食道扁平上皮癌の分子生物学的バイオマーカーの発現と

根治的化学放射線療法の成績の関係

東京大学大学院医学系研究科 生体物理医学専攻

小林 紫野

目次

1. 序論	6
1.1 食道癌の疫学	6
1.2 食道癌の解剖学的亜部位	
1.3 食道癌の臨床	11
1.4 食道癌の化学放射線療法	12
1.5 食道癌の放射線治療	15
1.5.1 照射手技	15
1.5.2 副作用	20
1.6 化学放射線療法の今後	20
1.7 放射線治療における分子・細胞学的反応	
1.7.1 放射線傷害	
1.7.2 放射線に対する分子・細胞学的反応	25
1.7.3 低酸素と放射線応答	26
1.8 分子生物学的バイオマーカーと癌	27
2. 予備研究「食道扁平上皮癌において根治的化学放射線療法を施行した	た 10 症例に
ついての16種類の分子生物学的バイオマーカーと臨床成績の関係」…	
2.1 目的	
2.2 対象と方法	
2.2.1 症例	

2.2.2 化学放射線療法	
2.2.3 経過観察	
2.2.4 免疫染色	
2.2.5 統計解析	
2.3 結果	
2.3.1 症例	
2.3.2 免疫染色	
2.3.3 臨床成績	
3. 研究1「食道扁平上皮癌において根治的化学放射線療法を施行した 93	「例につい
ての HER-2、p53、MIB-1、HIF-1αの発現と臨床成績の関係」	55
3.1 目的	55
3.2 対象と方法	55
3.2.1 症例	55
3.2.2 化学放射線療法	56
3.2.3 経過観察	57
3.2.4 免疫染色	57
3.2.5 統計解析	62
3.3 結果	65
3.3.1 症例	65
3.3.2 免疫染色	66
3.3.3 統計学的解析	66

4. 研究 2「食道扁平上皮癌における CLDN-1、CLDN-4、CLDN-5、CLDN-7の発行	現
と根治的化学放射線療法の予後との関係」	39
4.1 目的	39
4.2 対象と方法) 0
4.2.1 症例9) 0
4.2.2 免疫染色	€
4.2.3 統計解析9	€
4.3 結果	€
4.3.1 症例	€
4.3.2 免疫染色	€
4.3.3 統計学的解析) 2
5. 考察10)0
5.1 概要10)0
5.2 食道癌の根治的化学放射線療法10)1
5.3 予備研究と研究110)1
5.3.1 p53 とアポトーシス・細胞周期10)1
5.3.2 細胞周期関連タンパク質-p21、p16、Cyclin-D110)4
5.3.3 Bcl-2 とアポトーシス10)7
5.3.4 HER-2 と分子標的薬10)8
5.3.5 癌の浸潤・転移の機構-VEGF、E-cadherin、MMP10)9
5.3.6 癌の浸潤・転移と上皮間葉転換1	11

	5.3.7 癌と低酸素-HIF-1α	111
	5.4 研究2クローディンの研究	112
	5.5 当研究の限界	113
	5.6 今後の展望	115
6.	結論	117
7.	附 1「HIF-1αの免疫染色の条件検討」	118
	7.1 条件検討①	118
	7.2 条件検討②	118
	7.3 条件検討③	121
	7.4 条件検討④	121
	7.5 条件検討まとめ	122
8.	附2「各分子生物学的マーカーの発現の相関とサブグループ解析」	124
	8.1 方法	124
	8.2 結果	125
	8.3考察	125
9.	謝辞	135
参	考文献	136

食道癌は一般に予後の悪い癌であり、最近の医学の進歩にも関わらず、治療に 難渋する場合が少なくない。難治癌の代表である食道癌を制御するには、その生物 学的特性を理解し、手術、放射線療法、化学療法をうまく組み合わせることが必要 である。わが国で多数を占める食道扁平上皮癌は、転移しやすい、放射線感受性や 抗癌剤感受性が高いといった特性を有し、そのメカニズムを分子生物学的に解明す ることは大変重要であると考えられている。また、手術、放射線療法、化学療法に 続く第4の治療法とも言うべき分子標的治療も視野に、生物学的特性の臨床応用も 目前まできている。このような背景で、個々の症例に適した治療を展開し、よりよ い予後と生活の質 (quality of life: QOL)を得るために、さまざまな食道癌の基礎研 究が行われている。

1.1 食道癌の疫学

食道癌は世界で8番目に多い癌で、毎年48万人以上が罹患し、40万人以上が 死亡していると推計されている⁽¹⁾。60歳以上の男性に多く、死亡率も男性で高い。 American Cancer Society による報告では、米国において、2012年に推定される食道 癌の新規症例数は17,460人、死亡数は15,070人という⁽²⁾。また、死亡数全罹患の 80%以上は発展途上国と推計されているが、罹患率・死亡率の国による較差はほか の癌に比べて大きい。たとえば東部南部アフリカや東アジアでは高い罹患率を、米 国や西部中部アフリカでは低い罹患率を示し、その比は約16倍である。組織型に

も地域較差が存在する⁽³⁾。食道癌の組織型は主に扁平上皮癌と腺癌が占めているが、 扁平上皮癌は後進国に多く、腺癌は先進国に多いとされている。罹患率が高い地域 のひとつである中国では、その約90%は扁平上皮癌である。米国および西ヨーロッ パでは現在、食道腺癌の方が扁平上皮癌よりも多くみられ、腫瘍のほとんどが下部 食道に発生する。罹患率の上昇および人口統計学的変化の原因は分かっていないが、 栄養不良状態や野菜摂取不足、熱い飲料の摂取などが考えられている。食道扁平上 皮癌の主なリスク因子は喫煙とアルコールであり、食道癌全体の罹患率は年々上昇 しているにもかかわらず、食道扁平上皮癌の割合は減少している。一方、食道腺癌 については、下部食道の扁平上皮が腺上皮に変化した Barrett 食道の存在が食道腺 癌発生リスクの上昇と関係しており、慢性的胃食道逆流が Barrett 食道の主な原因 であると考えられている。スウェーデンの集団ベースのケースコントロール研究の 成績は、症候性胃食道逆流が食道腺癌の危険因子であることを強く示唆している。 逆流症状の頻度、重症度、持続時間と食道腺癌のリスクの増大との間には、正の相 関が認められる⁽⁴⁾。

本邦では、平成21年の食道癌死亡者数は11,713人で増加を続けている⁽⁵⁾。粗 死亡率では、1950年代の4倍近く上昇しているが、1985年の標準人口を基準とし て年齢調整すると、死亡率はほぼ横ばいか減少傾向で、近年の粗死亡率の上昇は主 に人口の高齢化によることを示している。組織型は扁平上皮癌が90%以上を占めて いるが、近年の食生活の欧米化などにより、欧米諸国同様に扁平上皮癌の割合は減 少していくと予想されている。

1.2 食道癌の解剖学的亜部位

AJCC (American Joint Committee on Cancer)の TNM 分類⁽⁶⁾を参考に、食道癌の 解剖学的亜部位について述べる。食道とは食道入口部から食道胃接合部までをいい、 食道入口部は輪状軟骨の下縁のレベルに一致する。食道癌を頚部食道 Ce (cervical esophagus)、胸部食道 Te (thoracic esophagus)、食道胃接合部に分ける (図 1)。胸 部食道はさらに胸部上部食道 Ut (upper thoracic esophagus)、胸部中部食道 (middle thoracic esophagus)、胸部下部食道 Lt (lower thoracic esophagus) に分ける⁽⁷⁾。頚部 食道は輪状軟骨の下縁から胸郭入口部(胸骨上縁)、すなわち上門歯列から約18 cm までの範囲をいう。胸部上部食道は胸郭入口部から気管分岐部の高さ、すなわち上 門歯列から約 24 cm までの範囲、胸部中部食道は気管分岐部の高さと食道胃接合部 との間の食道を2等分した上部の1/2であり、下縁は上門歯列から約32 cmである。 胸部下部食道は腹部食道を含む約8 cmの長さであり、気管分岐部の高さと食道胃 接合部との間の食道を2等分した下部の1/2である。下縁は上門歯列から約40 cm である。食道胃接合部癌は、中心が食道胃接合部から5 cm 以内にあり、かつ食道 に進展する主要は食道癌として分類される。中心が胃の中で、かつ食道胃接合部か ら5 cm をこえて離れているか、5 cm 以内であっても、食道に進展していない腫瘍 は、胃癌として分類する。

図 1. 食道の区分

図 2. 食道癌の内視鏡検査所見

1.3 食道癌の臨床

無症状で経過し、健康診断や人間ドックで発見される食道癌も20%程度あると されている。このように偶発的に発見される癌は早期である場合が多く、予後もよ い。しかし、食道がしみる感じ、食道のつかえ感、体重減少、胸痛、背部痛、咳、 声のかすれといった症状で発症し、初診にいたる場合も多い。診断には、食道造影 検査も有用であるが、内視鏡検査で直接観察が可能な臓器であり、また細胞採取も 可能なこともあり、治療前の内視鏡検査は必須の項目であるといえる(図 2)。閉 塞が高度な場合には施行できないが、超音波内視鏡(endoscopic ultrasonography: EUS)も有用で、深達度とリンパ節転移を評価することができる。さらに CT

(computer tomography) 検査やときに¹⁸F-FDG PET (¹⁸F-fluorodeoxy glucose positron emission tomography) 検査(図3) も用いて癌の病期を診断する。必要に応じて骨 シンチグラフィを行なうこともある。腫瘍マーカーとしては血清中の扁平上皮癌関 連抗原 (squamous cell carcinoma antigen) と癌胎児性抗原 (carcinoembryonic antigen: CEA) などがあるが、早期診断に有用として確立しているマーカーはない。

