
The Seventh Asian-Pacific Symposium on Structural Reliability and Its Applications (APSSRA2020) 
October 4–7 2020, Tokyo, Japan 

T. Takada, I. Yoshida & T. Itoi (editors) 

 
Multifidelity Reliability Estimation 

 
C. Proppe1 

 
1Chair of Engineering Mechanics, Karlsruhe Institute of Technology, Germany. Email: proppe@kit.edu 

 
Abstract: Multifidelity estimation combines the output of simulation models of different approximation quality and from different 
sources in order to obtain efficient estimators for a quantity of interest. In this contribution, possibilities to establish model hierarchies 
are investigated. Once a model hierarchy is established, the outputs of the models must be combined by information fusion and/or 
information filtering. To this end, importance sampling is extended to model hierarchies by introducing additive as well as 
multiplicative information fusion. The multi-fidelity reliability estimation methods are compared and critically assessed based on a 
simple example that highlights the main features of the methods.  
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1. Introduction 
Reliability analysis in engineering is concerned with the 
determination of the probability that the performance 
function of the system (e.g. the difference between 
resistance and load of a structure) becomes negative. Thus, 
the performance function of the system is the quantity of 
interest and the failure domain comprises the values of the 
system parameters that lead to a negative performance 
function. For most engineering applications, the failure 
probability is rather small, which precludes the application 
of direct Monte Carlo simulation for its evaluation.  

Instead, importance sampling and importance 
splitting have been widely applied to the estimation of rare 
events (Schuëller et al. 2004). Importance sampling 
estimates the occurrence of rare events by generating 
samples from an alternative distribution and correcting for 
the bias by the introduction of weights. The success of this 
method relies on the quality of the importance sampling 
density, which is therefore often constructed in an adaptive 
way, e.g. by the cross-entropy method (Kurtz and Song 
2013). 

Importance splitting allows estimating small failure 
probabilities efficiently, even for problems that involve a 
high-dimensional vector of input random variables 
(Schuëller et al. 2004). It is based on a multiplicative 
decomposition of the failure probability in larger 
conditional probabilities that are estimated by means of 
Markov chain Monte Carlo simulation methods, cf. e.g. 
subset simulation (Au and Beck 2001).  

Furthermore, the introduction of model hierarchies 
instead of a single model offers a great potential for 
increasing the efficiency of reliability analysis. In 
multilevel and multifidelity methods, a model hierarchy is 
established comprising in general a computational 
expensive high fidelity model and one or several less 
expensive low fidelity models. In multilevel methods, 
models are ordered by means of a discretization parameter 
(e.g. a mesh parameter or a time step) that is linked to the 
approximation error (Giles 2008). In general, this restricts 
the application of multilevel methods to a single 
mathematical model and a single discretization method; an 
exception is the application with a single grid but multiple 
discretization methods (Müller et al. 2014).  

Multifidelity methods establish a model hierarchy 
based on the Pearson correlation parameter of the low 
fidelity models with respect to a high fidelity model 
(Peherstorfer et al. 2016). Thus, different discretization 
methods, different mathematical models or even 
experimental models might be ordered hierarchically as 
long as it is possible to compute the Pearson correlation 
between samples for the quantity of interest. The 
outstanding role played by the Pearson correlation in these 
methods stems from the fact that the information of the 
models is fused in an additive manner. This leads to 
variance reduction methods that may be interpreted as 
control variate methods (Gorodetsky et al. 2020).  

Unlike these methods, multiplicative information 
fusion based on regression or Bayesian approaches has 
been proposed as well (Biehler 2016), but has been studied 
less intensively in the literature.  

