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Abstract: During the construction of shield driven tunnels, the effects on the surrounding environment such as surface settlements 

and the risk of damages of existing buildings or infrastructures have to be assessed. Therefore, the evaluation of limit states of the 

system response, i.e. expected surface settlements or maximum strains in buildings, is necessary to select appropriate operational 

parameters for further construction steps. The evaluation is carried out by means of reliability analyses taking into account the 

uncertainties of the geotechnical parameters and the machine parameters. Here, machine operational parameters are considered as 

stochastic numbers in stochastic analyses. The reliability analyses with respect to settlement and building damage can be performed 

by using finite element (FE) simulations, as a deterministic solution. To obtain the analysis results in real-time, fast surrogate models 

are employed to substitute the time-consuming FE models. In prior works, a hybrid surrogate modeling strategy combining artificial 

neural networks and proper orthogonal decomposition approaches has been developed to predict high dimensional time variant 

surface settlement fields in just a few seconds with similar accuracy as the original FE model. In this work, the developed settlement 

prediction is combined with a building damage evaluation model to deliver the real-time reliability analysis of tunneling-induced 

damage of existing buildings. The reliability results can be used to support the selection of steering parameters during the advance of 

tunnel boring machines in mechanized tunneling.  

 

Keywords: real-time, reliability analysis, building damage, surrogate models, artificial neural network, mechanized tunneling. 

 

1. Introduction 
During mechanized tunneling process, ground surface 
movements (settlement or heave), which might create 
possible damages on adjacent/nearby buildings, should be 
controlled. In practice tunnel engineering, empirical 
methods are widely used to estimate the magnitude and 
extent of a "green field" settlement curve. However, due 
to simplified assumptions the predicted results may not 
reflect appropriately the complex soil-structure 
interactions in mechanized tunneling, especially in urban 
areas with a lot of buildings.  

Currently, a number of numerical models, in 
particular based on the finite element method (FEM), 
have been developed to investigate the complex 
soil-structure interactions in mechanized tunneling 
(Komiya 2009), (Kasper and Meschke 2004). In this 
work, the 3D numerical model in (Alsahly et al. 2016), 
which takes into account the most important components 
of tunneling process and their mutual interactions, has 
been adopted. Using this numerical model, the Gaussian 
curves obtained from empirical equations can be replaced 
by sets of vertical displacements of surface points from 
the numerical mesh for the building damage assessment. 

Depending on the desired level of detail of the 
analysis, the building damage assessment is performed 
through analytical evaluations using a surrogate elastic 
beam, or 2D FE simulations of the facades or 3D 
simulations of complete structures. In case that the quality 
of analytical solutions is insufficient, using detailed FE 
models for real-time applications during tunnel 
construction requires to replace FE models by time 
efficient surrogate models. 

To support the steering of Tunnel Boring Machines 
(TBM) directly at the construction site, the soil-structure 
simulation results are predicted in real-time to control the 

settlement trough, and consequently, the risk of damage 
in buildings located in the vicinity of the tunnel, within 
certain limits, by adjusting the operational parameters of 
TBMs, i.e. the face and the grouting pressure (Cao et al. 
2019). Generally, the operational pressures are time 
dependent parameters, which vary over time due to the 
heterogeneity of geological conditions and uncertainty of 
machine driver’s operation. Considering the characteristic 
of uncertain data sources, uncertainty can be classified 
into two main groups: aleatoric and epistemic uncertainty 
(Möller and Beer 2008). The former should be considered 
in case of having enough data to construct a stochastic 
model, whereas the latter often deals with the case of 
lacking of information to have an adequate model. Here, 
the pressures are measured frequently during the 
tunneling process and therefore should be considered as 
stochastic processes. Reliability analyses taking into 
account the uncertainty of steering parameters require to 
perform the simulation model multiple times, e.g. to 
predict damage category probabilities of buildings. This 
is also a time consuming procedure within Monte Carlo 
simulations, hence surrogate models are necessary to 
substitute computational expensive FE models to 
maintain the prediction performance and to reduce the 
computation time significantly for real-time applications.  