食道癌は再発率が高い疾患のひとつであり、根治的治療を受けた患者の全 5 年生存率は 5~30%である⁽⁸⁾。早期で発見された癌については、生存率は高くなる。 I 期は II 期以上と比べて生存率が高く、5年生存率は 70~80%程度である⁽⁸⁾。根治 治療は外科的切除術が中心ではあるが、その補助療法としては、化学療法や化学放 射線併用療法が選択される。手術不能症例や拒否症例には根治的な化学放射線療法 が考慮される。集学的治療(術前化学療法+/-放射線療法+手術、もしくは根治化学 放射線療法+/-手術)にも有用性がある⁽⁹⁾。緩和治療においては、化学療法、放射線 療法(小線源治療を含む)、ステント留置術などの併用によって、個々の症例にお いて効果的な症状の緩和が得られる⁽¹⁰⁾。

1.4 食道癌の化学放射線療法

切除可能な食道癌の外科治療では5~30%の5年生存率が得られる。一方、食 道温存を目的に、根治治療としての放射線療法と化学療法との併用が検討されてき た。根治的化学放射線療法と、放射線療法単独とを比較した Radiation Therapy Oncology Group のランダム化試験(RTOG 85-01)では、併用群の5年生存率に改 善をみた(27% vs. 0%)⁽¹¹⁾。この試験の8年間の追跡で、化学放射線療法を受けた 患者の全生存(OS)率は22%であることが示された⁽¹²⁾。この結果をうけ、放射線 治療単独では食道癌の根治は目指せず、化学療法の同時併用が必須となった。 RTOG 85-01 の結果を改善する試みとして、Intergroup 0123 (RTOG 94-05) は、食 道に限局性腫瘍を有する 236 人の患者を、高線量の放射線療法(64.8 Gy)と 5-フ ルオロウラシル (5-fluorouracil: 5-FU) およびシスプラチン (CDDP) の4ヵ月間の サイクルを併用する化学放射線療法群と従来の線量の放射線療法(50.4 Gy)と同 様の化学療法スケジュールを併用する群にランダム化した⁽¹³⁾。当初、この試験は 298人の患者を登録することになっていたが、予定されていた中間解析で高線量の 放射線使用に対する有効性を得られる見込みが統計的にみて無かったため、1999 年に中止された。追跡期間中央値2年の時点で、高線量放射線療法群と従来の線量 の放射線療法群との間には、生存期間中央値(13ヵ月 vs. 18ヵ月)、2年生存率(31%) vs. 40%) または局所再発率(56% vs. 52%) のいずれにおいても統計的な差は認め

られなかったが、むしろ高線量群で局所制御率が悪かった。高線量群では治療関連 死が高率(10% vs. 2%)に生じた。ただし、高線量群での死亡11例のうち7例で、 50.4 Gy以下の時点で障害が発生していた。この試験の結果、化学放射線同時併用 療法における放射線の線量は50.4 Gyを超える線量には利益がないと判断された。

根治化学放射線療法の前に導入化学療法を施行すべきか否かについては、 RTOG によって切除不能局所領域食道癌での第 II 相無作為比較試験 (RTOG 01-13) が行われた⁽¹⁴⁾。この試験では、導入化学療法として 5-FU、CDDP、パクリタキセ ルを併用して 2 コース行った後に、化学放射線療法を行う群と、導入化学療法とし て CDDP とパクリタキセルを併用した後に、そのまま 5-FU を使用せずに化学放射 線療法を行う群に割り付けられた。この試験は、いずれかのレジメン (5-FU 使用 群 vs. 5-FU 不使用群) による治療群が、前述の RTOG 94-05 (INT-0123) 試験の 1 年生存率 66%を上回る 77.5%を超えることをプライマリーエンドポイントにして いたが、いずれのレジメンもエンドポイントに達しなかった。またそれぞれ 27% (5-FU 使用群)、40% (5-FU 不使用群) のグレード4 の毒性があったため、有望な 治療とはされなかった。この試験の結果、根治化学放射線療法前の補助化学療法は 否定された。

一方、手術の術前補助療法としては、複数の第 III 相試験で、食道癌患者に術前に同時化学放射線療法を施行した群と手術のみを施行した群とを比較している^(9,15-17)。扁平上皮癌患者を対象として、術前に化学療法(CDDP)と放射線療法(1回3.7 Gy、計37 Gy)を併用したのち手術を施行した群と手術のみを施行した群とを比較した多施設プロスペクティブ・ランダム化試験では、併用群の全生存率は改

善せず、術後死亡率は有意に高いことを示した(12% vs. 4%)⁽¹⁵⁾。食道腺癌患者では、単一施設での第 III 相試験により、5-FU、CDDP および 40 Gy の放射線(1 回 2.67 Gy)からなる導入化放射線療法と切除のみの手術とを施行した患者の生存利益は、切除のみを施行した患者よりわずかながら高い(16ヵ月 vs. 11ヵ月)ことが示された⁽⁹⁾。その後の単一施設における試験では、患者(75%が腺癌)を 5-FU、CDDP、ビンブラスチンおよび放射線(1.5 Gy を 1 日 2 回、計 45 Gy)による治療と切除とを施行する群、または食道切除のみを施行する群にランダムに割り付けた⁽¹⁶⁾。追跡期間の中央値が 8 年を越した時点で、手術単独療法群と併用療法群との間には、生存期間中央値(17.6ヵ月 vs. 16.9ヵ月)、全生存率(試験開始から 3 年時、16% vs. 30%)、および無病生存率(試験開始から 3 年時、16% vs. 28%)に有意な差は認められなかった。これらのランダム化試験の結果に基づくと、IIB 期、III 期、および IVA 期の食道癌に対する至適治療法は未だ決定されていないが、手術のみでは不十分であると思われる。

食道表在癌(T1N0M0)の治療には内視鏡的粘膜切除術(endoscopic mucosal resection: EMR)、手術、放射線療法、化学放射線療法などが用いられる。このなかで、粘膜癌(m癌)には EMR が標準治療として確立している。一方、粘膜下層 癌(Sm癌)ではリンパ節転移の頻度が高いこともあり、外科的切除が標準的な治療であった。しかしながら、90年代後半から化学放射線療法あるいは放射線単独 による手術に匹敵する良好な成績の報告があいつぎ⁽¹⁸⁻²²⁾、食道表在癌は化学放射線

わが国においては、T1-3N0M0の切除可能食道癌に対しては手術が第一選択

の治療として行われていたので、90年代中頃まではT4の切除不能食道癌や、頚部 リンパ節転移を有する胸部食道癌症例(Ml-lymph)などの進行症例を中心に化学 放射線療法が行われてきた。T4の切除不能食道癌や、頚部リンパ節転移を有する 局所進行症例に対しても、化学放射線療法によって20-30%程度の2年生存率が得 られている^(23, 24)。

1.5 食道癌の放射線治療

1.5.1 照射手技

照射は背臥位で行う。2次元の治療計画にはバリウム造影によるX線シミュレ ータが用いられてきたが、最近は CT シミュレータを用いた 3 次元治療計画 (three-dimensional conformal radiotherapy: 3DCRT)が主流となっている(図 4)。 3DCRT では食道外への腫瘍進展範囲の同定が容易で、心臓や脊髄などの危険臓器 への線量軽減し、腫瘍に対して十分な線量を照射することが可能である。

放射線治療には、肉眼的腫瘍体積 GTV (Gross tumor volume)、臨床的標的体積 CTV (Clinical target volume)、生理的動きを含む内的標的体積 ITV (Internal target volume)、計画標的体積 PTV (Planning target volume)という体積の概念が存在する (図 5)。GTV は原発巣とリンパ節転移巣の体積であり、CTV は GTV に微視的な 腫瘍浸潤範囲あるいは所属リンパ節領域を含む体積、ITV とは CTV に呼吸、嚥下、 心拍動、蠕動などの体内臓器の動きによる影響を含めた標的体積、PTV はさらに 毎回の照射における設定誤差 SM (set-up margin)を含めた標的体積である⁽²⁴⁾。

食道癌はリンパ節転移の頻度が高く、治療開始時に臨床的にリンパ節転移が明

らかでない症例に対しても予防的に所属リンパ領域に照射を行う照射手法が用い られている。CTV に予防リンパ領域を含む場合の PTV の例を図 6 に示す。しかし 照射範囲が広くなるにつれて有害事象は増加すると考えられており、予防領域の照 射については一定のコンセンサスはない。予防領域を含む広い CTV での食道癌の 化学放射線療法では、心外膜炎、心不全、胸水、肺炎などの重篤な晩期合併症の頻 度が高いとの報告がある⁽²⁵⁾。加えて最近では化学放射線療法で治療した食道癌の遺 残、再発例に対して積極的に救済手術が行われるようになってきているが、広範囲 の CTV での治療後は、救済手術の合併症が増加する懸念もある。一方、予防域を 含まない照射野のデメリットは予防域リンパ節からの再発である。当院では、2010 年以前はおもに予防領域を含む照射範囲で、2011 年以降は予防領域を含まない照 射範囲で化学放射線療法を施行している。

照射野のデザインは前後対向2門にて40Gy/20fr程度照射したのち、続けて 脊髄をはずした斜入2門照射にて残りの線量を照射する手法を行う施設も本邦で は多い。しかし、3DCRTの普及に伴い、肺などへの正常組織線量を最小限にする ために、欧米諸国では前後と斜入あるいは側方からの多門照射が広く用いられてい る。当科では、6MV以上のX線を使用し、前後と斜入からの4門照射で、前後方 向により重みづけしている(図7)。線量の制限だが、脊髄は1回1.8Gyの場合で 45Gy以下に、肺は両肺の70%は20Gy未満に抑える。また、心臓は心室体積の50% は25Gy未満に抑える。

図 4. 三次元治療計画 (3DCRT)

- 上)当院で使用しているライナック (Elekta Synergy)
- 下)三次元治療計画(3DCRT)の一例(放射線治療計画ガイドライ
- ン・2008より抜粋)

図 5. 放射線治療における target volume の概念 (放射線治療計画ガイドライン・2008 より抜粋)

図 6. 食道の部位ごとの PTV の一例 (放射線治療計画ガイドライン・2008 より抜粋)

