥 ≈ 0.68. Note 
that 𝐸𝑐 is very high at this stage in order to ensure very 
small overlaps during the packing generation stage. 

For the DEM model, 𝜣 = {𝐸𝑐 , ν𝑐 , 𝑘𝑟 , 𝜇𝑟 , 𝜇𝑠}  and the 
model predictions 𝒙 consists of the ratio of deviatoric to 
mean stress 𝑞/𝑝 and the volumetric strain 𝜀𝑣, comparable 
to their counterparts in 𝒚 measured from drained triaxial 
compression experiments on Toyoura sand. The axial 
strain 𝜀𝑎  is not included because both experiments and 
simulations are controlled by 𝜀𝑎 . We consider three 
confining pressures σ𝑐 = 0.5, 1.0 and 2.0 MPa to examine 
the stress dependence of the DEM model. Therefore, both 
𝒙𝒕  and 𝒚𝒕  in total have 6 elements at time 𝑡, i.e., 𝑞/𝑝 
and 𝜀𝑣 for each confining pressure. 

GrainLearning provides not only Bayesian UQ for the 
parameters, but the ensemble prediction for macroscopic 
responses as well (ensemble predictions are probabilistic, 
with weighted averages and standard deviations). The 
ensemble predictions of 𝑞/𝑝  and 𝜀𝑣  and the 
experimental data are compared in Figure 2. The shaded 
area shows the model uncertainty resulting from a 
normalized covariance parameter of 0.1. It appears the 
agreement between numerical and experimental results 
becomes worse as 𝜎𝑐 increases. This is because particle 
crushing, to some extent, occurred in the experiments but 
could not be modeled in the simulations. It is worthy noting 
that all micro parameters are found to be independent with 
each other (see Figure 9 in Cheng et al. 2018). 𝐸𝑐 and 𝜇𝑠 
are slightly correlated, because of their joint influence on 
the microstructure. 

 

Figure 2 Comparison of ensemble predictions of the DEM 

model and experimental result 

5. Uncertain quantification for the NorSand model 
The NorSand model is one of the first CSSM models that 
use the state parameter 𝜓 = 𝑒 − 𝑒𝑐 to capture the effect 
of void ratio and/or confining pressure on the constitutive 
behavior of particulate materials (Jefferies and Shuttle 
2002). Starting from the stress-dilatancy rule 𝐷𝑝 =

https://github.com/chyalexcheng/grainLearning/tree/master/grainLearning
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(𝑀 − η)/(1 − 𝑁), NorSand introduces the concept of the 
image pressure and its maximum 𝑝𝑖  and 𝑝𝑖,𝑚𝑎𝑥 . The 
latter evolves with the current 𝑝  and 𝜓 , and defines a 
bounding surface to which the yield surface expands or 
shrink, depending on whether a limiting dilatancy is 
reached. The role of 𝑝𝑖 is like 𝑝𝑐 in the Cam-clay model 
but it allows for predicting softening and dilatancy in 
conjunction with 𝜓 . Most NorSand parameters can be 
determined from triaxial tests. However, in this work, we 
set all parameters free to first examine the model structure 
from the perspective of parameter interdependence. We 
summarize eight unknown parameters below in Table 1, 
together with the fixed ones (𝑏 and 𝜉) determined directly 
from our DEM data.  

Table 1 NorSand parameters categorized in terms of elasticity, 

plasticity and critical state. 

Elasticity 
(𝐺 = 𝐺0𝑝

𝑏) 
Critical state line 
(𝑒𝑐 = 𝛤 − (𝜆/𝑝𝑎)

𝜉) 
Plasticity 

𝐺0 𝛤, 𝜆, 𝑀𝑡𝑐 χ, 𝑁, 𝐻0, 𝐻𝑎 

We choose to condition the UQ for NorSand on the 
DEM data created with 𝐸𝑐 = 8.3e9, ν𝑐 = 0.04, 𝑘𝑟 =
0.358, 𝜇𝑟 = 0.476  and 𝜇𝑠 =  25 because we aim to (1) 
compare the capability of NorSand with DEM, and (2) 
identify micro-macro parameter correlations conditioned 
on the same macroscopic response. Therefore, like in Sec. 
3, 𝒙𝒕 for NorSand has 6 elements at time 𝑡, i.e., 𝑞/𝑝 and 
𝜀𝑣 for three confining pressures. One of the DEM model 
evaluations from Sec. 3 is utilized as 𝒚𝑡 for NorSand UQ. 
Except for 𝒙𝒕, 𝒚𝑡 and the parameters, everything else is 
the same as in Sec. 3. Thanks to the efficiency brought 
about by the continuum model, we now can test the ability 
of our iterative Bayesian filtering in high dimensionalities 
which was not possible with DEM. 
 