Different approaches have been developed for the 
generation of surrogate models, see e.g. (Simpson et al. 
2001) for an overview. Each surrogate modeling 
approach has specific advantages for specific tasks. As an 
example, Artificial neural networks (ANNs), which are 
widely used in engineering (Adeli 2001), are 
advantageous for multiple input and single or low 
dimensional output mappings, Recurrent Neural 
Networks (RNN) for the prediction and extrapolation of 
time-variant processes and the Proper Orthogonal 
Decomposition (POD) method for the reduction of high 
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dimensional data (Everson and Sirovich 1995). Benefits 
of RNNs and gappy POD (GPOD) approaches have been 
combined within a hybrid RNN-GPOD surrogate model 
with a low dimensional input and a high dimensional 
output (Cao et al. 2016). Considering the risk of building 
damages as the target to adjust the TBM process 
parameters, the hybrid surrogate model is coupled with a 
Feed-forward Neural Network (FFNN), which delivers 
the real-time assessment of the risk of damage on nearby 
buildings (Cao et al. 2019). 

In this paper, the approach in (Cao et al. 2019) has 
been further extended by taking into account the 
uncertainty of process parameters as stochastic processes. 
The surface settlements are first predicted by the hybrid 
surrogate model RNN-POD. The subsequent assessment 
of the risk of damage on nearby buildings is then 
evaluated using a FFNN. The results from real-time 
reliability analysis of tunneling-induced damage of 
existing buildings are finally utilized as the target to 
adjust the operational parameters for the next construction 
steps of the tunneling process. 

2. Uncertainty quantification by stochastic numbers 
In practice tunnel engineering, a TBM driver usually 
adjusts the operational parameters (e.g. the face support 
pressure and the tail void grouting pressure) at the early 
construction stage of each ring. Simple and empirical 
methods based on local experiences are often used to 
determine the desired values of the parameters. During 
the advancement of the machine, the real applied values 
of parameters are recorded with a motion from 10 to 15 
seconds. The recorded data usually fluctuate around the 
desired values. This is considered to be uncertain due to 
the dependence on the performance of equipment, 
machines and the skills of the workers. Therefore, the 
process parameters, e.g. the face support pressure or the 
grouting pressure, vary over time due to heterogeneity of 
soils, variability of stratum and uncertainty of driver’s 
operation, and thus they should be considered as 
stochastic processes in the time domain. 

To consider for the randomness of a process 
parameter, stochastic numbers (Phoon and Kulhawy 
1999) can be used to describe the parameters. For each 
stochastic number, a stochastic model has to be selected, 
which is defined by its probability density function (pdf) 
and cumulative distribution function (cdf). Stochastic 
models can be used to consider spatial and time varying 
uncertainty. In general, an adequate database is required 
with a sufficient number of samples to identify the 
stochastic model and estimate the corresponding 
parameters. In mechanized tunneling, operational 
parameters describing the process, e.g. the support 
pressure at heading face or the tail void grouting pressure 
are typical examples where enough information is 
available to model time varying parameters by means of 
stochastic numbers. The desired values of the process 
parameters can be regarded as the mean value of the 
distribution, whereas the standard deviation of the 
distribution may be determined by considering their 
fluctuation behaviors. 

3. Surface settlement field prediction 

3.1 Finite element model 
For the prediction of surface settlements during shield 
tunneling processes, the 3D numerical simulation 
proposed in (Alsahly et al, 2016) is employed. It is based 
upon the object-oriented finite element framework 
KRATOS and takes into consideration all relevant 
components of the mechanized shield tunneling and their 
mutual interactions. The components of the employed 
simulation model are illustrated in Fig. 1.  

 

Figure 1. a) Main components in mechanized tunneling: (1) 

soil, (2) tail gap, (3) support medium, (4) cutting wheel, (5) 

shield, (6) hydraulic jacks and (7) lining; b) Interactions 

between soil and TBM in the simulation model: (1) face 

support, (2) frictional contact between shield and soil and (3) 

grouting of the tail gap. 

The TBM is represented as a deformable body moving 
through the soil and interacting with the ground through 
frictional contact. Hence, a more realistic deformation of 
the surrounding soil due to the tapered geometry of the 
shield can be simulated. The excavation and the 
construction processes are modeled by means of the 
deactivation of soil elements and installation of tunnel 
lining and grouting elements. The soil is modeled as a 
two phase material, accounting for both the solid and the 
pore water according to the theory of mixtures. 