図 7. 食道癌に対する放射線 治療計画の一例

胸部中部食道癌で左鎖骨上リン パ節への転移のある症例に対 し、所属リンパ領域および全食 道に照射している。

前後方向の比重を重くし、肺への線量を抑えている。

1.5.2 副作用

放射線治療の副作用には、急性期障害と晩期障害がある。急性障害には食道炎、 体重減少、易疲労感、食思不振がある。肺臓炎(図8)は亜急性で、照射後26週 未満に生じることが多い。症状は咳、呼吸苦、低酸素や発熱があるが、重篤な場合 にはステロイド投与が必要となる場合がある。晩期障害には前述の心外膜炎、冠動 脈疾患などのほかに、食道穿孔や食道狭窄(図9)がある。しかし、遅発性の食道 狭窄の半数は局所再発が原因で、良性狭窄の場合には、拡張術は大多数の患者に緩 和治療として有効である。悪性狭窄の場合には、拡張術は効果が少ないばかりか、 合併症のリスクが大きい。

1.6 化学放射線療法の今後

食道癌の化学放射線療法に関するエビデンスは年々増加し、標準治療のひとつ の選択肢として重要な地位を占めるようになった。放射線治療の手法の変化に伴い、 強度変調放射線療法(intensity-modulated radiotherapy: IMRT)や陽子線を用いた化 学放射線療法も検討され、一部の施設は実施されている^(26,27)。平成 24 年 11 月現在 では、当院でも一部の食道癌根治化学放射線療法症例に IMRT を使用している(図 10)。また、化学放射線療法では合併基礎疾患や高齢などによる手術不能例に対し ても十分な根治治療が可能である⁽²⁸⁾。最適な治療法の選択は食道癌治療における重 要な課題のひとつである。治療法選択の一助として、免疫組織化学的手法や遺伝子 発現などを用いて治療前に治療効果予測を行おうという試みもなされている。有用 と思われる指標がいくつか報告されている⁽²⁹⁾がいまだ研究段階である。

図 8. 食道癌に対する放射線化学療法後にきたした放射線肺臓炎 (Grade2)

図 9. 食道癌に対する放射線化学療法後にきたした食道狭窄

図 10. 食道癌に対する IMRT を用いた放射線治療計画の一例

1.7 放射線治療における分子・細胞学的反応

1.7.1 放射線傷害

X線の個々の光子には、物質との相互作用により原子核周囲の軌道から1個の 電子を完全に離脱させるのに十分なエネルギーがある。そのような原子や分子は、 正電荷を残されてイオンとなる。これが電離放射線という用語の所以である。生体 を構成する物質における電子の典型的な結合エネルギーはおおよそ10 eV である。 したがって10 eV を超えるエネルギーをもつ光子が電離放射線と考えられる。

細胞に X 線が照射されると、細胞に付与されたエネルギーの大部分は最初に 水に吸収され、多くの反応性に富むラジカル中間代謝物が迅速に(10⁻¹⁴~10⁴ 秒以 内)生成され、これらが細胞内のほかの分子と相互作用することになる。中でも、 酸化物質であるヒドロキシルラジカル(OH・)は傷害能力が最も高い。エネルギ ー付与自体は、細胞内のどこでも生じうるが、とくに DNA は、細胞にとっての生 物学的重要性のために、電離放射線の重要な標的になる。

DNAに対する電離放射線の効果は、直接効果と間接効果に分けられる(図 11)。 間接モデルでは、化学的に反応性の自由電子が電離により形成され、DNA らせん に近接(10~20 Å)する水分子と反応する^(30,31)。ヒドロキシルラジカル(OH・) などのフリーラジカルは、DNA と化学的に反応して DNA 傷害をおこす。一方、直 接モデルでは、反応性自由電子の吸収が直接に DNA 内でおこり、中間のフリーラ ジカルの段階を経ずに局所的な損傷をおこす。間接および直接傷害は、DNA の 1 本鎖および2本鎖切断の集積、DNA 塩基傷害、DNA-DNA または DNA-タンパク質 架橋結合を誘導しうる。これらは局所的な多数の損傷部位 (locally multiply damaged

図 11. 放射線による DNA 傷害

(「がんのベーシックサイエンス」より抜粋)

図 12. DNA 傷害に対する細胞応答~ATM 経路 (「がんのベーシックサイエンス」より抜粋)

site: LMDS) として発生しうる。1 つの細胞内において吸収線量 1 Gy あたりおよそ 10⁵ の電離が発生し、約 1,000~3,000 の DNA-DNA または DNA-タンパク質架橋結 合、1000 の DNA 塩基の損傷、500~1,000 の 1 本鎖 DNA 切断、20~50 の 2 本鎖 DNA 切断がもたらされる(すなわち、大部分の電離現象は DNA 損傷をひきおこさない)。 これらの DNA 損傷の大部分は、さまざまな DNA 修復経路によって修復可能であ る。

1.7.2 放射線に対する分子・細胞学的反応

細胞は、電離放射線に対して細胞周期の進行を遅らせることで反応する。この 遅れによって、DNA の複製または分裂の前に細胞で DNA 傷害を修復することが可 能になり、その後の細胞世代における遺伝的不安定性が防止されていると考えられ ている⁽³²⁾。一定時間ののち、生存細胞は再び分裂期に入るが、この時間は分裂遅延 といわれる。分裂遅延は、G2 期における細胞周期進行のブロックによる影響がも っとも大きく、G1 期と S 期の細胞でもおこる。細胞周期の異なる細胞は、異なる 放射線感受性も持っている。S 期後期が最も放射線抵抗性で、G2/M 期の細胞が最 も放射線感受性である。

ATM (ataxia telangiectasia mutated) タンパク質は、細胞周期の3つの相すべて においてチェックポイント経路を初期化する役割を果たしている。放射線照射後の G1 細胞周期停止は、正常な ATM-p53/Cdc25A 経路に集中し、サイクリン D および E 複合体の活性の減弱に集中する。(図 12) これは、G1/S 間における Rb タンパク 質の継続した低リン酸化を誘導し、DNA 複製開始を阻止する。この放射線誘導性 G1 停止は、機能的 p53、ATM または Rb タンパク質を欠損する細胞では抑制され る^(33, 34)。また、S 期のチェックポイントは、ATM が媒介する転写因子 BRCA 1、 NBS1、SMC1 のリン酸化によって制御される。さらに放射線治療後の G2 遅延には、 サイクリン B の減少や Chk1 キナーゼの放射線誘導性活性化などにより制御される。 ATM 機能を欠落している細胞は、照射後の G2 チェックポイントの欠陥を示す。

1.7.3 低酸素と放射線応答

細胞に対する放射線照射の生物学的効果は、酸素により増強される。具体的な 機序については不明な点があるが、前述のように、酸素は放射線照射により発生す るラジカルと相互作用し、修復困難な傷害を DNA にもたらす。この生物学的効果 が生じるには、酸素が放射線照射と同時または数ミリ秒以内に細胞に存在しなけれ ばならない。大気中で放射線照射される細胞は、著しい低酸素状態で照射される細 胞に比較して約3倍の感受性を示す。極度の低酸素状態では細胞は抵抗性を示すが、 酸素濃度の増加につれて感受性は急激に増大し、約35 µmol/l(酸素分E 25 mmHg) を超えると最大となる。

一般的な癌細胞の微小環境の特徴としては、低栄養、低い細胞外 pH、高い間 質組織液圧(interstitial fluid pressure: IFP)および低酸素状態である。低酸素状態で は、例えば血液の酸素運搬能に関わるエリスロポエチンや、血管内皮増殖因子 (vascular endothelial growth factor: VEGF)のような血管新生に関連する遺伝子は、 上向きに調節される。このような低酸素状態で調節される遺伝子の多くは、転写因 子の低酸素誘導性因子1(hypoxia inducible factlr-1: HIF-1)をプロモーター領域に持 っているとされている。HIF-1 は低酸素に曝露された細胞で高度に発現し、しばし ば腫瘍で過剰に発現している。HIF-1 は HIF-1αと HIF-1βのヘテロダイマーである が、とくに HIF-1α は酸素存在下では非常に不安定で、短時間で分解される。この ため、HIF-1α を低酸素のマーカーとして用いることができる。

1.8分子生物学的バイオマーカーと癌

癌の転移は転移カスケードと呼ばれる多数のステップを経て成立する⁽³⁵⁾。これ らのステップが成立するには、癌細胞と周囲の細胞、細胞外マトリックスとの相互 作用が重要な役割を担っている。近年、これらにおいて重要な役割を担う vascular endothelial growth factor (VEGF)、transforming growth factor-β (TGF-β)、tumor necrosis factor α (TNF-α)、matrix metalloproteinase (MMP) などの分子を標的とした分子標 的薬が開発されてきた。特に、VEGF に対する抗体阻害薬であるベバシズマブは切 除不能・再発の大腸癌に対する一次療法において標準療法となっており、扁平上皮 癌を除く切除不能な進行・再発の非小細胞肺癌に対しても承認が追加されている。 ベバシズマブは、転移性の胃食道接合部並びに胃の腺癌に対して CDDP、カンプト ポテシン併用療法の効果をみた第 II 相試験で、明らかな化学療法への上乗せ効果 が示されている⁽³⁶⁾。今後も食道癌の治療における分子標的薬の導入が検討されてい くものと考えられる。

このように腫瘍における分子生物学的バイオマーカーの意義は非常に大きい と考えられている。乳癌を筆頭に個別化医療が進む現在、腫瘍の性格や微小環境を 理解することは、適切な医療が行われ予後が改善する一助となるはずである。 また、癌に関わる因子は1つの経路ではなく、多方面に広がっている⁽³⁷⁾。細胞 周期の脱制御もそのひとつである。ここ 10 年来の研究により、有限な寿命の正常 細胞と癌由来細胞における細胞周期制御分子の比較から、癌の発生過程で細胞周期 が必ず脱制御されていることが明らかになっている。細胞周期タンパク質の脱制御 は、多くの場合、患者の予後と深く関連している。細胞周期関連タンパク質として は、p53、p21、p16、Cyclin-D1 などがあげられる。p53 はアポトーシスおよび細胞 周期関連タンパク質をコードする遺伝子として最も有名な癌抑制遺伝子の 1 つで ある⁽³⁸⁻⁴⁰⁾。また、p21 タンパク質および p16 タンパク質も細胞周期調節、特に G1 期停止に寄与する。細胞周期を回転させる役割の cyclin の働きを阻害することによ って G1 期停止させる。