 

Figure 3 NorSand parameters resampled at various iterations of 

Bayesian filtering. 

The iterations are continued until the normalized 
covariance parameter is smaller than 0.01. Figure 3 shows 
the parameter samples converging to some trends, either 
correlated (e.g., 𝐻0 and 𝐻𝑎) or uncorrelated (𝑀𝑡𝑐, 𝐺0), as 

the number of iterations increases. These (in)dependences 
are characterized by the Gaussian mixture model and 
utilized for resampling. One of the most significant 
findings is the uncertainty in few parameters, e.g., 𝑀𝑡𝑐, is 
very low, which means they are unique parametrizations of 
this particulate material. On the contrary, the uncertainty 
in e.g., 𝐺0 is large, which is not surprising because of its 
secondary role in hardening and softening. Evidently, most 
of the parameters are not uniquely identifiable, e.g., 𝐻0 
and 𝐻𝑎  highly correlated; there is room for reducing 
dimensionality and further simplification of the model. 
Figure 4 shows the ensemble prediction from NorSand in 
good agreement with the DEM data. 

 

Figure 4 Comparison of ensemble predictions of the NorSand 

model and experimental result 

6. Uncertainty propagation between micro and macro 

parameters 
Secs. 3 and 4 respectively demonstrate the ability of 
GrainLearning in quantifying parameter uncertainties in 
geomechanical models that are distinctive in their scales. 
The two models are equally accurate in predicting the 
sand-like behavior. Now the question arises as how the 
DEM (micro) parameters and the NorSand (macro) 
parameters are linked, either in a general, unbiased sense 
or specifically for a certain geomaterial. 

Our approach to obtaining general, unbiased micro-
macro parameter correlations is to repeat the UQ for 
NorSand as in Sec. 4 using DEM data generated from 
quasi-random micro parameters, i.e., log10𝐸𝑐 ∈ [7,10], 𝜈𝑐 ∈
[0,0.5], 𝑘𝑟 ∈ [0,1], 𝜇𝑟 ∈ [0,1]  and 𝜇𝑠 ∈ [10,60] . A total 
number of 714 DEM simulations of triaxial compression 
(σ𝑐 = 0.5, 1.0 and 2.0 MPa) as in Sec. 3 were performed. 
We then repeat the UQ for NorSand against each set of 
DEM data, keeping the normalized covariance parameter 
smaller than 0.01. The resulting micro-macro correlations 
are shown in Figure 5, with circles and error bars 
representing the posterior expectations and variances, 
respectively. The correlations with 𝜈𝑐  are omitted 
because of their lesser significance.  

Figure 5 clearly shows that 𝐺0 is almost proportional 
to 𝐸𝑐 . For the critical state parameters, 𝑀𝑡𝑐  is uniquely 
identifiable (invisible error bars) and has a strong 
correlation with 𝑘𝑟  and 𝜇𝑠; Γ and 𝜆 are dominated by 
𝜇𝑠 and 𝐸𝑐 respectively. For the plasticity parameters, 𝑁 
and 𝜒  seems to be governed by 𝜇𝑠  only, whereas the 
plastic hardening coefficients 𝐻0 and 𝐻𝑎 are collectively 
controlled by 𝑘𝑟, 𝜇𝑟 and 𝜇𝑠.
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Figure 5 Correlations between macro and micro parameters (circles) and their uncertainty (error bars). 

