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Abstract: The consideration of imprecise probability in engineering analysis to account for missing, vague or imcomplete data
in the description of model uncertainties is a currently fast growing field of research. Especially probability-boxes (p-boxes) are of
interest in an engineering context since they offer a mathematically simple description of the deep uncertainty, as well as allow for an
intuitive visualisation. In essence, p-boxes are defined via lower and upper bounds on cumulative distribution functions of a variable
quantity whose exact probability distribution is unknown. However, the propagation of p-boxes on quantities of interest towards bounds
on probabilistic measures is numerically still very demanding, and hence is subject of intensive research. In order to maintain an
overview on the available methods, this paper gives a state gives a state-of-the art review for the propagation of p-boxes with a special
focus on structural reliability analysis. Specifically, methods to decouple the so-called ’double loop’, as well as surrogate modelling
methodologies are discussed in detail.
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1. Introduction
Let M represent a function that maps a set of 𝑛𝑥 input
parameters 𝒙 ∈ X ⊆ R𝑛𝑥 , with X a set of feasible input
parameters (e.g., non-negative Young’s moduli or contact
stiffness values), to a set of 𝑛𝑦 output parameters 𝒚 ∈ R𝑛𝑦

via following relationship:

𝒚 = M(𝒙), (1)

where M may represent numerical model that provides a
discretized approximation of the continuum physics that de-
scribe the modelling problem at hand. These models give
an unparalleled insight into the response of the structure
under consideration to a set of predefined loading condi-
tions, and hence, allow for a largely virtualized design op-
timization workflow. However, despite the highly detailed
numerical predictions that can be obtained, these results of-
ten do not achieve a satisfactory level of agreement with
‘reality’, i.e., the actual physical behaviour of the structure
in the effective operational environment. This discrepancy
is caused by epistemic (= lack of knowledge) and aleatory
(= caused by variation) uncertainty in the model. In recent
years, several highly performing methods based on stochas-
tic analysis (Schuëller 2011), Fuzzy set theory and Interval
analysis (Faes and Moens 2019b) have been introduced in lit-
erature to account for these type of uncertainties in the model
parameters 𝒙. Also several authors compared the applicabil-
ity of several of these techniques in several applications, for
instance in the context of Geotechnical engineering (Beer et
al. 2013) or inverse uncertainty quantification for stochastic
dynamics (Broggi et al. 2018; Faes, Broggi, et al. 2019).

A random (i.e., aleatory uncertain) property of a model
is usually modelled by assigning a probability 𝑃 to a set
of possible values the variable parameters, denoted by 𝑿 =
(𝑋1, . . . , 𝑋𝑛𝑥 ), can assume. This is modelled as a joint
cumulative distribution function (CDF) 𝐹𝑿 (𝒙) = 𝑃(𝑋1 ≤
𝑥1, . . . , 𝑋𝑛𝑥 ≤ 𝑥𝑛𝑥 ) for 𝒙 ∈ R𝑛𝑥 ." Moreover, its derivative,
the joint probability density function (PDF) 𝑓𝑿 is also used.
Usually, given 𝑓𝑿 , an analyst is interested in computing the
reliability of the structure they are designing, or rather, its
complement: the probability of failure 𝑝f = 𝑃(𝑔(𝑿) ≤ 0),
with 𝑔 : R𝑛𝑥 → R the so-called performance function that

indicates whether the structure failed or not (𝑔 could be
interpreted as the numerical model M here). In case a crisp
density function 𝑓𝑿 is known, such calculation is performed
by solving following integral equation:

𝑝f =
∫
R𝑛𝑥

𝐼𝑔 (𝒙) 𝑓𝑿 (𝒙) d𝒙, (2)

where 𝐼𝑔 is the indicator function which is 1 in case 𝑔(𝒙) ≤
0, 𝒙 ∈ R𝑛𝑥 , and 0 otherwise. This equation can readily
be solved by asymptotic approximations (Breitung 1989) or
advanced simulation methods such as Subset Simulation (Au
and Beck 2001), Directional Importance Sampling (Misraji
et al. 2020) or the Probability density evolution method (Li
and Chen 2006) in case of stochastic dynamics.