癌とアポトーシスの関係も非常に重要である。アポトーシスを異常に抑制した り、逆に亢進したりする細胞死経路が制御不能になると癌や自己免疫性疾患、神経 変性疾患の原因となる⁽⁴¹⁾。*Bcl-2*は抗アポトーシス遺伝子であり、アポトーシスの 制御に関わる。その産物は二量体を形成し、*bcl-2*の発現増加はアポトーシスの阻 害に関与している。アポトーシスを阻害するため、癌遺伝子である可能性もあると される。

また、癌の多くは、炎症を母地として発生する。食道癌においても、慢性の逆 流性食道炎は食道胃接合部癌のリスクであるし、アルコールやタバコなどがリスク となるのも、慢性炎症が関与している。このように、炎症と発癌は密接な関係を持 っているが、炎症からの発癌についてはさまざまな経路が考えられている。炎症性 サイトカインは増殖因子の nuclear factor kappa B (NF-κB) を活性化させ、NF-κB は cyclooxygenase-2 (COX-2) を強く活性化させる。

癌の性質を細かく認識するために、分子の動きに着目することが重要であると 考えられる。食道癌における分子生物学的バイオマーカーの過去の報告を表1に示 す。

表	1.	食道癌におけ	るバイ	オマーカー	・に関す	る過去の報告
			· ·			

First author	Therapy	Pathology	Ν	Conclusion
Okumura H ^{*1}	CRT	SqCC	62	p53↓p53R2↓でCRT高感受性
Miyazaki T ^{*2}	CRT or RT	SqCC	61	p53↑で低感受性 p21↑Hsp27↓Hsp70↓で高感受性
R Langer ^{*3}	S	AC	137	EGFR↓でOS↓
Gotoh M ^{*₄}	CRT	SqCC	62	EGFR↑でCR↑
Sarbia M ^{*5}	NA-CRT	SqCC	94	p53, EGFR, ATM, CHK2は予後との相関なし
Ressiot E ^{*6}	CRT	SqCC / AC	56	Ki67 ↑ でCR ↑
Yamasaki M ^{*7}	NAC	SqCC	77	p53変異でOS↓
Luo KJ ^{*8}	S	SqCC	134	VEGF↑でOS↑
Wang QM ^{*9}	S	SqCC	132	ERβ↑でDFS↑
Akutsu Y ^{*10}	NA-CRT	SqCC	58	COX2陽性でCRT耐性
Na Zhan ^{*11}	S	SqCC	145	HER-2陰性のほうが予後良好

Abbreviation: CRT = chemoradiotherapy, RT = radiotherapy, NA-CRT = neoadjuvant chemoradiotherapy, S = surgery, SqCC = squamous cell carcinoma, AC = adenocarcinoma, CR = complete response, DFS = disease-free survival

*1) Okumura H, Natsugoe S, Matsumoto M, Mataki Y, Takatori H, Ishigami S, Takao S, Aikou T: The predictive value of p53, p53R2, and p21 for the effect of chemoradiation therapy on oesophageal squamous cell carcinoma. Br J Cancer. 2005 Jan 31:92, 284-289.

*2) Miyazaki T, Kato H, Kimura H, Inose T, Faried A, Sohda M, Nakajima M, Fukai Y, Masuda N, Manda R, Fukuchi M, Tsukada K, Kuwano H:Evaluation of tumor malignancy in esophageal squamous cell carcinoma using different characteristic factors. Anticancer Res. 2005 Nov-Dec:25, 4005-4011.

*3) Langer R, Von Rahden BH, Nahrig J, Von Weyhern C, Reiter R, Feith M, Stein HJ, Siewert JR, Höfler H, Sarbia M:Prognostic significance of expression patterns of c-erbB-2, p53, p16INK4A, p27KIP1, cyclin D1 and epidermal growth factor receptor in oesophageal adenocarcinoma: a tissue microarray study. J Clin Pathol. 2006 Jun:59, 631-634.

*4) Gotoh M, Takiuchi H, Kawabe S, Ohta S, Kii T, Kuwakado S, Katsu K: Epidermal growth factor receptor is a possible predictor of sensitivity to chemoradiotherapy in the primary lesion of esophageal squamous cell carcinoma. Jpn J Clin Oncol. 2007 Sep:37, 652-657.

*5) Sarbia M, Ott N, Pühringer-Oppermann F, Brücher BL: The predictive value of molecular markers (p53, EGFR, ATM, CHK2) in multimodally treated squamous cell carcinoma of the oesophagus. Br J Cancer. 2007 Nov 19: 97, 1404-1408.

*6) Ressiot E, Dahan L, Liprandi A, Giorgi R, Djourno XB, Padovani L, Alibert S, Ries P, Laquière A, Laugier R, Thomas P, Seitz JF: Predictive factors of the response to chemoradiotherapy in esophageal cancer. Gastroenterol Clin Biol. 2008 Jun-Jul:32, 567-577.

*7) Yamasaki M, Miyata H, Fujiwara Y, Takiguchi S, Nakajima K, Nishida T, Yasuda T, Matsuyama J, Mori M, Doki Y: p53 genotype predicts response to chemotherapy in patients with squamous cell carcinoma of the esophagus. Ann Surg Oncol. 2010 Feb:17, 634-642.

*8) Luo KJ, Hu Y, Wen J, Fu JH: CyclinD1, p53, E-cadherin, and VEGF discordant expression in paired regional metastatic lymph nodes of esophageal squamous cell carcinoma: a tissue array analysis. J Surg Oncol. 2011 Sep 1:104, 236-243.

*9) Wang QM, Qi YJ, Jiang Q, Ma YF, Wang LD: Relevance of serum estradiol and estrogen receptor beta expression from a high-incidence area for esophageal squamous cell carcinoma in China. Med Oncol. 2011 Mar:28, 188-193.

*10) Akutsu Y, Hanari N, Yusup G, Komatsu-Akimoto A, Ikeda N, Mori M, Yoneyama Y, Endo S, Miyazawa Y, Matsubara H: COX2 expression predicts resistance to chemoradiotherapy in esophageal squamous cell carcinoma. Ann Surg Oncol. 2011 Oct: 18, 2946-2951.

*11) Zhan N, Dong WG, Tang YF, Wang ZS, Xiong CL: Analysis of HER2 gene amplification and protein expression in esophageal squamous cell carcinoma. Med Oncol. 2012 Jun:29, 933-940.

2.予備研究「食道扁平上皮癌において根治的化学放射線療法を施行した 10 症例に
ついての 16 種類の分子生物学的バイオマーカーと臨床成績の関係」

2.1 目的

食道癌の予後因子、とくに化学放射線療法における予後因子を特定するために、 まず、筆者らは過去の文献で予後因子となる可能性があるとされている各種分子生 物学的バイオマーカーを抽出した。過去の報告を参考に、16 種類のバイオマーカ -、 $tab5 p53^{(42-44)}$ 、 $p21^{(45)}$ 、 molecular immunology borstel-1 (MIB-1、Ki-67) (43, ⁴⁶⁾, p16⁽⁴⁷⁾, Cyclin-D1^(43, 48, 49), E-cadherin⁽⁴⁹⁾, Bcl-2⁽⁴²⁾, TNF- α ⁽⁵⁰⁾, NF- κ B⁽⁵¹⁾, TGF- β ⁽⁵²⁾ MMP-7⁽⁵³⁾ COX-2^(54, 55), epidermal growth factor receptor (EGFR) ⁽⁵⁶⁾, human epidermal growth factor receptor type 2 (HER-2), estrogen receptor (ER), HIF-1 α \gtrsim ついて検討した。予備的研究であり、症例は10症例(生存例5例、死亡例5例) に限定した。これらのバイオマーカーについての過去の報告は術前化学放射線療法 症例や手術単独症例含んでいる場合が多く、根治的化学放射線療法を対象とした研 究はほとんどない(57)。術前化学放射線療法+手術の場合や、手術単独症例の場合と、 根治的化学放射線療法の場合にはそもそも異なる治療法であり、それぞれの場合で 予後因子の種類や臨床成績との相関の程度は異なると考えられる。とりわけ、手術 に比べ化学放射線療法では、腫瘍の性質により奏効率が変わると考えられる。治療 前に根治化学放射線療法に適した症例を分別することができれば、食道を温存し、 手術侵襲を与えずに、しかも成績が劣らない治療を行うことができることになる。 このため、根治的化学放射線療法により適している症例を抽出することこそが予後

因子探究の主目的となる。以上より、根治的化学放射線療法に特化して、その予後 因子を検討することは、非常に重要である。

さらに、臨床成績と相関するようなバイオマーカーを発掘することは、将来的 に分子標的薬の標的となる可能性もあり、新たな治療法を見出すきっかけになるか もしれない。

2.2 対象と方法

2.2.1 症例

当院で2000年6月から2010年6月に根治的化学放射線療法を施行した食道扁 平上皮癌197例のうち、当院で治療前の生検を施行し、かつパラフィンブロックが 保存されている患者の中から、新規に薄切するのに十分な量の検体がある10例(生 存例5例、死亡例5例)を選択し、研究対象とした。症例の一覧を表2に示す。症 例は、4例の治療奏効例と、6例の再発例からなる。これらの症例の病期はAJCC のTNM分類第5版(58)に基づいて決定した。初診時の病期診断は、病歴、問診、 血液検査、胸部X線検査、上部消化管内視鏡検査、胸部および上腹部CT検査、食 道および胃透視検査、呼吸機能検査によって行った。脳のCT検査やMRI検査、 骨シンチグラフィ検査は臨床的に転移が疑わしいときにのみ施行した。症例には、 切除不能食道癌(進行例、高齢者、合併症を有する例)に加え、患者本人が手術を 拒否したために根治的化学放射線療法が施行された症例も含めた。