Table 2 Regression coefficient using standardized micro and macro parameter values and their associated weights 

 const  𝐸𝑐 𝑘𝑟 𝜇𝑟  𝜇𝑠 𝐸𝑐
2 𝐸𝑐𝑘𝑟 𝐸𝑐𝜇𝑟 𝐸𝑐𝜇𝑠 𝑘𝑟

2
 𝑘𝑟𝜇𝑟 𝑘𝑟𝜇𝑠 𝜇𝑟

2 𝜇𝑠𝜇𝑟 𝜇𝑠
2 

𝐺0 -0.1090 0.8669 0.0249 0.0147 -0.0047 0.1773 -0.0334 0.0081 -0.0839 -0.0104 0.0004 0.0365 -0.0066 0.0261 0.0719 

𝑀𝑡𝑐 -0.2713 -0.3199 0.5138 0.0685 0.8382 0.0555 -0.0088 -0.0166 -0.1496 -0.1552 0.0417 0.1416 -0.0848 0.0293 -0.1775 

𝑁 -0.2967 -0.3588 0.0842 -0.2341 0.8933 0.0707 -0.0364 -0.0221 -0.1149 0.1280 -0.0668 0.0439 0.1810 -0.0469 -0.0172 

𝛤 -0.4565 -0.1489 0.2416 0.0834 0.9041 0.0515 -0.0050 0.0438 -0.0478 -0.1281 0.0372 0.0807 -0.0666 0.0655 -0.2412 

𝜆 -0.4445 -1.0323 0.0171 0.0355 0.0643 0.3607 -0.0003 0.0167 -0.0348 -0.0234 0.0159 0.0758 -0.0298 -0.0071 -0.0787 

Χ -0.0288 -0.0696 0.1501 0.0911 0.6515 -0.0273 0.0305 -0.0992 0.0723 -0.1384 0.0452 0.1713 -0.1327 -0.0446 -0.1042 

𝐻0 -0.2670 0.0937 -0.3476 -0.2520 0.3221 -0.0299 -0.0793 -0.0780 0.0625 0.2729 -0.1044 -0.2547 0.2796 -0.1413 0.0345 

𝐻𝑎 0.6291 -0.0143 -0.0645 0.3743 -0.2784 -0.0946 0.0328 -0.0347 0.1839 -0.2144 0.1010 0.0904 -0.2617 0.1247 0.0813 

 

Using the ensemble and weights relevant to the micro 
and macro parameters, one can build regression models 
and obtain robust mapping between the micro to macro 
parameters. Here, we simply use quadratic regression as an 
initial attempt. The data are standardized such that the 
means are equal to zero and variances one. Note that the 

data of the macro parameters carry weight conditioned to 
the micro parameters, which makes the regression more 
robust. The regression coefficients are given in Table 2. 

Although not shown here, it is straight forward to 
condition the micro-macro correlations and their 
uncertainties on experimental data, through the importance 
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weights on the DEM data. The micro-macro uncertainty 
map will degenerate into the posterior distribution that 
corresponds to the uncertainty in the experimental data. 

7. Conclusions 
In this work, we demonstrate the capability of iterative 
Bayesian filtering in uncertainty quantification for a 
discrete particle (DEM) and an elasto-plastic (NorSand) 
model. By training nonparametric Gaussian mixtures 
repeatedly with statistics from the previous iteration, the 
(re)sampling algorithm allows to sample asymptotically 
close to the modes of the probability distribution of model 
parameters, conditioned on some reference data. By 
assuming a normalized variance in the reference data, 
parameter uncertainties are efficiently quantified for both 
models. From the correlation structures, we observe that 
the micro parameters are mostly independent of each other, 
whereas some macro-macro parameters are strongly 
correlated, especially the plasticity ones. 

Because of the efficiency and robustness of our 
Bayesian tool, we could massively apply the same 
technique to find the NorSand parameters (including their 
uncertainty) which reproduce an ensemble of DEM data, 
created from quasi-randomly sampled DEM parameters. 
Future work involves (1) principle component analyses of 
the micro-macro parameter correlation to reduce 
dimensionality, (2) selecting plausible pairs of micro and 
macro models that have the same precision, and (3) 
deploying them in multi-scale simulations such that the 
material behavior is consistent in the two-model coupled 
overlapping domain. 
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