However, in most real-life applications, we only have par-
tial information about these probabilities, leading also to the
presence of epistemic uncertainty. In these cases, it is imper-
ative to expand classical stochastic methods to explicitly take
this additional uncertainty into account following a rigorous
framework. Such framework is given by imprecise proba-
bility theory (Augustin et al. 2014). This class of methods,
rather than assuming a specific probability measure, incor-
porates credal sets of probability measures to fully repre-
sent all sources of uncertainty. However, the application
of the general framework of imprecise probability theory
requires complex mathematical descriptions and methods.
Therefore, simplified imprecise probability models are of-
ten preferable for simpler a utilization and representation.
A popular representative hereof are probability-boxes (p-
boxes) which provide lower and upper bounds on the CDF,
see Section 2. In particular, they are useful for engineering
analysis with CDFs like reliability analysis , see Eq. (2).
Still, computing with p-boxes typically suffer from large
computational expenses due to the aleatoric and epistemic
type of uncertainty that have to be combined into the same
analysis. This paper aims at giving an overview of a selec-
tion of recently introduced approaches for the propagation
of p-boxes. However, by no means it is an all-encompassing
work of the quickly expanding literature on imprecise prob-
abilistic methods.
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2. Probability boxes
2.1. Theoretical background
In this subsection, we consider the case 𝑛𝑥 = 1 for nota-
tional simplicity. This is furthermore warranted since most
engineering literature on the subject, as will be clear from
Section 3, either considers the univariate case of 𝑛𝑥 = 1, or
when 𝑛𝑥 > 1 full independence among all 𝑋𝑖 , 𝑖 = 1, . . . , 𝑛𝑥 ,
where 𝐹𝑿 (𝒙) = 𝐹𝑋1 (𝑥1) · · · 𝐹𝑋𝑛𝑥

(𝑥𝑛𝑥 ), 𝒙 ∈ R𝑛𝑥 holds. As
mentioned above, a p-box can be described by a lower CDF
𝐹𝑋 ∈ F and an upper CDF 𝐹𝑋 ∈ F, where F expresses
the the set of all CDFs on R. They are collected as a
pair

[
𝐹𝑋 , 𝐹𝑋

]
which yields a set of possible CDFs via

𝐹𝑋 (𝑥) ≤ 𝐹𝑋 (𝑥) ≤ 𝐹𝑋 (𝑥), 𝑥 ∈ R. This corresponds to
defining a lower probability 𝑃 and upper probability 𝑃 on
events {𝑋 ≤ 𝑥} = (−∞, 𝑥], i.e., 𝑃(𝑋 ≤ 𝑥) = 𝐹𝑋 (𝑥) and
𝑃(𝑋 ≤ 𝑥) = 𝐹𝑋 (𝑥) for 𝑥 ∈ R, which define a credal set of
probability measures. Via the p-box framework, the epis-
temic uncertainty that comes for example from incomplete
data on 𝐹𝑋 (𝑥) is accounted for by assigning an interval[
𝐹𝑋 (𝑥), 𝐹𝑋 (𝑥)

]
for each value of 𝑥 ∈ R, see (Ferson et al.

2003). In case sufficient high quality information over the
entire range of possible values for 𝑥 is available to the ana-
lyst,

[
𝐹𝑋 (𝑥), 𝐹𝑋 (𝑥)

]
will be a tight interval, and the p-box

will be close to a crisp distribution. On the other hand,
when the information is less informative, the bounds may
become wider to acknowledge weaker confidence in the re-
sults. In case no further assumptions are made concerning
concerning the set of possible CDFs, this type of p-box is
also denoted a distribution-free p-box. Clearly, this is the
most general type of p-box, which allows for the most flex-
ibility in the modelling of parameters subjected to aleatory
and epistemic uncertainty. Indeed, it can be shown that
crisp (deterministic) values, intervals and crisp probabil-
ity distributions are all special cases of the distribution-free
p-box (Kreinovich and Ferson 2004).