1.1			01920			(100)	Sooro			total avialo
1	Male		-	T1N0M0	14.8	(Ru)	2000		C/M	iulai cylue 2
- 20 - 20	Male	בו		T1N0M0	15.9	0 0	• ~	7cm	P/D	I က
3 46	Male	Ţ	IVB	T3N1M1b	10.9	13	ю	4cm	P/D	0
4 66	Male	Ħ	IIA	T3N0M0	10.9	0	ю	3.5cm	NA	4
5 80	Male	Ę	≡	T3N1M0	11.3	0	ო	5cm	M/D	4
6 70	Female	Mt	IVB	T2N1M1b	11.5	0	-	6cm	M/D	ო
7 68	Female	Ę	=	T3N1M0	12.1	0	0	4cm	M/D	4
8 79	Male	Ę	≡	T3N1M0	13.5	œ	7	7cm	P/D	7
69 6	Male	Mt	IVB	T2N1M1b	11.6	0	-	2cm	M/D	2
10 65	Male	IJ	IB	T2N1M0	14.8	7	7	AN	P/D	4

表 2 10 症例の患者背景

2.2.2 化学放射線療法

東京大学医学部附属病院で施行する放射線療法については、序文でも触れたが、 この研究に含まれる全患者には、予防リンパ節領域への照射(elective nodal irradiation: ENI)を含む放射線治療を施行した(図7)。照射線量は1回1.8 Gy×28 回、合計50.4 Gyを5.6週間にわたって照射した。治療計画用 CT は自由呼吸下で 撮像した。全食道(食道入口部から胃食道接合部まで)を CTV とし、CT 検査や PET 検査などで臨床的に転移が疑われる M1a までのリンパ節も CTV に含んだ。 PTV は CTV に 5~10 mm のマージンをつけて作成した。照射計画は全例で CT を 用いた 3DCRT で行った。前後方向および斜入方向の少なくとも4 門以上の多門照 射を用いた。前後方向により重みづけをし、斜入方向で脊髄を避けるような計画と した。必要に応じて、前後・斜入以外に 1~2 門の照射野内照射法(Field-in-field 法)を用いて追加した。放射線治療は6~10MV のX線外照射で行った。

全患者は放射線療法と同時に化学療法を併用した(図 13)。化学療法は 5-FU を 800 mg/m²/日の用量で第 1~4 日目と第 29~32 日目に持続点滴し、同時にネダプ ラチン (NDP)を 80 mg/m²/日の用量で第 1 日目と第 29 日目にボーラスで点滴投与 した。化学療法開始第 1 日目に同時に放射線治療を併用した。化学放射線療法終了 後、補助治療として、同様の化学療法を 28 日目までを 1 サイクルとして、1~2 サ イクル追加した。この補助化学療法は、十分な骨髄機能や全身状態(performance states: PS)があり、拒否しなかった患者に施行した。

		-	2	e	4	5	9	7	8	6	:	26	27	28	29	30	31	32	33 3	4 3	5 3	63	7 38	39
放射線浅	台療	0	0	0	0	0			0	0	:	0			0	0	0	0	0		0	0	0	
		開始					土日兆	兄休み				• •	土日初	ቲት									終	7
Rp1 7775(NDP)	80mg/m2	0													0									
升 	500ml																							
Rp2 5-FU	800mg/m2	存続		↑ ↑	↑ ↑	終」									も 続き	" ↑	" ↑	₩÷ ↑						
ソルデム3A	1000ml																							
Rp3 デカドロン	6.6mg	0	0	0	0	0									0	0	0	0	0					
タガメット	200mg																							
ナゼア	0.3mg																							
싚 	100ml																							
Rp4 タガメット	200mg	0	0	0	0										0	0	0	0						
ナゼア	0.3mg																							
生理食塩水	100ml																							

図 13. 当院での食道癌に対する根治的化学放射線療法のレジメン

2.2.3 経過観察

患者は化学放射線療法から1ヵ月後の外来診察ののち、2年までは3ヵ月ごと、 以後は6ヵ月ごとに定期的な診察を受けた。診察ごとに胸部レントゲンと血算、生 化学と腫瘍マーカーSCCの血液検査を実施し、胸部上腹部CTを少なくとも6ヵ月 ごとに実施し、臨床的に転移が疑われた場合にはその都度検査を行った。内視鏡検 査は治療後2年までは3ヵ月ごとを目安に施行した。

2.2.4 免疫染色

対象として、治療前の内視鏡検査の際に採取され、10%中世緩衝ホルマリンに て固定され、パラフィン包埋されて保存されている腫瘍検体を用いた。パラフィン ブロックを厚さ4µmに薄切してスライドを作成した。スライドは脱パラフィンの のち、各種抗体に応じた前処置で抗体賦活化処理された。使用した 16 種類の抗体 の種類と前処置の手法について表3に示す。自動染色機を使用し、水洗したのちに ヘマトキシリンで核染色を行った。

免疫染色の判定は 2 名の医師によって行い、半定量的手法である IRS (immunoreactive scoring) システム⁽⁵⁹⁾を採用した(図 14)。スコアは染色強度と範 囲によって判定される。染色強度を0から3の4段階(0=不染、1=弱、2=中 等度、3=強度)に判定し、染色範囲を0から4の5段階で判定する(0=不染、 1=1~10%、2=11~50%、3=51~80%、4=81~100%)。IRS スコアはこの染色強 度と染色範囲を積算することによって算出し、その範囲は 0 から 12 となる。IRS スコアでは0を陰性、1~4を弱陽性、5~8を中等度陽性、9~12を強陽性とする。
rotein	Type	Source	Pretreatment	Titer	Incubation	Staining
n	Mouse MC	DO7 NCL-p53-DO7 Leica	Microwave	1:200	30 min 37°C	Nucleus
			1 mM EDTA (pH8.0)			
2	Mouse MC	SNCL-WAF-1 Novocastra	Heating (121°C15min)	1:100	overnight 4°C	Nucleus
			Citrate buffer			
			(pH6.0)			
Р .	Mouse MC	MIB-1 M7240 DAKO	Microwave	1:25	30 min 37°C	Nucleus
			1 mM EDTA (pH8.0)			
16	Mouse MC	Z2117 Zeta	Heating (121°C15min)	1:200	overnight 4°C	Cytoplasmic & Nucleus
			Citrate buffer			
			(pH6.0)			
linD1	Rabbit MC	SP4 RM-9104-S Thermo	Microwave	1:250	30 min 37°C	Cytoplasmic
			1 mM EDTA (pH8.0)			
dherin	Mouse MC	36B5 NCL-E-Cad Leica	Microwave	1:25	30 min 37°C	Membrane (Cytoplasmic)
			1 mM EDTA (pH8.0)			
0 - 2	Mouse MC	124 M0887 DAKO	Microwave	1:80	30 min 37°C	Cytoplasmic
			1 mM EDTA (pH8.0)			
Fα	Mouse MC	2C8 sc-52250 Santa Cruz	Heating (121°C20min)	1:100	overnight 4°C	Cytoplasmic
			Citrate buffer			
КВ КВ	Rabbit PC	sc-7178 Santa Cruz	Heating (121°C20min)	1:1000	overnight 4°C	Cytoplasmic
			Citrate buffer (pH6.0)			
<u>-</u> β 1	Rabbit PC	Y241 Yanaihara	None	1:200	overnight 4°C	Cytoplasmic
1P-7	Rabbit PC	AB19135 Chemicon International	None	1:500	overnight 4°C	Cytoplasmic
0X-2	Rabbit PC	18515 IBL	None	0.5ug/m	l overnight 4°C	Cytoplasmic
3FR	Mouse MC	K1492 DAKO	Proteinase K (kit)	R-to-U	30 min RT	Membrane (Cytoplasmic)
ER2	Rabbit PC	K5204 DAKO	Water bath (99°C)	R-to-U	30 min RT	Membrane
			Citrate buffer (pH6.0)			
R	Mouse MC	790-4325 Roche	Microwave 0.01 M	1:100	60 min RT	Membrane (Cytoplasmic)
			Citrate buffer (pH6.0)			
-1α	Rabbit PC	07-628 MILLIPORE	None	1:200	overnight 4°C	Nucleus

Abbreviations: RT = room temperature; R-to-U = ready to use (kit).

表 3.1 次抗体の種類とプロトコル

IRS score = proportion score × intensity score (range 0–12)

図 14. IRS システムと IRS スコア

今回の研究では、低発現か高発現かを判定するにあたり、カットオフ値を以下 のように定めた。

a) p53、p16INK4A、Cyclin-D1、E-cadherin、TGF-β、MMP-7、COX-2、 EGFR、and HIF-1α: 低発現= 0-2; 高発現= 3-12.

- b) Bcl-2 and HER-2: 低発現= 0-8; 高発現= 9-12.
- c) MIB-1 (Ki-67): 低発現=0-3; 高発現=4-12.
- d) p21、ER、and TNF-α: 低発現= 0-3; 高発現= 4-12.
- e) NF-κB: 低発現= 0-11; 高発現= 12.

