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Abstract: Finite element models (FEMs) have been widely used for modeling and analyzing structures. However, they are usually 

very complicated for full-scale structures, so it is inefficient to use FEMs when instant analyses and predictions of structural responses 

are required in practice. Considering that autoregressive (AR) models have a simple mathematical form, this paper uses a vector AR 

(VAR) model to model measured responses. In the meantime, theoretical investigations show that the equation of motion of a structure 

can be written as a VAR model, so structural dynamic properties can be captured by a VAR model. Because a large amount of data is 

available nowadays, identification of a VAR model is treated as a Bayesian learning problem, where the posterior PDF of uncertain 

VAR parameters is learned from measured data. With the novel formulations, the most probable values (MPVs) and uncertainties of 

VAR parameters can be computed efficiently. The new formulations also enable modal parameters and their uncertainties to be quickly 

extracted from the identified VAR model. The proposed method tackles the algebraically involved derivation to provide a 

mathematically manageable algorithm, which paves the way to understand the uncertainties in complex dynamic systems, and offers 

the opportunity for rigorous risk analysis and decision making. 
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1. Introduction 
Due to the development of sensing technology, a dense 
network of sensors is instrumented on large-scale 
buildings, bridges and tunnels, so a huge amount of data is 
taken. This provides us much information to understand 
practical structural behaviors under operational conditions. 
In the meantime, we also face the challenge of effectively 
extracting this information from a huge amount of data. 
The problem comes down to system identification, i.e., 
identifying a mathematical model of a structural system 
using measured data. The first issue is to construct a 
mathematical model for a structural system. Using FEMs 
is a usual and reasonable choice. However, detailed 
modeling by FEMs requires large computational power. 
When multiple evaluations of FEMs are conducted for 
large-scale structures (e.g., optimization involved in 
identification, or updating models using continuously 
available new data), it is time consuming, and thus FEMs 
may not be suitable for system identification using much 
data in practice. Another issue is that uncertainties always 
exist due to modeling errors and measurement noise. We 
need a theoretical basis to rigorously extract information 
from measured data and quantify uncertainties in a way 
that is consistent with modeling assumptions. 

To address the first issue, instead of using a FEM to 
model a structure by focusing on physical details, we use 
the VAR model to describe measured data directly (Pi and 
Mickleborough 1989, Yang and Lam 2019). The 
advantage of the VAR model is that it has a simple 
mathematical form, and its evaluation can be efficient. 
Moreover, the modal parameters such as natural 
frequencies, damping ratios and mode shapes can be 
extracted from the identified VAR model. These dynamic 
properties are useful for reliability analysis, response 
prediction and damage detection. 

The Bayesian framework (Beck and Katafygiotis 1998, 
Beck 2010) is potential to address the second issue. By 
treating system identification as a Bayesian inference 
problem, the posterior PDF of the VAR model parameters 
is learned from measured data. We consider that the model 
parameters are uncertain due to incomplete information, 
e.g., unmodeled system characteristics by the model, rather 
than treat the model parameters as “random” with inherent 
randomness. The MPVs and posterior uncertainties of the 
VAR parameters can be obtained in closed form. The 
MPVs of modal parameters are then calculated based on 
the MPVs of the VAR parameters. It is shown that using 
the first-order Taylor series expansion, the posterior 
uncertainties of modal parameters can also be obtained 
analytically. The proposed Bayesian approach is efficient 
in identifying high-dimensional systems and at the same 
time quantifying the associated uncertainties.  

2. Posterior PDF of The VAR Parameters 
The VAR model is constructed by writing the current-step 
response in terms of the responses in several previous time 
steps: 

𝐱i = [𝐁1 𝐁2 ⋯ 𝐁n] [

−�̂�i−1

−�̂�i−2

⋮
−�̂�i−n

] + 𝐞i (1) 

where 𝐱𝑖 ∈ 𝑅𝑁𝑑 is the response at the i-th time step; Nd 
is the number of the measured degrees of freedom (DOFs); 
the responses with ∧  represent measured responses; 
{𝐁i ∈ RNd×Nd: i = 1,2,⋯ , n} are the parameter matrices; 
𝐞i ∈ RNd is the model error vector. Eq. (1) can be written 
compactly for all the time steps: 

𝐗 = 𝐔�̂� + 𝐄 (2) 
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where 𝐗 = [𝐱1 𝐱2 ⋯ 𝐱Nt] ; 𝐔 =
[𝐁1 B2 ⋯ 𝐁n] ; �̂� = [�̂�1 �̂�2 ⋯ �̂�Nt] ; �̂�i =
[−�̂�i−1

T −�̂�i−2
T ⋯ −�̂�i−n

T ]T ; 𝐄 =
[𝐞1 𝐞2 ⋯ 𝐞Nt]. 