When more information about the shape of CDFs, such
as an admissible distribution family, symmetry, or about
bounds on one or more statistical moments of 𝐹𝑋 is available
to the analyst, the p-box can also be described by a quintuple(
𝐹𝑋 , 𝐹𝑋 , 𝜇

𝐼
𝑋 , 𝜎

𝐼
𝑋 , F

)
. Here, e.g. the confidence interval of

the mean value 𝜇𝐼
𝑥 ⊆ IR, the confidence interval 𝜎𝐼

𝑥 ⊆ IR of
the standard deviation, and the family of admissible CDFs
F ⊆ F can be specified, with IR the set of real-valued
intervals. The p-box description can further be simplified
if the type of CDF is known, as in this case, the epistemic
uncertainty is only present in the CDF’s hyper-parameters.
This is also referred to as a parametric p-box. Note that
also a distribution-free p-box can also be represented as a
quintuple, noted

(
𝐹𝑋 , 𝐹𝑋 , [−∞, +∞], [0,∞], F

)
. Finally,

it should be noted that a p-box is in fact a computationally
efficient description of a credal set (Hall 2006), that has
furthermore workable algorithms for standard mathematical
functions (Ferson et al. 2003). This framework was recently
extended to account for imprecision in stochastic processes
by explicitly accounting for additional epistemic uncertainty
in the process’ autocorrelation structure (Dannert et al. 2018;
Faes and Moens 2019a).

2.2. Bounds on the failure probability
In the case where 𝑿 is represented as a p-box, a direct
calculation of 𝑝f, as introduced in Eq. (2), is no longer
possible since a set of PDFs that are consistent with the
definition of the p-box has to be considered. Indeed, the
consideration of a set of 𝑓𝑿 causes the failure probability to
become set-valued. In most engineering applications, the
analyst is concerned with the bounds on 𝑝f, being the lower
bound 𝑝

f
and upper bound 𝑝f, which can be obtained by

solving the following optimization problems:

𝑝
f
= min

𝑓𝑿

∫
R𝑛𝑥

𝐼𝑔 (𝒙) 𝑓𝑿 (𝒙) d𝒙 (3)

to obtain the lower bound and:

𝑝f = max
𝑓𝑿

∫
R𝑛𝑥

𝐼𝑔 (𝒙) 𝑓𝑿 (𝒙) d𝒙 (4)

to obtain the upper bound. Note that these optimization
problems are not optimization problems in a strict sense,
since the optimization has to be carried out over the set of
all possible 𝑓𝑿 consistent with the definition of the p-box.
Indeed, since the optimization has to be carried out over
all possible 𝑓𝑿 , the solution space is in general inherently
infinite. In certain cases, tighter bounds on 𝑝f can be ob-
tained by means of linear programming, without having to
construct the probability bounds of the input random vari-
ables (Wang et al. 2018).

A first approach to tackle this problem is to slice the p-box
in order to transform the above problem into the propagation
of a large number of intervals, each having a correspond-
ing probability mass. The result of these interval propaga-
tions can then be reassembled into a p-box description of
𝑌 = 𝑔(𝑿). The propagation of intervals is a well-understood
problem in the context of uncertainty propagation (Faes and
Moens 2019b). However, following this approach the re-
quired number of evaluations of Eq. (1) scales exponentially
with 𝑛𝑥 (H. Zhang, Mullen, et al. 2010). This led to the
development of methods such as interval Monte Carlo sim-
ulation (H. Zhang, Mullen, et al. 2010) or interval Quasi
Monte Carlo simulation (H. Zhang, Dai, et al. 2013), which
manage to break this exponential scaling, which bound 𝑝f
using following formulations:

𝑝
f
=

1
𝑛

𝑁∑
𝑘=1

𝐼𝑔 (𝑔(𝒓𝑘 ) ≤ 0), (5)