3.2 Surrogate model 
In the offline stage, a representative simulation model for 
a tunnel drive through a specific tunnel section is created 
with the numerical model in Section 3.1. By varying the 
deterministic values of the input parameters (process 
parameters), the corresponding deterministic outputs 
(surface settlements) are computed. These deterministic 
input-output data sets are utilized to train and test a 
deterministic surrogate model, which can be used directly 
to predict the complete time variant surface settlement 
field for a given set of user defined process parameters.  

In the online stage, during the tunnel construction, 
adopting the actual recorded process parameters from 
previous time steps 1 to n, the surrogate model predicts 
the complete surface settlement field of time step n+1 
depending on the chosen values of the steering 
parameters. The hybrid surrogate model consists of a 
RNN and the GPOD approach. The key idea is that an 
RNN is trained to predict the time variant settlements at 
selected monitoring points, while the GPOD is used to 
approximate the whole settlement field of each time step. 
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3.2.1 Recurrent Neural Network 
For the prediction of dependencies between structural 
processes, RNN are often used due to the capability to 
learn dependencies between data series without 
considering time as additional input parameter. The layer 
network structure of RNNs is similar to the architecture 
of feed forward neural networks. But in addition to the 
neurons, so-called context neurons are used to consider 
the structure history. For each hidden and each output 
neuron, a context neuron is assigned. These context 
neurons send time delayed context signals to the hidden 
and output neurons. Figure 2 shows the structure of the 
RNN, which is used in the application example in 
Section 5. Different types of activation functions can be 
exploited to process the signals in the neurons.  
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   

   
1

exp exp
tanh

exp exp

 
  

 

 
 

 
  (1) 

 2       (2) 

Equations (1) and (2) show the hyperbolic tangent 
function and the linear activation function, which are 
used in the hidden neurons and the output neurons of the 
RNNs, respectively. The RNNs are trained using the 
Levenberg-Marquardt back propagation. During the 
training process, the synaptic weights, the context 
weights for each delayed time step and the bias values 
which are unknown network parameters are identified. 

Figure 2. Structure of the employed RNN in Section 5 for the 

settlement prediction of selected monitoring points. 

3.2.2 Gappy Proper Orthogonal Decomposition 
The basic POD method is combined with a linear 
regression called GPOD. The POD technique is a widely 
used method in data analysis due to its efficiency in 
representing an original high-dimensional data set 
through a reduced order set of basic functions with a high 
level of accuracy. Without any missing data, an arbitrary 
snapshot S

j
, which belongs to a set of snapshots, can be 

approximated as a linear combination of the first K POD 
basis vectors and an amplitude vector A

j
. The amplitude 

vector is calculated by minimizing the error norm  

2

2

min. j j

L
S A     (3) 

The same least square approach can be effectively 
used to restore missing data of an incomplete data 
snapshot S. However, due to missing elements, the gappy 
norm based on available data is utilized instead of the L

2
 

norm. The intermediate repaired vector S
*
 can be 

expressed in terms of truncated POD basis vectors Φ. The 

coefficient vector A
*
 can be computed by minimizing the 

error between S
*
 and S. A solution to this so-called least 

squares problem is given by a linear system of equations  

*M A R      (4) 

   T ; TM R S        (5) 

4. Assessment of building damage 
Building damages are commonly referred to strains 
exceeding certain limits (Mark and Schnütgen 2001). 
Beams, shells or volumetric models are used as 
calculation models for the strain estimation, whereby 
simplified linear-elastic or non-linear material behavior 
can be assumed. Simple beam models do not capture 
soil-structure interactions and simply represent the real 
structural behavior in a very simplified way (Obel et al. 
2018). For more detailed analyses, FE calculations of the 
building facades are usually used (Neuhausen et al. 2018). 
The maximum calculated strains are compared with 
limiting strains. Table 1 shows the assignment of limit 
tensile strains to corresponding category of damages. 

Table 1. Damage categories and related tensile strains. 