For reliability estimation, information filtering by 
adapted surrogate models is common (e.g. Chen and 
Quarteroni 2013, Li et al. 2011 and many others). A 
multilevel Monte Carlo method based on additive 
information fusion and information filtering has been 
proposed in (Elfverson et al. 2016). A multifidelity 
reliability estimation method with co-kriging surrogate 
models is due to (Sundar and Shields 2019). A 
multifidelity method with additive information fusion for 
importance sampling has been proposed in (Peherstorfer et 
al. 2018). A multilevel method based on additive 
information filtering has been applied to importance 
splitting in (Ullmann and Papaioannou 2015, Proppe 2020) 
and a multifidelity approach with additive information 
fusion and importance splitting can be found in (Proppe 
2019). In summary, while multifidelity methods with 
additive information fusion have been successfully 
combined with both importance sampling and importance 
splitting, multifidelity reliability estimation methods with 
multiplicative information fusion have not been developed 
so far. 

The aim of this contribution is twofold: first, new 
measures to establish model hierarchies are introduced and 
compared. These measures are either based on the 
dependence structure or on the information content of the 
quantity of interest and it is shown that dependence-based 
measures and information-based measures may lead to 
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different model hierarchies. There are even cases in which 
one of the two classes of measures cannot be utilized, while 
the other one still yields a reasonable model hierarchy. 
Second, once a model hierarchy has been established, 
information fusion and information filtering has to be 
combined with importance sampling and importance 
splitting in order to yield new and efficient reliability 
estimation methods that are based on model hierarchies 
and not on a single model anymore. To this end, a new 
adaptive importance sampling strategy is formulated based 
on additive information fusion. Moreover, multiplicative 
information fusion is combined with importance sampling. 
The reduction of the approximation error and of the 
estimator variance of the newly introduced and of already 
established methods is compared by means of examples. 

The paper is organized as follows: in the next section, 
methods to establish a model hierarchy are discussed. 
Following this, information fusion and information 
filtering for the combination of the model output are briefly 
introduced. After this, importance sampling is combined 
with additive and multiplicative information fusion. The 
proposed algorithms are tested on a simple example. 
Finally, conclusions are drawn.  
2. Model Hierarchies 

Additive information fusion follows the idea of 
variance reduction by means of control variates and 
therefore, the Pearson correlation between the model 
outputs leads to a hierarchical structure of the low fidelity 
models in a natural way. 

Multiplicative information fusion is based on the 
concept of statistical dependence. In this case, copula-
based measures of association are more adequate. They 
depend solely on the copula and not on the marginal 
distributions and can be further classified into measures of 
concordance between the variables (such as, e.g. 
Spearman's 𝜌  and Kendall's 𝜏 ) or measures of 
dependence, such as Schweizer-Wolff's 𝜎 (Nelsen 2007). 

Besides Pearson correlation and copula-based 
measures, the difference between the distributions of 
output quantities is often important for reliability 
estimation and can be quantified by information-theoretic 
measures. They can be based on distribution functions 
(such as the Kolmogorov-Smirnov distance) or on 
probability density functions of the variables (such as the 
Kullback-Leibler divergence (Deza and Deza 2016)). 

Copula-based and information-theoretic measures 
focus on different aspects in order to establish a 
relationship between output variables. Therefore, model 
hierarchies based on these measures might differ. The 
following example illustrates this situation. 
Example 1: Suppose that the performance function of the 
high fidelity model follows a normal distribution with 
mean value 1 and standard deviation 2. Consider a family 
of low fidelity models that lead to normally distributed 
values for the performance function with mean value 1 and 
standard deviation 𝜎 ∈ ሾ1.5: 1.9ሿ. Moreover, assume that 
the dependence structure between the low and the high 
fidelity model can be described by a Frank copula with 
parameter 𝛼 ൌ 20 ∙ ሺ2 െ 𝜎). For the high and low fidelity 
models, the failure probability shall be given by 1 െ

𝜑ሺ1 𝜎⁄ ሻ , where 𝜑ሺ. ሻ  denotes the standard normal 
distribution function. 