To derive the posterior PDF of the VAR parameters, it 
is convenient to transform Eq. (2) into a vector form: 

𝐝 = (�̂�T ⊗ 𝐈Nd×Nd
)𝐮 + 𝐠 (3) 

where  

𝐝 = vec(𝐗) (4) 

𝐮 = vec(𝐔) (5) 

𝐠 = vec(𝐄) (6) 

where vec  is the vectorization operator that stack the 
columns of a matrix on top of each other; ⊗ denotes the 
Kronecker product. According to Bayes’ theorem, the 
posterior PDF of 𝐮  conditional on measured data 𝐃  is 
expressed as 

p(𝐮|𝐃) =
p(𝐮)p(𝐃|𝐮)

p(𝐃)
 (7) 

where p(𝐮)  is the prior PDF; p(𝐃|𝐮)  is the likelihood 
function; p(𝐃) is the normalizing constant such that the 
integration of the posterior PDF over the parameter space 
equals unity. To further derive Eq. (7), a stochastic 
embedding is done for the VAR model by assuming that 𝐞i 
follows a Gaussian distribution: 

𝐞i~𝒩(0, σ2𝐈Nd×Nd
) (8) 

where σ2 is the variance of the model error at each time 
step. Moreover, we assume that the prior PDF is a uniform 
PDF, so the posterior PDF is proportional to the likelihood 
function. The detailed derivation for obtaining the MPVs 
of the uncertain model parameters and their posterior 
uncertainties can be found in Yang and Lam 2019. Only a 
brief summarization is provided here. The MPVs of 𝐮 
and σ2  are obtained by maximizing the posterior PDF. 
Putting back the elements of the MPV of 𝐮 to the MPV of 
the VAR model matrices �̂� gives 

�̂� = ∑�̂�i�̂�i
T (∑�̂�i�̂�i

T

i

)

−1

i

 (9) 

The MPV of σ2 is 

σ̂2 =
(vec(𝐗 − �̂��̂�))

T

vec(𝐗 − �̂��̂�)

NdNt
 (10) 

By using the Laplace’s method for asymptotic 
expansion at the MPVs, the posterior uncertainties of �̂� 
and σ̂2 can be obtained by taking the second derivative of 
the natural logarithm of the likelihood function. 

3. The MPVs and Posterior Uncertainties of Modal 

Parameters 
The detailed derivation of the analytical expressions for 
extracting the MPVs and posterior uncertainties of modal 
parameters from the MPVs and posterior uncertainties of 
the VAR parameters has been developed in Yang and Lam 
2019. A brief introduction is given here. It can be shown 
that a structural dynamic system is equivalent to a VAR 
model (Pi and Mickleborough 1989, Yang and Lam 2019), 
and the modal parameters can be extracted from the VAR 
matrices. To do this, Eq. (1) is used to construct a first-
order VAR model as follows 

𝐲i = 𝐅𝐲i−1 + 𝐡i (11) 

where  

𝐲i = [𝐱i−n+1
T 𝐱i−n+2

T ⋯ 𝐱i
T]T (12) 

𝐡i = [𝟎T 𝟎T ⋯ 𝐞i
T]T (13) 

𝐅 =

[
 
 
 
 

𝟎 𝐈 𝟎 ⋯ 𝟎
𝟎 𝟎 𝐈 ⋯ 𝟎
⋮ ⋮ ⋮ ⋮ ⋮
𝟎 𝟎 𝟎 ⋯ 𝐈

−𝐁n −𝐁n−1 ⋯ −𝐁2 −𝐁1]
 
 
 
 

 (14) 

By solving the eigenvalue problem for 𝐅, the eigenvalues 
will give the natural frequencies and damping ratios of the 
corresponding structural dynamic system, and the first Nd 
components of the eigenvectors will give the mode shapes. 