Category of 

damage 

Degree of 

severity 

Limiting tensile strain 

[%] 

0 negligible 0 – 0.05 

1 very slight 0.05 – 0.075 

2 slight 0.075 – 0.15 

3 moderate 0.15 – 0.3 

4 severe ≥ 0.3 

 

4.1 Finite Element Model of the facades 
The facade is re-idealized by shell elements for the 
masonry and plate elements for the reinforced concrete 
foundation. The support type depends on the settlements 
determined beforehand. In case that the settlements were 
estimated using numerical models, the supports are 
idealized using hinged supports.  

Figure 3. Building façade model. 

With this idealization, the settlements δi affect the 
facade as forced quantities by displacing the support. To 
capture the nonlinear material behavior of masonry a 
simple isotropic damage model, parabolic-shaped in 
compression and linear in tension has been adopted. The 
tensile behavior of the masonry can be assumed to be 
linear-elastic and described by Hooke's law. Concrete's 
behavior in compression is approximated with an uniaxial 
material function defined in Eurocode II. Reinforced 
concrete can be modeled by a modified stress-strain 
relation of the reinforcement according to Model code. 
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4.2 Feed-forward Neural Network 
Figure 4 shows the structure of the three-layer FFNN, 
which is used in the application example in Section 5. 
The inputs of the FFNN are eight settlements at the 
façade foundation SBk (k = 1… 8), which are provided 
for each time step of the tunnel advance by the 
RNN-GPOD surrogate model, see Section 3.2. The 
hidden layer consists of 10 neurons (h = 1… 10) and the 
output layer has one neuron to predict the maximum 
strain εmax anywhere in the facade. Compared to the RNN, 
the FFNN has no time delays context signals. The 
activation functions and the training algorithm used in the 
FFNN are similar as compared to the RNN. 

Figure 4. Structure of the employed FFNN in Section 5 for the 

prediction of maximum strains in buildings subjected to 

tunneling induced settlements. 

5. Application example in mechanized tunneling 
A simulation model of a tunnel section, which is assumed 
to be constructed by TBM method through an urban area, 
is generated using the FE-model described in Section 3.1. 
The tunnel is excavated directly underpass a multi-storey 
building as highlighted in Fig. 5(a). The surface 
settlement prediction and the corresponding building 
damage evaluation are performed to support the TBM 
driver selecting appropriate steering parameters to reduce 
the influence of the tunneling process to the investigated 
building. To obtain the predictions in real-time, surrogate 
models are employed. 

5.1 Settlement prediction 
In this example, a tunnel with an excavation diameter of 
D = 10.97m is assumed to be constructed by a TBM with 
a shallow overburden of 11m. The dimensions of the 
simulation model are 96m, 220m and 72m following X, 
Y, Z axis respectively. Existing buildings are considered 
by rectangular plate-like substitute models with 
corresponding equivalent thickness and stiffness at the 
top of the discretized soil body. It is assumed, that the 
TBM advances completely within the silty sand layer, i.e. 
the second top soil layer of the ground domain 
comprising four layers of soft soil as shown in Fig. 5(a). 
The soil behavior of all layers is assumed to be governed 
by an elastoplastic model using Drucker-Prager yield 
criterion with a linear isotropic hardening. The behavior 
of the lining, the grouting mortar and the TBM are 
assumed to be linear elastic. 

Considering the location of the investigated building, 
a rectangular surface area with 165 points as illustrated in 

Fig. 5(b) is considered as the area of interest in this 
application example. The vertical displacements 
following Z-axis of these 165 points are defined as the 
outputs of a surrogate model using the RNN-POD 
approach. The two inputs of the surrogate model are the 
grouting pressure and the face support pressure applied at 
the tail void gap and the tunnel face respectively.  

Figure 5. Simulation model of a tunnel section underpass a 

building: (a) Geometry; (b) Outputs of the RNN-POD surrogate 

model: settlements of 165 surface points. 