Figure 1 displays the development of the Pearson 
correlation coefficient, of Spearman's 𝜌 and Kendall's 𝜏 
as a function of 𝜎 . As can be seen, the correlation 
decreases with increasing 𝜎, i.e. when the distribution of 
the low-fidelity approaches the high-fidelity distribution. 
On the other hand, cf. Figure 2, the Kullback-Leibler 
divergence decreases with increasing 𝜎 . The curve 
corresponds well to the approximation of the failure 
probability by the low-fidelity model. In summary, the 
Kullback-Leibler divergence would predict the correct 
order of the low-fidelity models with respect to accuracy, 
while correlation and copula-based measures would 
predict the reverse order. 

 
Figure 1. Development of Pearson correlation coefficient, of 

Spearman’s 𝜌 and Kendall’s 𝜏 with 𝜎. 

 
Figure 2. Development of Kullback-Leibler divergence and 

relative error with 𝜎. 

3. Information Fusion and Information Filtering 
Once a model hierarchy has been established, the next step 
is to combine the information from the models. In 
principle, this can be done in two different ways. Either the 
model hierarchy is applied in parallel and an appropriate 
model of the model hierarchy is selected (this will be called 
information filtering in the following, according to 
(Peherstorfer et al. 2016)) - or the model hierarchy is 
applied in series and the information of each model is fused 
such that the overall computational effort is less than that 
of using solely the high fidelity model (this is called 
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information fusion in the following, according to 
(Peherstorfer et al. 2016)). Information filtering and 
information fusion are not necessarily competing 
techniques, but can be combined. 

3.1 Information fusion 
Concerning information fusion, a first method that 
combines a high and a low fidelity model in a 
multiplicative manner has been presented as “global-local 
approximation” in (Haftka 1991). Both additive and 
multiplicative combinations of output quantities obtained 
from a high- and a low-fidelity model have been 
investigated for the analysis of a crack in a stiffened 
composite panel in (Vitali et al. 2002). The generalization 
of these ideas to model hierarchies leads to information 
fusion based on telescoping sums (Peherstorfer et al. 2016) 
and information fusion based on telescoping products 
(Biehler 2016), resp. The former method associates costs 
to the evaluation of the different models and determines an 
optimal number of simulation runs in order to obtain the 
same total error as with the high fidelity model. For 
reliability estimation, this method has been combined with 
information filtering in (Elfverson et al. 2016). The 
possibility to apply telescoping products of conditional 
probabilities for the output variables has been mentioned 
in (Biehler 2016), although the investigations are limited 
to the case of two models. This method does not optimize 
costs. Another difference between the two methods is that 
the use of telescoping sums requires the same random 
variables for the input of the models, while the use of 
telescoping products makes no restrictions in this regard. 

Reliability estimation deals with the evaluation of the 
failure probability 

 𝑃ி ൌ ׬ 𝑝ሺ𝜽ሻdி 𝜽, (1) 

where 𝐹 ൌ ሼ𝜽 ∈ ௡|𝑔ሺ𝜽ሻ ൏ 0ሽ  denotes the failure 
region and 𝑝ሺ𝜽ሻ the joint probability density function of 
the random vector 𝞗. In general, the performance function 
𝑔ሺ𝜽ሻ is not known exactly, but is computed by numerical 
approximation.  

In the following, an ordered family of approximated 
performance functions 𝑔௟ሺ𝜽ሻ , l=0, ..., L is considered, 
where the index l refers to the performance function of the 
lth model of the model hierarchy. The index l=0 denotes 
the model with lowest fidelity and l=L the high-fidelity 
model. 

3.1.1 Additive information fusion 
For additive information fusion, denote by Ql a quantity of 
interest related to the lth model. In the context of reliability 
estimation, the quantity of interest could be the indicator 
function 𝐼௚೗ழ଴ሺ𝜽ሻ, i.e. 𝐼௚೗ழ଴ሺ𝜽ሻ ൌ 1, if 𝑔௟ሺ𝜽ሻ ൏ 0 and 
𝐼௚೗ழ଴ሺ𝜽ሻ ൌ 0 elsewhere. An estimator for such a quantity 
of interest that combines the information from the model 
hierarchy in an additive manner is obtained from the 
telescoping sum (Heinrich 2001, Giles 2008) 