The posterior uncertainties of modal parameters are 
obtained by propagating the posterior uncertainties of the 
VAR parameters. This is done by considering that modal 
parameters are the function of the VAR model parameters. 
Specifically, we need three functions to obtain natural 
frequencies and damping ratios from 𝐅. The first function 
is about solving the eigenvalue problem of 𝐅 to get the 
discrete-time eigenvalues. The second function is about 
transforming the discrete-time eigenvalues to the 
continuous-time eigenvalues. The third function is about 
getting natural frequencies and damping ratios from the 
continuous-time eigenvalues. By applying the first-order 
Taylor series expansion for each function at the MPVs, the 
covariance matrix of one parameter transfers to another by 
pre- and post-multiplying the first derivative of the 
function to the covariance matrix. That is, let αm denote 
the m -th discrete-time eigenvalue, βm  the m -th 
continuous-time eigenvalue, 𝛈m  contain the natural 
frequency and damping ratio of the m-th mode, and 𝐆1, 
𝐆2  and 𝐆3  the three functions, respectively, the 
covariance matrix of 𝐅, 𝐂F and the covariance matrix of 
the m-th mode natural frequency and damping ratio, 𝐂η 
has the following relationship 
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𝐂η =
∂𝐆3

∂βm

∂𝐆2

∂αm

∂𝐆1

∂vec(𝐅)
𝐂F (

∂𝐆1

∂vec(𝐅)
)

T

 

(
∂𝐆2

∂αm
)

T

(
∂𝐆3

∂βm
)

T

 

(15) 

The analytical expression for the covariance matrix has 
been developed (Yang and Lam 2019), so the posterior 
uncertainties of modal parameters can be quantified 
efficiently in practice. 

4. Case Study 
Simulated data of a six-story shear building was used to 
validate the proposed method. The same story mass 
106 kg was chosen for all the stories. The same inter-story 
stiffness 4 × 109 N/m was chosen for all the stories. To 
simulate the measured data for system identification, a 
Gaussian excitation with a constant power spectral density 
(PSD) 19.6 N/√Hz  was applied at each story. The 
acceleration data were simulated for 300 s with sampling 
frequency 256  Hz . A Gaussian noise with PSD 0.1 ×
10−6 g/√Hz was added to the data. 

The acceleration data were used in the VAR model for 
system identification. Following the Bayesian framework, 
the MPVs of the VAR matrices were calculated by Eq. (9). 
Using the MPVs of the VAR matrices, the model-predicted 
acceleration data were obtained and compared against the 
measured ones in Figure 1. It can be seen that the matching 
between the measured and predicted accelerations is good. 
The posterior uncertainties of the MPVs of the VAR model 
can also be calculated using analytical formulations. Due 
to the limited space, they are not shown here. 

The MPVs of the modal parameters of the shear building was 

then calculated by constructing the first-order VAR model (Eq. 

(11)) using the MPVs of the original VAR model, and solving the 

eigenvalue problem for 𝐅 (Eq. (14)). The MPVs of the natural 

frequencies, damping ratios and mode shapes of the six modes 

are summarized in Figure 2. It can be seen that using the VAR 

model with a simple linear form, the vibration patterns of a 

structural dynamic system can be efficiently obtained. The 

posterior uncertainties (standard deviations) of the modal 

parameters were also calculated using the derived analytical 

formulations (see Table 1 and Table 2). These uncertainties are 

helpful for fast robust reliability analysis, risk analysis and 

decision making in practical applications. 

 

Figure 1. Comparison of the measured and predicted 

accelerations. 

 

Figure 2. Identified modal parameters. 
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Table 1. Posterior uncertainties (standard deviations) of 

natural frequencies and damping ratios. 

  f (Hz) ξ 

Mode 1 0.09 0.021 

Mode 2 0.08 0.011 

Mode 3 0.20 0.017 

Mode 4 0.21 0.014 

Mode 5 0.22 0.012 

Table 2. Posterior uncertainties (standard deviations) of 

mode shapes (× 10−5). 

Mode 
1 

Mode 
2 

Mode 
3 

Mode 
4 

Mode 
5 

Mode 
6 

0.47 0.22 2.81 2.83 4.00 0.36 

0.60 0.33 1.75 2.48 4.28 0.48 

0.52 0.26 2.63 3.57 4.80 0.29 

0.31 0.22 4.15 1.84 4.87 0.36 

0.21 0.33 1.71 2.30 4.50 0.48 

0.79 0.62 2.38 2.41 1.78 0.13 

5. Conclusions 
This paper introduces a recently developed Bayesian 
system identification method based on the VAR model. It 
has been shown that the parameters of the system that 
accurately predicts system responses can be easily 
obtained, and the “patterns” of data (in this case modal 
parameters) can also be obtained. The posterior 
uncertainties of the uncertain parameters can be efficiently 
calculated due to the analytical formulations. The 
simulated case study of a six-story shear building validates 
the good performance of the proposed method. The 
proposed method is potential to be applied for system 
identification, robust reliability analysis and risk analysis 
of large-scale structures. 
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