𝑝f =
1
𝑛

𝑁∑
𝑘=1

𝐼𝑔 (𝑔(𝒓𝑘 ) ≤ 0) (6)

with 𝑔(𝒓𝑘 ) and 𝑔(𝒓𝑘 ) defined as:

𝑔 𝑗 (𝒓𝑘 ) = max{𝑔(𝒙) | 𝐹−1
𝑿 (𝒓𝑘 ) ≤ 𝒙 ≤ 𝐹−1

𝑿 (𝒓𝑘 )}, (7)

𝑔
𝑗
(𝒓𝑘 ) = min{𝑔(𝒙) | 𝐹−1

𝑿 (𝒓𝑘 ) ≤ 𝒙 ≤ 𝐹−1
𝑿 (𝒓𝑘 )}. (8)

The parameters 𝒓𝑘 , 𝑗 = 1, . . . , 𝑁 are realisations of a sample
of 𝑁 independent and identically distributed (i.i.d.) random
variables according to a multivariate standard uniform dis-
tribution. As is clear from these equations, still require a
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high number of model evaluations to estimate of the bounds
on 𝑝f with sufficiently small variance, especially since an
optimization problem (Eq. (7)) has to be solved for each 𝒓𝑘 .
Also line sampling methods to deal with imprecise prob-
abilities have been introduced recently (de Angelis et al.
2015). In the case of parametric p-boxes, Eq.(3) and Eq.(4)
can be solved directly since the set of all possible 𝑓𝑿 is
readily parametrized by a set of hyper-parameters. In this
case, for realisation of the hyper-parameters of 𝑓𝑿 , a relia-
bility problem is solved. However, even in the simplest case
where the p-box describes a set of possible 𝑓𝑿 by means of
interval-valued statistical moments, such calculation can be
prohibitively demanding from a numerical standpoint. On
one hand, the calculation of the failure probability for a fixed
value of the parameters associated with the stochastic pro-
cess is quite costly. On the other hand, solving the associated
optimization problems in this simple case is far from triv-
ial, as it constitutes a double loop problem, where the inner
loop comprises probability calculation, leading to possibly
non-smooth behaviour of the objective function due to the
inherent variance on the estimator of 𝑝f. Hence, apart from
considering near-trivial simulation models, such the prop-
agation of p-box valued parameters towards the bounds on
the probability of failure on a structure is computationally
intractable.

2.3. A short note on fuzzy probabilities
An extension to the p-box is provided by fuzzy probabili-
ties, which allows for considering a fuzzy set of probability
models, each having their own level of plausibility accord-
ing to the available information (Beer et al. 2013). Ac-
cording to this framework, the fuzzy membership function
serves as an instrument to combine various plausible inter-
vals [𝐹𝛼

𝑿 (𝑥), 𝐹
𝛼
𝑿 (𝑥)], 𝛼 ∈ [0, 1] for 𝒙 ∈ R𝑛𝑥 in a single

scheme, and hence, allows for assessing the sensitivity of
the bounds of 𝑝f. Indeed, sensitivities of 𝑝f are found by
considering the rate of change of the bounds on the interval
with respect to the size of the input intervals represented
in the fuzzy numbers. Furthermore, the methods discussed
further in the paper, which are developed for p-boxes, can
always be applied to fuzzy probabilities in an 𝛼-cut sense.

3. Propagation methods for p-boxes
It is clear that, in general, the propagation of a p-box
(parametrized or distribution-free) is very demanding from a
computational point of view due to the double loop of prop-
agation schemes that have to be considered. Therefore, two
paths are recently pursued to determine the bounds on 𝑝f:
approaches to decouple the propagation efficiency and sur-
rogate modelling techniques. The state-of-the-art in these
methodes is reviewed in the following sections.

3.1. Improving the propagation efficiency for p-boxes
A first approach to improve the numerical efficiency to prop-
agate p-boxes is based on the importance sampling frame-
work. The core idea of this class of methods is to propagate
a single, well-chosen realisation 𝑓𝑿 of a parametrized p-box
(where 𝑓𝑿 is optimal with respect to a predefined measure),
and reweigh the obtained samples of 𝒚 to infer bounds on
𝑝f.