 𝐸ሾ𝑄௅ሿ ൌ 𝐸ሾ𝑄଴ሿ ൅ ∑ 𝐸ሾ𝑄௟ െ 𝑄௟ିଵሿ௅
௟ୀଵ . (2) 

The aim is to compute each of the estimates on the right-
hand side of this equation individually by Monte Carlo 
simulation. A reduction of the overall computational effort 

can be expected from the fact that the variance of the 
differences decreases to zero with increasing index l and 
thus, for a given coefficient of variation, estimates of the 
contributions from highly accurate performance function 
will require less samples. Moreover, the fact that there is a 
nested sequence of approximations might be beneficial in 
a similar manner as for multigrid methods. 

It is important to note that for the estimation of 
𝐸ሾ𝑄௟ െ 𝑄௟ିଵሿ  both 𝑄௟  and 𝑄௟ିଵ  are evaluated for the 
same samples. If the dimension of the random vector 
depends on the selected model of the model hierarchy, it is 
necessary to generate the samples for the model with 
higher fidelity and to obtain the corresponding samples for 
the model with lower fidelity by coarse-graining. 

3.1.2 Multiplicative information fusion 
For multiplicative information fusion (Biehler 2016), one 
has with 

       𝑝ሺ𝜽௅ሻ ൌ ׬ … ׬ 𝑝ሺ𝜽௅, … , 𝜽௟, … , 𝜽଴ሻ d 𝜽௅ … d𝜽௟ … d𝜽଴ 

 ൌ ׬ 𝑝ሺ𝜽௅|𝜽௅ିଵሻ … ׬ 𝑝ሺ𝜽௟|𝜽௟ିଵሻ … 

׬                         𝑝ሺ𝜽ଵ|𝜽଴ሻ𝑝ሺ𝜽଴ሻ d𝜽௅ … d𝜽௟ … d𝜽଴  (3) 

an expression for the high-fidelity probability density 
function that is computed from the low-fidelity 
contributions and can then be utilized to estimate the 
quantity of interest of the high-fidelity model. 

3.2 Information Filtering 
For reliability estimation, information filtering has been 
described in (Elfverson et al. 2016), where a selective 
refinement strategy has been applied, such that realizations 
far away from the limit state 𝑔ሺ𝜽ሻ=0 are solved by a lower 
accuracy than those close to the limit state, which further 
reduces the computational effort. 

3.3 Combination of Information Fusion and 
Information Filtering 
It is obvious how information filtering and information 
fusion can be combined for reliability estimation. To this 
end, starting from a model hierarchy, the combination of 
the model outputs in parallel by information filtering leads 
to a new model hierarchy whose output is then combined 
in series by information fusion. It is noted that the methods 
for information fusion and filtering described above can 
also be applied to other problems, such as sensitivity 
analysis or Bayesian inference. 

4. Information Fusion and Importance Sampling 
The aim of importance sampling is to reduce the variance 
of Monte Carlo simulation by sampling from an alternative 
density, the importance sampling density. To this end, the 
importance sampling density 𝑝ூௌሺ𝜽ሻ  is introduced into 
eq. (1): 

 𝑃ி ൌ ׬
௣ሺ𝜽ሻ

௣಺ೄሺ𝜽ሻ
𝑝ூௌሺ𝜽ሻdி 𝜽. (4) 

The importance sampling estimate is then computed 
from the weighted average 

 𝑃෠ி,ூௌ ൌ
ଵ

ே
∑ 𝐼௚ழ଴ሺ𝜽௜ሻ

௣ሺ𝜽೔ሻ

௣಺ೄሺ𝜽೔ሻ
ே
௜ୀଵ , (5) 
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where the N samples 𝜽௜ , i=1, ..., N, are drawn from 
𝑝ூௌሺ𝜽ሻ. The optimal importance sampling density is given 
by 

 𝑝ூௌሺ𝜽ሻ ൌ
ூ೒ಬబሺ𝜽ሻ

௣ሺ𝜽ሻ
𝑃ி (6) 

which however requires already the knowledge of 𝑃ி 
and is thus infeasible.  