2.2.5 統計解析

臨床成績および染色結果の関係の統計解析には、症例数が10例と少なく、フィッシャーの正確性検定を用いた。染色結果のそれぞれ2項目ずつの組み合わせにおいて、ピアソンの積率相関係数を求めて相関性を評価した。

生存解析(全生存率 OS、局所制御率 LC、無病再発率 DFS)はカプラン・マ イヤー法により評価し、2 群間の比較はログランク検定を用いた。生存期間は化学 放射線療法の第1日目から起算して、患者死亡または 2012 年 2 月 28 日までの期間 を算出した。局所制御率は遠隔転移による再発を最初にきたした患者では、局所再 発を認めない限り局所制御群に含み、局所再発をした時点をもって局所制御失敗群 に分類した。局所再発しないまま死亡した症例は打ち切り例とした。なお、局所残 存症例は局所再発期間を 0 日とした。統計解析は SAS 社の StatView for Windows Version5.0 を使用し、*p* 値 0.05 以下をもって有意とした。

2.3 結果

2.3.1 症例

10 例の年齢中央値は 68.1 歳、範囲は 46 歳から 80 歳であった。原発巣の位置 は、胸部中部食道癌が 2 例、胸部下部食道癌が 8 例であった。病期は I 期から IV 期までを含んでいた。生存 5 例における追跡期間中央値は 76.2 ヶ月(+/- 24.8 ヶ月) であった。

2.3.2 免疫染色

16 種類の1次抗体に対する免疫染色の結果を表4と図15に示す。

また、各抗体間の相関についても調査した(図 16)。有意な相関を認めた抗体 は以下のとおり:p53 vs. Cyclin-D1 (r=0.791、p=0.045)、EGFR vs. p53 (r=0.803、 p=0.0034)、MIB-1 vs. p21 (r=0.752、p=0.0097)、HER-2 vs. ER (r=0.823、p= 0.020)、TNF- α vs. p21 (r=0.739、p=0.012)、TGF- β vs. COX-2 (r=0.714、p=0.018)、 TGF- β vs. HIF-1 α (r=0.730、p=0.014)、and COX-2 vs. HIF-1 α (r=0.794、p=0.0042)。

2.3.3 臨床成績

16 種類の抗体を 2. 2. 4 の項に示したカットオフ値で 2 群に分け、生存分析を行った(表 5)。生存分析は全生存率 OS (overall survival)(図 17)、局所制御率 LC (local control)(図 18)、無再発生存率 DFS (disease free survival)(図 19) について分析した(TNF-αについては全例陰性であったため、生存分析できなかった)。
2 年生存率は、MIB-1 高発現群 (MIB-1 IRS >= 9) と低発現群 (MIB-1 IRS < 9)

では 71% vs. 0% (*p* = 0.019) で、有意差を認めた。また、NF-κB 高発現群 (NF-κB IRS = 12) と低発現群 (NF-κB IRS < 12) では 0% vs. 100% (*p* < 0.018) で、有意差 を認めた。

2年局所制御率は、HER-2高発現群およびER高発現群(HER-2IRS >= 3、ER IRS >=4) と低発現群 (HER-2IRS = 1 or 2、ER IRS <4) でいずれも 0% vs. 88% (+/-12%) (p = 0.027) であった。HER-2 と ER はいずれも 10 例中 1 例で高発現を示 したが、これは同一患者であったため、結果が同一のものとなった。無再発生存率 でも同様に、HER-2 高発現群と ER 高発現群はともに低発現群に比べて有意な差を 示した。2 年無再発生存率は高発現群対低発現群で、0% vs. 56% (+/- 17%) (p = 0.027) であった。また、2 年無再発生存率については、NF-кB 高発現群対低発現群で 0% vs. 80% (+/- 18%) (p = 0.018) であり、有意な差を認めた。

以上の MIB-1、NF-κB、HER-2、ER 以外の 12 種類のバイオマーカー、すなわ ち p53、p21、p16INK4A、Cyclin-D1、E-cadherin、Bcl-2、TNF-α、TGF-β、MMP-7、 COX-2、EGFR、HER-2、ER、および HIF-1α の抗体については、生存分析において 有意な差を認めなかった。

Pt No	再発の有無	bcl2	cyclinD	E-cadherin	EGFR	MIB-1	p53	HER2	Щ	p16	TNFα	p21	TGFB	NFkb	MMP7	COX2	HIF-1α
-	(-)	≥	s	Σ	Σ	s	s	8	8	۸	۸	۸	Σ	s	Σ	Σ	Σ
7	÷	≥	S	S	Σ	Σ	Σ	3	3	S	3	≥	S	S	S	S	S
°	:	≥	8	S	3	S	3	3	3	S	3	3	3	S	S	Σ	Σ
4	£	≥	8	8	3	Σ	3	3	3	S	3	≥	Σ	S	S	Σ	S
5	ŧ	≥	S	Σ	Σ	Σ	S	3	3	8	3	≥	Σ	S	S	Σ	:
9	÷	≥	S	S	S	S	S	3	3	S	3	S	S	S	S	S	
7	-	≥	Σ	S	S	S	S	3	3	8	3	≥	3	S	Σ	Σ	
ø	÷.	≥	S	S	S	S	S	3	8	S	8	Σ	Σ	S	Σ	S	
6	ŧ	≥	S	S	Σ	S	S	3	3	S	3	≥	S	S	Σ	Σ	
10	ŧ	≥	S	S	S	S	S	3	3	Σ	3	3	3	S	S	8	
Weak		10	7	-	7	0	7	10	10	ო	10	œ	ო	0	0	-	
Moderate		0	-	2	4	ო	-	0	0	-	0	-	4	0	4	9	
Strong		0	7	7	4	7	7	0	0	9	0	-	ę	10	9	e	
Abbreviat	ion: W = weal	k, M =	moderat	e, S = stronç	6												

.	16 種類のバイオマーカーの免疫染色の結果
	₹ 4. 1

Pt No. 6 p53 x200

Pt No. 8 MIB-1 x200

Pt No. 6 p16 x200

Pt No. 8 Cyclin-D1 x200

Pt No. 2 E-cadherin x200

Pt No. 7 bcl-2 x200

Pt No. 2 TNF-α x200 *全例陰性

Pt No. 6 NF-кВ x200

Pt No. 2 TGF-β x200

Pt No. 6 MMP-7 x200

Pt No. 6 COX-2 x200

Pt No. 9 EGFR x200

Pt No. 9 HER-2 x200

Pt No. 8 HIF1-α x200

図 15. 16 種類のバイオマーカーの陽性例 TNF-αは全例陰性のため陰性群を提示

衣 5. 谷裡ハイタマールーと臨床成狼の	判1術
----------------------	-----

	IRS	No.	2y-OS	SD	p value	2y-LC	SD	p value	2y-DFS	SD	p value
IHC	score				log-rank			log-rank			log-rank
bcl-2								•			v
High	(3-12)	3	67	27	0.55	67	27	0.19	67	27	0.85
Low	(0-2)	7	43	19		83	15		43	19	
cyclinD1	. ,										
High	(6-12)	7	43	19	0.38	69	19	< 0.19	43	19	0.32
Low	(0-5)	3	67	27		100	0		67	27	
E-cadherir	۰. ۱										
High	(6-12)	8	50	18	0.76	73	17	< 0.90	50	18	0.75
Low	(0-5)	2	50	35		100	0		50	35	
EGFR	. ,										
Hiah	(6-12)	5	60	22	0.57	80	18	0.75	60	22	0.67
Low	(0-5)	5	40	22		80	18		40	22	
MIB-1	(-									
High	(9-12)	7	71	17	0.019*	71	17	< 0.83	71	17	0.90
Low	(0-8)	3	0	0		100	0		0	0	
n53	(0 0)	Ū	Ū	·			•		Ū	•	
High	(6-12)	8	50	18	0 76	73	17	< 0.98	50	18	0 75
Low	(0-5)	2	50	35	0.10	100	0	< 0.00	50	35	0.10
HFR-2	(0 0)	-	50	00		100	U		50	00	
High	(3-12)	1	0	0	0 22	0	0	0 027*	0	0	0 027*
Low	(0-2)	à	56	17	0.22	88	12	0.027	56	17	0.021
ED	(0-2)	5	50	.,		00	12		50	.,	
High	(1-12)	1	0	0	0.22	0	0	0 027*	٥	0	0 027*
Low	(4-12) (0-3)	0	56	17	0.22	88	12	0.027	56	17	0.027
LOW p16	(0-3)	9	50	17		00	12		50	17	
pio Liab	(6.40)	7	50	40	0.75	75	45	. 0. 22	50	47	0.05
nign L aw	(0 - 12)	1	50	10	0.75	10	15	< 0.23	50	17	0.95
	(0-5)	3	50	35		100	U		50	35	
INF-α	(4.40)	•									
High	(4-12)	0	_	_	—	_	_	_	_	_	—
LOW	(0-3)	10	_	_		_	_		_	_	
p21	(4.40)	•	50	~~			40	0.40	50	~~	0.05
High	(4-12)	6	50	20	0.70	67	19	< 0.16	50	20	0.65
Low	(0-3)	4	50	25		100	0		50	25	
TGFβ		_									
High	(6-12)	7	44	17	< 0.17	76	15	0.34	44	17	0.19
Low	(0-5)	3	100	0		100	0		100	0	
NF-kB		_				_					
High	(12)	5	0	0	< 0.0018*	53	25	0.11	0	0	0.0018*
Low	(0-11)	5	100	0		100	0		80	18	
MMP-7											
High	(6-12)	9	44	17	< 0.90	76	15	< 0.66	44	17	< 0.92
Low	(0-5)	1	100	0		100	0		100	0	
COX-2											
High	(6-12)	7	43	19	0.38	69	19	0.93	43	19	0.88
Low	(0-5)	3	67	27		100	0		67	27	
HIF-1α											
High	(6-12)	7	29	17	< 0.19	69	19	0.74	29	17	0.19
Low	(0-5)	3	100	0		100	0		67	27	

Abbreviation: IHC = Immunohistochemistry, IRS = immunoreactive score, OS = overallsurvival,LC = local control, DFS = disease free survival, SD = standard deviation.