A first such method is Extended Monte Carlo simulation,
as introduced by (Wei, Song, et al. 2019), which is applica-

ble to the propagation of parametrized p-boxes subjected to
epistemic uncertainty in their first two moments. As a first
step, the hyper-parameters 𝜽 of the p-box, which account for
𝜇𝑥 and 𝜎𝑥 in the quintuple description, are represented by a
subjective probability model 𝑓𝚯 (𝜽) =

∏𝑛𝜃

𝑖=1 𝑓Θ𝑖 (𝜃𝑖). Then,
a local estimation for 𝑝f, being 𝑝f, is derived as:

𝑝f (𝜽) =
1
𝑁

𝑁∑
𝑘=1

𝐼𝑔 (𝒙𝑘 )
𝑓𝑿 (𝒙𝑘 | 𝜽)
𝑓𝑿 (𝒙𝑘 | 𝜽∗) (9)

which is an unbiased estimator, but highly affected by the
selection of 𝜽∗. ‘Local’ in this context denotes that the es-
timator is derived for a fixed value of 𝜽 inside its support.
This fixed value, 𝜽∗, should be selected such that it mini-
mizes the variance on the estimator 𝑝f (𝜽) (Wei, Lu, et al.
2014), similarly to conventional Importance Sampling, as:

𝜽∗ = argmin
∫
R𝑛𝜃

𝑇 (𝜽 , 𝜽∗) 𝑓𝚯 (𝜽) d 𝜽 (10)

with 𝑇 (𝜽 , 𝜽∗) = 𝑉
[
𝐼𝑔 (𝑿) 𝑓𝑿 (𝑿 | 𝜽)/ 𝑓𝑿 (𝑿 | 𝜽∗)

]
and 𝑉

the variance operator with respect to 𝑓𝑿 (· | 𝜽∗). The global
version of this approach is based on realizations (𝒙𝑘 , 𝜽𝑘 ),
𝑘 = 1, . . . , 𝑁 of a joint sample distributed according to a
joint PDF 𝑓𝑿 ,𝚯. The estimator 𝑝f is in this case expressed
as:

𝑝f (𝜽) =
1
𝑁

𝑁∑
𝑘=1

𝐼𝑔 (𝒙𝑘 )
𝑓𝑿 (𝒙𝑘 | 𝜽)
𝑓𝑿 (𝒙𝑘 | 𝜽𝑘 )

(11)

where 𝒙𝑘 and 𝜽𝑘 are generated by applying the correct in-
verse probabilistic transform to the corresponding variables
of a multivariate standard uniform distribution. The global
estimator gives a better estimation of 𝑝f over the entire sup-
port of 𝜽 , at the cost of lower accuracy around 𝜽∗ and a
higher computational cost, since in this case, also conver-
gence in terms of the effect of 𝜽 has to be ensured. An alter-
native optimal sampling density to propagate parametrized
p-boxes following an reweighted sampling scheme was pro-
posed by (J. Zhang and Shields 2018, 2019). Following the
approach of (J. Zhang and Shields 2018, 2019), the optimal
density should obtained by minimizing the total expected
squared Hellinger distance between 𝑓𝑿 (· | 𝜽) and the op-
timal sampling density 𝑓𝑿 (· | 𝜽∗) under an isoperimetric
constraint that ensures that the derived optimal sampling
density is a valid density function. The main difference
with optimal sampling density presented in Eq. (10) is that
this approach is not aimed at minimizing the variance, but
rather that the sampling density is as close as possible to the
target density.