It is assumed that the current state of the TBM 
advance corresponds to the 25rd step of the excavation 
process (directly in front of the investigated building) and 
the history of the process parameters from time step 1 to 
time step 25 is recorded. Here, the objective in this 
section is to predict the surface settlements of all 165 
surface points at further time steps, e.g. the next 3 time 
steps (from time step 26 to time step 28) when the TBM 
passes under the building of interest, for arbitrary changes 
of the support and grouting pressures. In this example, 18 
monitoring points are selected to be predicted by the 
RNN, which consists of 2 hidden layers with 20 neurons 
in each layer, see Fig. 2. 

To set-up the surrogate model, a total number of 60 
FE simulations corresponding to 60 combinations of input 
parameters is carried out. In each simulation, the input is 
a combination of a scenario of time varying levels of the 
grouting pressure GP and the face support pressure SP. 
The values of pressures in each time step are randomly 
initialized within possible ranges taken from practical 
tunneling processes, i.e. [60, 180] kPa for GP and [50, 
150] kPa for SP. From the 60 FE simulations, two main 
data sets are split with ratios of 80% and 20% for the 
training and validation of the RNN-GPOD model. The 
quality of the surrogate model is then evaluated by 
comparing the prediction and "true" FE results of the 
validation set, i.e. 12 randomly selected simulation cases.  

Figure 6 shows the prediction performance of the 
surrogate model RNN-POD as compared to the FE 
solution for the validation case 3 among the 12 validation 
cases. Regression plots representing for the agreement 
between predicted results from RNN-POD model and FE 
results at time step 26, 27 and 28 are depicted in Fig. 6(a). 
Figure 6(b) shows a comparison of the time evolution 
settlement of a surface point from FE and surrogate 
models. The average prediction error of all 12 validation 
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cases using the RNN-POD surrogate model is around 7%. 
For this nonlinear problem, it is shown, that the surrogate 
model can produce good prediction results with similar 
accuracy comparing to the FE solutions. The computation 
time is significantly reduced from 12 hours for the FE 
analysis to less than 1 second with the surrogate model 
approach. Hence the RNN-POD model is employed for 
the next step of the TBM supported steering strategy by 
providing the predicted surface settlement field to the 
building damage assessment. As a result, the settlements 
of 8 surface points belonging to the building cross section 
points set SB see Fig. 5(b), are the inputs of the 
two-dimensional structural facade model. 

Figure 6. Prediction performance of the RNN-GPOD surrogate 

model for validation case 3: a) Comparison between predicted 

and FE settlements for all 165 surface points at time steps 26, 27 

& 28; b) comparison between the predicted and FE settlement 

evolution (step 1 to step 28) at surface point 74 (see Fig. 5b). 

5.2 Damage assessment of existing building 
In the next step, the RNN-GPOD surrogate model is 
linked with a structural model for the building by 
providing the settlements SBk at 8 points of the building 
foundation. A structural model of a façade, see Fig. 7(a), 
is established to compute the expected damage. The 
maximum expected strain at the facade is used as damage 
indicator for the classification of the building in terms of 
category of damage (cod). The facade is assumed to be 
made of calcium silicate masonry and a concrete type 
C30/37 according to Eurocode II is used for the 
foundation. The dead load of the masonry and concrete 
are 20 kN/m

3
 and 25 kN/m

3
, respectively. The distributed 

load p=10 kN/m corresponds to the contributions of the 
individual floors on the facade. In the facade model there 
are 180 nodes on this length (in total 15000 quadrilateral 
elements). The required intermediate values for the nodes 
of the facade model are linearly interpolated. 

To train and test the FFNN damage assessment 
surrogate model, the 60 scenarios introduced in 
Subsection 5.1 are used. The 60 scenarios are randomly 
split into three data sub-sets for training, validation and 
testing with respective ratio of 70%, 15% and 15%. For 

each scenario, the 8 settlement values provided by the 
RNN-GPOD surrogate model are defined as inputs of the 
FFNN and the maximum strain in the facade εmax is 
considered as output.  

Figure 7. (a) Geometry of the facade; (b) Regression plot of the 

FFNN for all training cases. 

Figure 7(b) compares the FE results with the FFNN 
predictions in a regression plot. Data points above and 
below the diagonal line indicate an FFNN overestimation 
and an underestimation of the strains, respectively. The 
square areas indicate the areas of the individual categories 
of damage (cod 0 to cod 4). The coefficient of 
determination values (R

2
 = 0,82) indicates that the FFNN 

explains about 82% of all results. Since the exact level of 
strains is not required and only the category of damage is 
important, the FFNN provides satisfactory prediction 
accuracy. Neither over- nor underestimations lead to a 
change of the predicted damage category. 