In the cross-entropy method, an optimal importance 
sampling density is computed within the family of 
densities 𝑝෤ሺ𝜽, 𝝊ሻ  with parameter vector 𝝊  by 
minimizing the Kullback-Leibler divergence (i.e. the 
cross-entropy) 

׬  p୍ୗሺ𝜽ሻln 𝑝ூௌሺ𝜽, 𝝊ሻ  d𝜽ி െ ׬ p୍ୗሺ𝜽ሻln 𝑝෤ሺ𝜽, 𝝊ሻ  d𝜽ி  (7) 

to the optimal importance sampling density 
(Rubinstein and Kroese 2017). This amounts to 
maximizing the expression 

׬  pሺ𝜽ሻln 𝑝෤ሺ𝜽, 𝝊ሻ  d𝜽ி . (8) 

The estimation of this quantity requires again an 
importance sampling procedure, which can be based on the 
same family of densities 𝑝෤ሺ𝜽, 𝝊ሻ. This leads to an iterative 
scheme for the determination of the optimal parameter 𝝊, 
cf. (Kurtz and Song 2013). 

Both information fusion by additive combination and 
multiplicative combination of the model outputs can be 
combined with importance sampling for reliability 
estimation. This is described in the following sections. 

4.1 Additive information fusion 
For additive combination of the model outputs, the 

importance sampling density for each expectation has to 
focus on the differences of the performance functions of 
neighboring models. Alternatively, the importance 
sampling estimators might be computed separately for 
each level and then the differences of the estimators are 
weighted, cf. (Peherstorfer et al. 2016).  

Example 2: Consider the circular performance 
function  

 𝑔ሺ𝜃ଵ, 𝜃ଶሻ ൌ 𝑟 െ ඥ𝜃ଵ
ଶ ൅ 𝜃ଶ

ଶ (9) 

with parameter r>0 and a standard normal distribution 
for the random variables 𝛳ଵ, 𝛳ଶ. The limit state function 
𝑔ሺ𝜃ଵ, 𝜃ଶሻ ൌ 0  is approximated by a regular convex 
polygon with n+3 facets and orbiting radius r and the 
corresponding performance functions 𝑔௡ሺ𝜃ଵ, 𝜃ଶሻ 
represent the oriented Euclidean distance of a sample from 
the approximated limit state function. 

Table 1. Relative error (e[%]) and coefficient of variation 
(c.o.v.), single level method. 

Order r=1  r=3  r=5 
 e c.o.v. e c.o.v. e c.o.v.

n=1 20 1e-3 499 2e-3 21510 22e-3
n=2 5 1e-3 59 6e-3 291 17e-3
n=3 2 2e-3 23 6e-3 81 10e-3
n=4 1 2e-3 12 5e-3 39 6e-3
n=5 1 2e-3 8 5e-3 23 7e-3

 
Table 1 displays the convergence of the single level 

approximations with approximation order n. As can be 
seen, the relative error decreases quickly. For lower failure 
probabilities, a high approximation order is necessary, e.g. 
for r=5, an octogonal approximation is not sufficient to 
reduce the relative error below 10%. 

For the multifidelity method with additive information 
fusion, the expectations for the differences of the failure 
probabilities are computed by an adaptive cross-entropy 
based importance sampling scheme that utilizes a Gaussian 
mixture model to represent the importance sampling 
density, cf. (Geyer et al. 2019). As Table 2 reveals, the 
relative error of the multifidelity method is similar to the 
single level method for r=1, lower for r=3 and n>2 and 
higher for r=5. The coefficient of variation of the estimator 
for the differences ∆௡ାଵ௡ൌ 𝐸ሾ𝑔௡ାଵሺ𝜃ଵ, 𝜃ଶሻ െ 𝑔௡ሺ𝜃ଵ, 𝜃ଶሻሿ 
is lower than that of the single level estimator only for r=5 
and low approximation order (n<4). In contrast to 
multilevel methods, the coefficient of variation increases 
with increasing approximation order n. Thus, the 
multifidelity method is not efficient in this case. 