Another pathway to improve the propagation efficiency
for p-boxes is to decouple the double loop, as presented in
Eq. (3) and (4). In (Faes, Valdebenito, et al. 2020), such
a highly efficient numerical scheme to propagate impre-
cise stochastic loads, modelled as a distributional p-boxes
with imprecisely defined hyper-parameters 𝜽 through linear
models M, was introduced. In case an affine formulation
of the imprecise random variables in terms of their hyper-
parameters is possible, the propagation of the imprecise
stochastic load can be performed in a two-step procedure.
First, those values of the epistemic parameters that yield an
extremum for 𝑝f are determined by maximizing/minimizing
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the operator norm of the product of the linear mapping pro-
vided by the numerical model M with a basis 𝑩 that repre-
sents the autocorrelation of the load on the model:

𝜽∗ = argmin
𝜽∈𝜽𝐼

∥𝑨(𝜽)∥ (12)

with 𝑨 = M𝑩, where 𝑩 can for instance be determined
following the well-known Karhunen-Loève expansion. The
specific calculation of ∥𝑨(𝜽)∥ is highly case dependent;
kindly refer to (Faes, Valdebenito, et al. 2020) for more de-
tails. A similar optimization problem has to be solved to
determine 𝜽∗. Then, two failure probabilities, correspond-
ing to 𝜽 = 𝜽∗ and 𝜽 = 𝜽∗ have to be computed to determine
the bounds on 𝑝f. As such, the double loop is effectively
replaced by two deterministic optimizations and two crisp
reliability estimations.

3.2. Surrogate modelling for p-boxes
A second approach to enable the computation of 𝑝

𝑓
and

𝑝 𝑓 with realistic engineering models is to replace M by a
computationally more efficient surrogate model M̂(· | 𝒂).
This surrogate M̂, parametrized by a vector 𝒂 ∈ R𝑛𝑎 , is
usually trained by means of an a set of a priori gener-
ated training data {(𝒙𝑖 , 𝒚𝑖) | 𝑖 = 1, ..., 𝑁} via a supervised
learning approach as to minimize the discrepancy between
𝒚̂𝑖 = M̂(𝒙𝑖 | 𝒂) and 𝒚𝑖 , according to a predefined measure
(e.g., in an 𝐿2 sense). Examples of such maps to represent
M̂ that have been used in the context of propagating p-boxes
include Gaussian process models (J. Zhang, M. Xiao, et al.
2019) (also known as Kriging), polynomial response sur-
face models (Sofi et al. 2020) or techniques based on Taylor
series expansions (Gao et al. 2011). Also adaptive schemes
based on Kriging have been introduced in literature (Schöbi
and Sudret 2017a) that are applicable to both parametric
and distribution-free p-boxes. In this section, three classes
of methods are explained in detail that are highly promis-
ing from an engineering point of view due to their ‘black-
box’ nature (i.e., they require no interaction with the inner
operations of M), theoretical implications and numerical
efficiency.

3.2.1. Polynomial Chaos Expansions & Kriging models
Polynomial chaos expansion (PCE) and Kriging are two
widely used surrogate modelling techniques that approxi-
mate M via a intricate regression schemes. A sparse PCE
surrogate model is given by:

M̂(𝒙 | 𝒂) =
∑
𝛼∈A

𝑎𝛼𝝓𝛼 (𝒙), (13)

where 𝝓𝛼 are multivariate orthonormal polynomials and
A ⊂ N𝑛𝑥 is a finite set of multi-indices that is obtained
by sparse decomposition. In (Schöbi and Sudret 2017b),
distribution-free p-boxes are propagated in a two-level ap-
porach in which first M, and second M and M (in the
sense of Eq (7) and (8)) are substituted using sparse PCE.
The training set is generated for an auxiliary input vector
𝑋 and least angle regression (LARS) is used for training.
In case of parametric p-boxes, it is proposed in (Liu et al.
2020) to model the sparse PCE coefficients 𝑎𝛼 as quatratic

polynomial functions of the hyper-parameters 𝜽 of the p-box
and using a double-loop sampling for the propagation.