5.3 TBM steering supported 
For sake of simplicity, in this example only the face 
support pressure is adopted as the operational parameter 
to be controlled. As mentioned above, the TBM has 
proceeded to the 25th step of the tunneling process and 
that the history of the face support pressure is assumed 
from time step 1 to time step 25 with a constant level of 
120 kPa as shown in Fig. 8(a).  

Figure 8. (a) Recorded data for face support pressure up to step 

25; (b) three pressure changing scenarios (mean value). 

In the next 6 excavation steps (i.e 12 meters), when 
the TBM advances underneath the building, 3 scenarios 
of applying face pressure (120 kPa, 90 kPa and 150 kPa) 
are investigated. The face pressure is considered as a 
stochastic number with a normal distribution. The mean 
values used for generating random input parameters SP 
corresponding to three scenarios are μ= 120 kPa, 90 kPa 
and 150 kPa. The standard deviation in the distribution is 
assumed to be constant in all 3 scenarios (ζ = 10 kPa). 
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The objective in this reliability analysis is to calculate 
the probabilities of the building damage category in 3 
investigated face pressure scenarios. A sample size of 10

3
 

is used in the Monte Carlo Simulation. As shown in Table 
2, if the support pressure is applied around 90 kPa 
(scenario 2), 83% is the probability that the building 
damage category is in the group 4. If the support pressure 
remains unchanged (scenario 1), the probability of falling 
to the category 4 reduces to 62%. This value can be 
further reduced to 30% in case of applying a support 
pressure with the mean value of 150 kPa (scenario 3). In 
addition, as compared to a deterministic analysis with the 
support pressure of 120 kPa, which leads to the cod 4 of 
the building damage category, the scenario 1 provides 
more information about the possibility of the building 
damage. Therefore, the results are more helpful for the 
TBM driver to select appropriate operational parameters 
to advance the machine in the next construction steps. 
The computation time of the reliability analyses with 3 
scenarios and 10

3
 samples each (in total 3000 samples) is 

around 40 minutes without the help of parallelization, 
which is still in the range of necessary construction time 
of one ring in mechanized tunneling (typically 1 to 2 
hours). These investigations can therefore provide a basis 
for a real-time application in mechanized tunneling.  

Table 2. Probability of building damage category. 

 Scenario 1 

μ = 120 kPa 

Scenario 2 

μ = 90 kPa 

Scenario 3 

μ = 150 kPa 

cod 3 0.38 0.17 0.70 

cod 4 0.62 0.83 0.30 

 

6. Conclusions 
In the paper, a strategy using the predictions of 
soil-structure interactions to suggest the selection of 
process parameters during the advance of the TBM in 
mechanized tunneling has been presented. FE simulations 
are the basis for the surface settlement field prediction 
and the building damage assessment. ANNs are employed 
to replace the time-consuming FE simulations for the 
real-time predictions. A hybrid surrogate model 
RNN-POD and a FFNN are employed to quickly provide 
the surface settlements and consequently the associated 
damage risk categories. The efficiency of the proposed 
strategy has been illustrated in the application example, 
for which the FE simulations required around 12 hours 
while the proposed approach required only 1 second to 
compute the settlement field with 165 settlement 
components and the associated building damage category 
with a similar accuracy. Using the proposed strategy, a 
reliability analysis to investigate the probability of 
building damage category is performed by considering 
the process parameters as stochastic numbers. With a 
sample size of 10

3
, the reliability results are delivered 

within 40 minutes which can be used to support the TBM 
driver to operate in the subsequent excavation steps.  

One of future developments of the proposed approach 
includes the further consideration of uncertainties in 
mechanized tunneling. The uncertainties can arise from 
geotechnical parameters based on information from 

geotechnical reports and from geometrical parameters of 
the buildings. Sensitivity analysis will be performed to 
investigate the influence of each uncertainty source on the 
final distribution of maximum strain in building or the 
probability of building damage category. 
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