Table 2. Relative error (e[%]), mean value (m) and coefficient 
of variation (c.o.v.) for the differences between approximation 

orders. 

Order r=1 r=3   r=5 
e m c.o.v. e m c.o.v. e m c.o.v.

∆ଶଵ 5 1e-1 3e-3 60 5e-2 3e-3 337 8e-4 10e-3
∆ଷଶ 2 2e-2 7e-3 20 5e-3 8e-3 108 9e-6 8e-3
∆ସଷ 1 8e-3 15e-3 6 2e-3 14e-3 57 2e-6 23e-3
∆ହସ 0 4e-3 24e-3 0 8e-4 21e-3 34 9e-7 32e-3

The reason for these results of the multifidelity 
method can be seen from Figures 3 and 4 that display the 
samples obtained from the importance sampling density 
for the differences ∆ଶଵ and ∆ସଷ for r=1. As can be seen, 
the importance sampling density focus in both cases on the 
region where the approximated performance functions 
differ in sign; however, for ∆ସଷ, these regions are so small 
that many samples are still outside of these regions. For 
increasing approximation order n, the number of regions 
that have to be covered by the importance sampling density 
increases and the regions become smaller. Thus, for higher 
n, it is more difficult to cover these regions very well. This 
leads to the increase of the coefficient of variation and also 
to the increase of the relative error for larger values of r. 

 
Figure 3. Samples from the importance sampling density for the 

difference ∆ଶଵ. 
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Figure 4. Samples from the importance sampling density for the 

difference ∆ସଷ. 

Next, the weighted multifidelity method proposed in 
(Kramer et al. 2019) is considered, where a weighted sum 
of importance sampling estimates is computed. This 
approach requires unbiased importance sampling 
estimates. Thus, the importance sampling densities are 
calibrated by means of the different approximations of the 
performance function 𝑔௜ሺ𝜽ሻ , i=1, ..., n; however, the 
samples generated with the different importance sampling 
densities are evaluated with respect to the performance 
function 𝑔௡ሺ𝜽ሻ of highest fidelity. This is different from 
the other methods presented in this paper, where the 
generated samples are either evaluated by the performance 
function of the same or the next higher level. In order to be 
efficient, a reduction of the coefficient of variation for the 
weighted multifidelity estimator compared to the single 
level approach is therefore mandatory, such that in total, 
less samples are evaluated by the high-fidelity 
performance function. Table 3 indicates that the coefficient 
of variation of the weighted multifidelity method is indeed 
smaller than that of the single level approach. It decreases 
with increasing high-fidelity approximation order n. For 
n=5, the coefficient of variation of the single level 
approach is almost twice as large as that of the weighted 
multifidelity method. This is due to the fact that with 
increasing n the approach weights more estimators, namely 
a total of n, one for each level. 

Table 3. Relative error (e[%]) and coefficient of variation 
(c.o.v.), weighted multifidelity method. 

Order r=1  r=3  r=5  
 e c.o.v. e c.o.v. e c.o.v.

n=2 5 14e-4 59 4e-3 293 20e-3
n=3 2 10e-4 23 4e-3 81 10e-3
n=4 1 10e-4 12 3e-3 39 5e-3
n=5 1 8e-4 8 3e-3 23 5e-3

4.2 Multiplicative information fusion 
For multiplicative information fusion, the importance 

sampling density is based on the model with lower fidelity 
and pairs of output quantities for neighboring models are 
obtained for samples generated by means of the 
importance sampling density. These pairs of samples are 
then utilized to find a functional expression by regression 
that relates the high fidelity model output to the low 
fidelity model output. 