Whereas PCE methods focus on the global behaviour of
M and are therefore suitable for a general propagation of
p-boxes, Kriging methods focus on a local behaviour of
M and are therefore often preferred for reliability analysis,
where {𝑔 = 0} is crucial. Using Kriging, a surrogate 𝑔̂ for
the limit-state function is considered to be a realization of a
Gaussian process. It is:

𝑔̂(𝒙 | 𝒂) = 𝜷T
𝒂𝝍(𝒙) + 𝑍𝒂 (𝒙, 𝜔), (14)

where the first term, consisting of coefficients 𝜷𝒂 and re-
gression functions 𝝍, is the mean value of the process, and
the second term is a zero-mean, stationary Gaussian pro-
cess, characterized by a variance and an auto-correlation
function depending on 𝒂. Similar to above, a two-level ap-
proach in which first 𝑔, and second 𝑔 and 𝑔 are substituted
is considered for distribution-free p-boxes in (Schöbi and
Sudret 2017a). Here, adaptive Kriging Monte Carlo simu-
lation (AK-MCS) is used for an accurate estimation of the
failure probabilities and random slicing is used to obtain
𝑝

f
and 𝑝f, see Eq. (5) and (6). Also in (Schöbi and Su-

dret 2017a), a failure probability 𝑝f (𝜽) which depends on
the hyper-parameters 𝜽 is estimated via AK-MCS and ef-
ficient global optimization (EGO) for parametric p-boxes.
A similar, but more detailed, Kriging-based procedure for
parametric p-boxes is also described in (N.-C. Xiao et al.
2020).

3.2.2. Sobol-Hoeffding decomposition based methods
The Extended Monte Carlo framework, as introduced in
Section 3.1 allows for propagating parametrized p-boxes
by a single probabilistic simulation and a reweighting step.
Nonetheless, still a considerable number of evaluations of
𝑔 are required, which might impede practical applications.
Therefore, in (Wei, Song, et al. 2019), both the local and
global Extended Monte Carlo methods were integrated with
a Sobol-Hoeffding decomposition (also known as HDMR)
ofM as a surrogate modelling strategy. Following a HDMR
deceomposition, 𝑝f can be represented as:

𝑝f (𝜽) = 𝑝f,0 +
𝑛𝜃∑
𝑖=1

𝑝f,𝑖 (𝜃𝑖) +
∑

1≤𝑖< 𝑗≤𝑑
𝑝f,𝑖 𝑗 ([𝜃𝑖 , 𝜃 𝑗 ]) + . . .

+ 𝑝f,12...𝑛𝜃 (𝜽)
(15)

Specifically, in (Wei, Song, et al. 2019), it is proposed
to apply a cut-HDMR strategy in combination with the lo-
cal Extended Monte Carlo Method, allowing for a rigorous
estimation of the variances of the estimators, as well as an
estimation of the sensitivity of the parameters in 𝜽 . Sim-
ilarly, it is proposed to perform a Random Slicing HDMR
decomposition in combination with the Global Method. For
the details concerning the implementation of these tech-
niques, as well as the corresponding proofs, the reader is
referred to (Wei, Song, et al. 2019). These methods were
recently also extended to be applied in combination with
Line Sampling in (Song et al. 2020).

An alternative application of the Sobol-Hoeffding decom-
position in the context of propagating imprecise probabilities
through numerical models is given by (Fina et al. 2020). This
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paper applies a fuzzy probabilistic approach in the study of
designing cylindrical shells under geometric imperfections,
which are modelled as a random field. Specifically, impre-
cision in the auto-correlation structure of the random field
is accounted for by means of fuzzy arithmetic, and the S-
H decomposition is applied to speed up the corresponding
𝛼-level optimization.

3.2.3. Interval predictor models
An interval predictor model (IPM), as introduced in (Crespo
et al. 2016), is a type surrogate model that approximates M
by means of an interval-valued map M̂𝐼 (·, 𝜽) : R𝑛𝑥 → IR.
This map can be constructed with a minimal number of
assumptions on the mapping provided by M. Specifically,
M̂𝐼 (𝒙, 𝜽) given by:

M̂𝐼 (𝒙, 𝜽) =
{
𝑦 = 𝜽T𝝓(𝒙) | 𝜽 ∈ 𝜽 𝐼

}
(16)

with 𝝓 a basis (e.g., polynomial or trigoniometric), 𝜽 the
fitting parameters of the IPM and 𝜽 𝐼 = [𝜽 , 𝜽] an 𝑛𝜽-
dimensional hyper-rectangular set. An optimal IPM is con-
structed by minimizing 𝐸

[
(𝜽 − 𝜽) |𝝓(𝒙) |

]
. Scenario Opti-

mization (Campi et al. 2018) can be used to judge the gen-
eralization properties of the IPM. In case the corresponding
optimization problem is convex, the reliability 𝑅 of the IPM
(i.e., the probability that a future unobserved data point will
be contained in the IPM) is bounded by:

𝑃(𝑅 ≥ 1 − 𝜖) > 1 − 𝛽, (17)

where 𝜖 and 𝛽 are the confidence and reliability parameters,
which for our hyper-rectangular model can be obtained from

𝛽 ≥
(
𝑘 + 𝑛𝜃 − 1

𝑘

) 𝑘+𝑛𝜃−1∑
𝑖=0

(
𝑁

𝑖

)
𝜖 𝑖 (1 − 𝜖)𝑁−𝑖 , (18)

where 𝑘 is the number of data points discarded by some
algorithm and 𝜖 can be chosen as a very small number (e.g.,
𝜖 = 1 · 10−06). An approach to apply IPMs in the con-
text of propagating parametrized p-boxes is introduced by
(Sadeghi et al. 2020). They show that IPMs can be used
as surrogate model to speed up the calculation of Eq.(3)
and Eq.(4), including a strategy to intelligently construct
the set {(𝒙𝑖 , 𝒚𝑖) | 𝑖 = 1, ..., 𝑁}. Furthermore, they show
that the IPM can also be used as a surrogate model for 𝑔,
which in its turn can be used in combination with impor-
tance sampling to determine [𝑝

f
, 𝑝f]. The main advantages

of these techniques are that (1) they are completely black-
box as they don’t require any assumption on M and (2) that
under the mild assumption of convexity of the training guar-
anteed reliability bounds on the accuracy are obtained based
on the rigorous framework of Scenario Optimization, which
was recently extended to non-convex optimization problems
too (Campi et al. 2018). Unfortunately, active learning of
this type of surrogate models is not feasible, since this vi-
olates the required assumptions on independence between
the training samples (Faes, Sadeghi, et al. 2019).

4. Conclusions
The development of highly efficient approaches to perform
engineering computations with imprecise probabilities, rep-
resented as p-boxes, is a quickly expanding field of research.

The main challenge in this context is to overcome the re-
quired double loop propagation framework to estimate the
bounds on probabilistic measures of the structure under con-
sideration (such as, e.g., the probability of failure). Apart
from near-trivial numerical simulation models, such double
loop calculations are computationally intractable without
resorting to high-performance computing facilities.

This problem is currently being tackled from two sides:
(1) by improving the propogation efficiency of p-boxes
aimed at breaking the double loop and (2) developing effi-
cient surrogate models for the numerical models to be used
in the double loop. Concerning the former set of solutions,
highly efficient propagation schemes have been introduced
in recent years. However, these methods are either limited
in terms of the admissible descriptions of the uncertainty, or
the non-linearity of the underlying numerical model. Future
developments in these areas should concentrate on expand-
ing the scope of applicability of these techniques. Concern-
ing the latter, surrogate models usually only require some
smoothness constraints on the underlying numerical model,
which allows for a greater flexibility. Nonetheless, the ac-
curacy of the calculation of the bounds on the probabilistic
measures is limited to the accuracy of the underlying surro-
gate model. Furthermore, also the training of these surrogate
models can entail a non-negligible numerical cost, which is
commonly mitigated by resorting to active learning.

As such, to conclude, the last 5 years brought many highly
performing approaches to compute with imprecise probabil-
ities in general, and p-boxes in specific. The main challenge
at this point appears to translate this set of highly performing
methods to industrial applications involving multiphysical
and/or million degree-of-freedom numerical models.
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