図 17. 全生存率のカプラン・マイヤー曲線 (予備研究)

図 17. (続き) 全生存率のカプラン・マイヤー曲線 (予備研究)

図 18. (続き) 局所制御率のカプラン・マイヤー曲線 (予備研究)

図 18. (続き) 局所制御率のカプラン・マイヤー曲線 (予備研究)

図 19. (祝さ) 無病再発率のカプラン・マイヤー曲線 (予備研究) 研究 1「食道扁平上皮癌において根治的化学放射線療法を施行した 93 例についての HER-2、p53、MIB-1、HIF-1αの発現と臨床成績の関係」

3.1 目的

前述した予備研究「食道扁平上皮癌において根治的化学放射線療法を施行した 10 症例についての 16 種類の分子生物学的バイオマーカーと臨床成績の関係」をふ まえ、p53、MIB-1、HER-2、HIF-1αについて、症例数を拡大して同じ内容の後ろ 向き調査を施行した。

3.2 対象と方法

3.2.1 症例

東京大学医学部附属病院で2000年6月から2010年6月に根治的化学放射線療法を施行した食道扁平上皮癌197例のうち、同院で治療前の生検を施行し、かつパラフィンブロックが保存されている128例を抽出した。さらにその中から、新規に薄切するに十分な量のある93例を決定した。前章の予備研究の対象患者10例もこの93例の中に含み、新たに薄切を行い、他切片と同様に染色し検鏡した。

病理組織学的に扁平上皮癌が確定されているものを対象とした。これらの症例 の病期は AJCC の TNM 分類第 5 版⁽⁵⁸⁾に基づいて決定した。AJCC の TNM 分類の 2002 年に第 6 版へ、2007 年に第 7 版へ改定されているが、この調査にあたり、対 象症例が 2000 年治療例(当時は第 5 版)を含むことから、全症例の病期を第 5 版 に則り判定を見直した。初診時の検査は、病歴、問診、血液検査、胸部 X 線検査、

上部消化管内視鏡検査、胸部および上腹部 CT 検査、食道および胃透視検査、呼吸 機能検査を全症例に施行した。脳の CT 検査や MRI 検査、骨シンチグラフィ検査 は臨床的に転移が疑わしいときにのみ施行した。腫瘍長は内視鏡検査で評価し、狭 窄や閉塞のために内視鏡が通過しない症例など、内視鏡検査で腫瘍長の評価が困難 な症例では、食道造影検査を用いて判定した。しかし狭窄や閉塞が高度な症例では、 食道造影検査でも腫瘍長の評価が困難であったり、誤嚥リスクが高いために施行さ れていなかったりする場合には、胸部上腹部 CT 検査を参考にした。症例には、 T4/M1 (Lym) 症例などの切除不能食道癌に加え、患者本人が手術を拒否したため に根治的化学放射線療法が施行された症例も含めた。切除不能食道癌の中には、高 齢や合併症のために手術困難と判定された症例も含まれた。

なお、この研究は人体材料を使用するため、東京大学医学部附属病院倫理委員 会にて審査をうけ、審査番号 3669 で承認されている。

3.2.2 化学放射線療法

化学放射線療法の方法は前章で述べたとおり。全食道+予防的リンパ領域 (ENI)に 50.4 Gy/28 分割/5.6 週間の放射線外照射を施行した。化学療法は 5-FU と ネダプラチン (NDP)を併用した。

3.2.3 経過観察

前章の予備研究と同様に行った。

経過観察中に転移・再発をきたした症例については、救済手術や化学療法、孤 発肺転移巣への体幹部定位照射(stereotactic radiotherapy: SRT)を適宜施行した。

3.2.4 免疫染色

治療前の内視鏡検査の際に採取され、10%中性緩衝ホルマリンにて固定され、 パラフィン包埋されて保存されている腫瘍検体を用いた。生検検体は多くの場合複 数採取されており、大きさに応じて 1~4 個ずつパラフィンブロックに包埋される。 このため、ひとつの症例で複数のパラフィンブロックが存在する。このような場合 には、病理医の判断により、より適切な検体と考えられるブロックを選択し、ひと つの症例につきひとつのパラフィンブロックを選択して使用した。すなわち、症例 によって 1~4 個ずつの染色を行った。パラフィンブロックを厚さ 4 µ m に薄切して スライドを作成した。免疫染色 (図 20) に用いた 1 次抗体は、p53、MIB-1、HER-2、 HIF-1 αの4種類である。それぞれの性質(モノクローナル抗体、ポリクローナル 抗体、作成動物、メーカーなど)と賦活化のための前処置の詳細を表6に示す。p53、 MIB-1、HER-2 については自動染色機 BenchMarkXT (Roche® (Ventana®)) (図 21) を用いた。HIF-1α については附記に記すような条件検討を行い、最適と考えられ る条件で染色を行った。HIF-1αの染色では1次抗体の反応時間が一晩必要であり、 自動染色機ではなくマニュアルで染色を行った。すべての染色は免疫染色後、緩衝 液を水洗したのちに、ヘマトキシリンで核染色を行った。そののち、エタノール・

キシレンで脱水・透徹し、封入した。

免疫染色の判定は、2名の医師によって行った。p53 および MIB-1 については 前章に示した IRS(immunoreactive scoring)システム(図 14)を採用し、半定量的 に評価した。前述のとおり、IRS システムでは染色強度(0 から 3 の 4 段階)と染 色範囲(0 から 4 の 5 段階)を積算することにより、IRS スコア(0 から 12)を算 出するものである。低発現/高発現の判定は、p53 は IRS スコア 0 から 3 を低発現、 4 以上を高発現とし、MIB-1 は IRS スコア 0 から 4 を低発現、6 以上を高発現とし た(積算で算出するスコアなので 5 は存在しない)。

HER-2 および HIF-1α の評価は経験ある病理医を含む 2 名の医師で行った。 HER-2 の評価については胃癌の生検検体における HER-2 判定基準(表 7)を参考 に(胃癌では切除標本と生検検体で判定基準が異なる)、陰性と陽性に判定した。 HER-2 抗体では正常および腫瘍組織の一部の核および細胞質に交差性反応を認め るが、胃癌の場合と同様、細胞膜への反応性のみを対象とし、細胞質や核への反応 は対象外とした。一方、HIF-1α の評価は 0、1+、2+の 3 段階で行い、0 を陰性、 1+および 2+を陽性とした。

前述のように、1 症例あたり複数の生検個数が存在しうるが、p53 および MIB-1 については、1 つのパラフィンブロック内の複数の生検検体を通して 1 症例あたり の腫瘍部分における発現状況を検討し IRS を用いて半定量的に評価した。HER-2 および HIF-1F の評価については、前述の胃癌 HER2 検査ガイド同様、陽性染色の ある癌細胞クラスターが1 つでもあれば陽性と判断した。

なお、判定の際には患者の臨床情報と照らし合わせることなく判定を行った。

(研究 1)
1 次抗体の種類とプロトコル
表 5.

Staining	Nucleus	Nucleus	Membrane	Nucleus	
Incubation	60 min	60 min	60 min	overnight R1	
Titer	1:50	1:200	R-to-U	1:1000	
Cell conditioning	pH 8.0 Heating 60 min	pH 8.0 Heating 60 min	pH 8.0 Heating 60 min	Heating (121°C15min)	Citrate buffer (pH6.0)
Method	Automatic (VENTANA)	Automatic (VENTANA)	Automatic (VENTANA)	Manual	
Source	DO7 NCL-p53-DO7	Ki-67 M7240 DAKO	HER2(4B5)107918 Roche	610958 BD Biosciences	
Type	Mouse MC	Mouse MC	Rabbit PC	Mouse MC	
Protein	p53	MIB-1	HER-2	HIF-1α	

Abbreviations: RT = room temperature; R-to-U = ready to use (kit).

免	疫組織化学(ABC法)									
1.	脱パラフィン(キシレン、エタノ	ール各4槽ずつ 3分ずつ)、流水水洗								
2.	抗原の賦活化									
	*賦活化溶液	*方法								
	pH6 クエン酸 buffer	オートクレーブ 121℃10 分								
	pH7 クエン酸 buffer	ウォーターバス 95℃40 分								
	pH8 EDTA	マイクロウェーブ 100℃15 分								
	蛋白分解酵素									
	トリプシン 室温 20 分									
	プロテアーゼ K 室温 20 分									
3.	熱処理の場合、室温程度まで冷却									
4.	流水水洗、乾燥、切片のまわりを	パップペンで囲む								
5.	正常ヤギ血清 室温 20 分									
6.	5. 一次抗体 室温 90 分または 4℃一晩(今回 HIF-1α では室温一晩)									
7.	7. TBS 洗浄 3 分×3 回									
8.	内因性 POD の処理 3%過酸化水	素水加 TBS 室温 10 分								
9.	流水水洗(短めに) TBS 洗浄 3	分×1回								
10	.ビオチン標識二次抗体(一次抗体	を作成した動物による) 室温 30 分								
11	.TBS 洗浄 3 分×3 回									
12	.ABC 試薬室温 30 分(使用 30 分)	前には調製)								
13	.TBS 洗浄 3 分×3 回									
14	.DAB 発色									
15	.流水水洗									
16	.ヘマトキシリンで核染色									
17	.流水水洗、色だし									
18	.脱水(エタノール)、透徹(キシレ	~ン)、封入								

図 20. 免疫染色 ABC 法の手順.

図 21. 自動染色機 BenchMarkXT(Roche®(Ventana®))

↓ 表 7. 胃癌 HER-2 判定ガイド

判定強度 スコア	切除標本の染色パターン	生検標本の染色パターン	HER2過剰発現 判定
0	細胞膜に陽性染色なし、あるいは 細胞膜の陽性染色がある癌細胞が1 切片に10%未満である。	陽性染色なし、あるいは細胞膜 の陽性染色がある癌細胞なし	陰性
1+	弱/ほとんど識別できないほどかすか な細胞膜の染色がある癌細胞が1切 片に10%以上認められる。 癌細胞は細胞膜のみが部分的に染 色されている。	癌細胞の染色割合に関係なく、 弱/ほとんど識別できないほど かすかな細胞膜の陽性染色が ある癌細胞クラスターが1つ以 上ある。	陰性
2+	弱~中程度の完全な基底側または 側方の細胞膜の陽性染色がある癌 細胞が1切片に10%以上認められる。	癌細胞の染色割合に関係なく、 弱~中程度の完全な基底側ま たは側方の細胞膜の陽性染色 がある癌細胞クラスターが1つ 以上あり	境界域
3+	強い完全な基底側または側方の細胞 膜の陽性染色がある癌細胞が1切片 に10%以上認められる。 全周性に認められない場合ある。	癌細胞の染色割合に関係なく、 強い完全な基底側または側方 の細胞膜の陽性染色がある癌 細胞クラスターが1つ以上あり	陽性