Example 3: Consider the same performance function 
and its approximation as in example 2 and the following 

bifidelity method: For the lower approximation order (n) 
the importance sampling density is calibrated by the same 
cross-entropy based importance sampling algorithm 
applied in example 2. After that, 100 samples (out of 50000 
samples) with highest weights are identified and only for 
these samples, the performance function of approximation 
order n+1 is evaluated. A linear relation between the 100 
values of the low fidelity performance function and the 
high fidelity performance function is then calibrated by 
regression. By means of this linear relation, 
approximations of the high fidelity performance function 
are computed for the remaining 49900 samples. Table 4 
summarizes the relative error and the coefficient of 
variation obtained for the bifidelity method. It can be seen 
that the relative error of the bifidelity method is 
comparable to that of the higher approximation order n+1. 
Thus, the bifidelity method considerably improves the 
approximations of the failure probability. The coefficient 
of variation of the bifidelity estimator is higher than that of 
the single level estimator. It scales with the coefficient of 
determination R2 and thus might be attributed to the 
regression error. For higher approximation order n and for 
lower values of the radius r, the coefficient of 
determination decreases because the differences between 
two successive levels are smaller in these cases. Thus, the 
correlation between the values of the performance 
functions is higher which reduces the coefficient of 
variation. Moreover, increasing the number of high level 
samples decreases the coefficient of variation. 

Table 4. Relative error (e[%]), coefficient of variation (c.o.v.) 
and cofficient of determination (R2) for the bifidelity method. 

Order r=1 r=3   r=5 
e c.o.v. R2 e c.o.v. R2 e c.o.v. R2

n=1 4 22e-3 85 42 39e-2 36 68 2.2 25
n=2 2 6e-3 99 10 11e-2 76 30 0.4 60
n=3 1 4e-3 100 7 5e-2 93 12 0.1 87
n=4 1 2e-3 100 5 2e-2 97 7 0.1 91
n=5 1 2e-3 100 5 2e-2 99 6 0.1 94

In summary, the combination of additive information 
fusion using telescoping sums with importance sampling 
requires an importance sampling density that focuses on 
differences between approximations of successive order; a 
reduction of the coefficient of variation is then difficult to 
achieve. Implementing additive information fusion by a 
weighted sum of importance sampling estimators leads to 
a reduction of the coefficient of variation, but requires all 
samples generated by the different importance sampling 
densities to be evaluated by the high-fidelity performance 
function. The combination of multiplicative information 
fusion with importance sampling leads to mean square 
errors that are comparable to those of the next higher level. 
A reduction of the coefficient of variation is achieved, if 
the regression error is small. For linear regression, this is 
the case if the approximations of successive order are 
highly correlated. 

5. Conclusions 
This paper compares different measures for 

establishing model hierarchies and combines additive and 
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multiplicative information fusion with importance 
sampling in order to efficiently obtain reliability estimates.  

It has been shown that dependence- and information-
based measures may lead to different model hierarchies. 
As a rule of thumb, low or at least decreasing values of 
information-based measures such as the Kullback-Leibler 
divergence are often a prerequisite for the general 
applicability of a multifidelity method to reliability 
estimation, while values converging to 1 for dependence-
based measures are often a prerequisite for the efficiency 
of that method. Obtaining a good importance sampling 
density is still a challenging task, especially in high 
dimensions. This is particularly the case, if the importance 
sampling density should focus on level differences. It 
therefore appears to be more advantageous to combine 
different importance sampling estimators by a weighted 
sum, even if this approach requires unbiased estimators 
and thus the evaluation of all samples by the high-fidelity 
performance function. Multiplicative information fusion 
might have advantages compared to additive information 
fusion and requires less samples to be evaluated by the 
high-fidelity performance function. However, 
multiplicative information fusion relies on establishing a 
precise relationship between the values of the performance 
function obtained with the model of lower and of higher 
fidelity.  

The proposed methods help to balance the 
approximation error and the statistical error by information 
fusion. It is demonstrated that these methods may lead to a 
considerable increase in efficiency. The approaches can be 
extended by taking the data and model error in a Bayesian 
setting into account. It is also noted that the methods 
presented in the paper can be applied to sensitivity analysis 
and Bayesian inference. 
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