胃癌トラスツズマブ病理部会 HER2検査ガイド胃癌編

3.2.5 統計解析

生存分析(全生存率 OS、局所制御率 LC、無病再発率 DFS)はカプラン・マ イヤー法により評価し、2 群間の比較はログランク検定を用いた。生存分析は、各 バイオマーカーの染色結果および、年齢・性別・原発巣占拠部位(Ce/Ut/Mt/Lt)・ 腫瘍長・T ステージ・病期について行った。また、バイオマーカー陽性/陰性群の 背景因子の比較は X²検定を用いて行い、この際には必要に応じてイエーツの補正 を使用した。背景因子としては、他のバイオマーカーの発現状況・年齢・性別・原 発巣占拠部位(Ce/Ut/Mt/Lt)・腫瘍長・T ステージ・病期を調査した。多変量解析 は単変量解析で有意と思われた項目について検討し、比例ハザードモデルを用いた。

なお、Tステージの分析にあたっては、T1・T2・T3・T4の4段階の分析のほかに、T1/T2 vs. T3/T4の2群比較も行った。病期の分析にあたっては、I期・II/III 期・IV 期の3群比較のほか、I期 vs. II/III/IV 期の2群比較と、I/II/III 期 vs. IV 期の2群比較を行った。この目的は、3群以上の群分けをすることにより1群あたりの症例数が減じてしまい、その差を統計学的に過小評価してしまうことを避けるためである。

生存期間は化学放射線療法の第1日目から起算して、患者死亡または2012年 6月30日までの期間を算出した。局所制御期間は遠隔転移による再発を最初にき たした患者では、局所再発を認めない限り局所制御群に含み、局所再発をした時点 をもって局所制御失敗群に分類した。統計解析はSAS社のStatView for Windows Version5.0を使用し、p値0.05以下をもって有意とした。

Factors		(n=93)	%
Age	average 67 y.o.	(range:	41 - 86)
	<65 y.o.	37	40%
	>=65 y.o.	56	60%
Sex	Male	84	90%
	Female	9	10%
Location	Ce	7	8%
	Ut	15	16%
	Mt	46	49%
	Lt	25	27%
TumorLength	=<5cm	39	42%
	>5cm	54	58%
T-stage	1	21	23%
	2	12	13%
	3	34	37%
	4	26	28%
Stage		17	18%
		19	20%
		27	29%
	V	30	32%

表 8.93 例の患者背景

Abbreviations : Ce = cervix, Ut = upper thoracic, Mt = middle thoracic, Lt = lower thoracic.

を施行された症例
教済手術/ESD >
表 9.

direct in course	Cause of death	Systemic	Systemic	Systemic	TRD	Systemic	Systemic	•	Systemic	Systemic	TRD	Systemic	Local		Local	Systemic	Systemic	de,	
	Allve/Dead	Dead	Dead	Dead	Dead	Dead	Dead	Alive	Dead	Dead	Dead	Dead	Dead	Alive	Dead	Dead	Dead	= lymph no	
1000	(om)en	11.3	6.0	10.5	16.7	21.1	21.2	39.7	20.3	25.8	11.6	21.2	32.5	61.8	28.5	41.2	17.0	ponse, LN	eath
OS after salvage	(om)	8.5	2.4	5.2	2.9	17.7	13.5	37.7	14.7		1.2	10.1	7.7	36.4	18.5	13.8	6.8	, PR = partial res	atment-related de
	oalvage	do	do	do	do	do	ESD	do	do	do	do	do	ESD+op	do	ESD	do	APC	e response	, TRD = tre
	UF3(mo)	6.0	0.0	4.6	0.0	3.7	7.6	35.7	4.9	0.0	8.6	9.8	8.7	28.2	7.3	25.8	9.1	= complet	oaglation
	FIRST RECURRANCE	local	non-CR	local	local	local	local	local	local	non-CR	local	local+distant(lung)	local	local	local(LN)	local(LN)+distant(lung)	local	acic, Ce = cervical, CR	l, APC = argon-plasma c
Concerned for	rirst response	CR	residual	CR	CR	CR	CR	CR	CR	residual	residual	CR	CR	CR	CR	PR	CR	ic, Lt = lower thor	ucosal dissectior
Turner least	ı umor lengtn	5cm	11cm	2cm	6cm	8cm	7cm	5cm	6cm	4cm	9cm	5cm	3cm	5cm	3cm	2cm	6cm	t = upper thorac	ndoscopic subm
0.0010	orage	IVA	IVB	IVB	IVB	IVB	=	IVB	IVB	ΠA	=	≡	_	B	=	_	-	oracic, U	ESD = eI
	Location	Mt	Mt	Mt	ž	Mt	Ľ	Ę	Mt	Mt	Ę	Mt	ž	Ę	မီ	Mt	မီ	middle th	operation,
	vac	Σ	Σ	Σ	ш	ш	Σ	Σ	Σ	Σ	ш	Σ	Σ	Σ	Σ	Σ	Σ	: Mt =	= do
0.2.4	Age	50	49	69	79	69	76	54	55	60	61	20	64	65	78	59	7	ation	
	NO.	£	5	1	13	15	18	23	31	34	37	38	39	54	7	76	78	Abbrevi	

3.3 結果

3.3.1 症例

年齢は平均 67 歳(範囲: 41~86 歳)で、男性 84 例(90%)、女性 9 例(10%) であった(表 8)。原発巣の位置は Ce から Lt まで含み、Ce 7 例(8%)、Ut 15 例(16%)、 Mt 46 例(49%)、Lt 25 例(27%)と Mt が最多であった。腫瘍長が 5cm 以下の症例 は 39 例(42%)、5cm より大きい症例は 54 例(58%)であった。T ステージは TNM 分類の T 因子であるが、T1 から T4 までを含む。病期は I から IV までで、I 期は 17 例(18%)、II 期は 19 例(20%)、III 期は 27 例(29%)、IV 期は 30 例(32%) であった。化学放射線療法の適応理由は、切除不能食道癌(IV 期)は 30 例(32%)、 75 歳以上の高齢が 18 例(19%)(高齢かつ IV 期の 3 例を除く)、合併症が 40 例 (43%)、手術拒否が 5 例(5%)。

全体の生存期間中央値(MST: Median survival time)は18.6ヶ月(95%信頼区間;15.2-22.0ヶ月)、生存者の追跡期間中央値は37ヶ月(範囲:11~130ヶ月)で あった。2年、3年、5年全生存率はそれぞれ39%(+/-5%)、34%(+/-5%)、23%(+/-5%) であり、2年、3年、5年局所制御率はそれぞれ53%(+/-6%)、50%(+/-6%)、39% (+/-6%)、2年、3年、5年無再発生存率はそれぞれ35%(+/-5%)、30%(+/-5%)、 30%(+/-5%)であった(図22)。

全 93 例のうち、経過中に救済手術または救済内視鏡的粘膜下層剥離術 (endoscopic submucosal dissection : ESD)を施行された症例は16 例で、救済手術の みが12 例、ESD のみが2 例、アルゴンプラズマ凝固療法 (argon plasma coagulation : APC) が1 例、ESD 施行後に続けて救済手術を施行された症例が1 例であった。救 済処置を受けた症例を表9に示す。救済処置後の生存期間中央値は10.1ヶ月(範囲:1.2~37.7ヶ月)であった。

3.3.2 免疫染色

免疫染色の結果を図 23 に示す。各バイオマーカーの高発現率(陽性率)はそれぞれ p53 で 69%、MIB-1 で 54%、HER-2 で 14%、HIF-1 α で 67% であった。

3.3.3 統計学的解析

各バイオマーカーの発現についての生存分析の結果を表 10 に示す。2 年生存 率は p53 高発現群 (p53 IRS >= 4) と低発現群 (p53 IRS < 4) では 50% vs. 17% (p < 0.0001) で、有意差を認めた。また、HER-2 陽性群と HER-2 陰性群では 18% vs. 43% (p = 0.02) で、こちらも有意差を認めた (図 24)。2 年局所制御率は p53 高発現群 (p53 IRS >= 4) と低発現群 (p53 IRS < 4) では 57% vs. 36% (p = 0.0005) であり、 HER-2 陽性群と HER-2 陰性群では 0% vs. 57% (p = 0.003) であった (図 25)。2 年 無再発生存率は p53 高発現群 (p53 IRS >= 4) と低発現群 (p53 IRS < 4) では 44% vs. 13% (p < 0.0001) で、HER-2 陽性群と HER-2 陰性群では 0% vs. 41% (p = 0.003) であった (図 26)。以上のように、HER-2 および p53 においては全生存率、局所制 御率、無再発生存率のすべてで有意差を認めた。一方、MIB-1 および HIF-1a にお いては、全生存率、局所制御率、無再発生存率のいずれでも有意差を認めなかった。

背景因子ごとの生存分析の結果を表 11 に示す。全生存率についてのカプラン・マイヤー曲線を図 27 に示す。腫瘍占拠部位ごとの全生存率の検討では、2 年

生存率は Ce で 43%、Ut で 20%、Mt で 37%、Lt で 55%であった (*p* = 0.02)。また、 T ステージごとには、2 年生存率は T1 で 67%、T2 で 50%、T3 で 37%、T4 で 15% であった (*p* = 0.03)。また、T1/T2 vs.T3/T4 の解析では、2 年生存率は T1/T2 で 61%、 T3/T4 で 28%であった (*p* = 0.01)。全生存率については、それ以外の因子(年齢・ 性別・腫瘍長・病期)については有意差を認めなかった。

各背景因子の局所生存率についてのカプラン・マイヤー曲線を図 28 に示す。 病期ごとの2年局所制御率は、I 期 79%、II/III 期 47%、IV 期 38%であった(*p*=0.07)。 I 期 vs. II/III/IV 期の解析では2年局所制御率は79% vs. 43%であり(*p*=0.03)、I/II/III 期 vs. IV 期の解析では55% vs. 38%であった(*p*=0.14)。局所制御率については、 それ以外の因子(年齢・性別・腫瘍長・T ステージ)については有意差を認めなか った。

各背景因子の無病生存率についてのカプラン・マイヤー曲線を図 29 に示す。T ステージごとには 2 年無病生存率は T1 で 66%、T2 で 33%、T3 で 29%、T4 で 17% であった (*p* = 0.35)。しかし、T1/T2 vs.T3/T4 の解析では、2 年生存率は 54% vs. 24% (*p* = 0.005) であり、有意差を認めた。一方、病期ごとの 2 年無病生存率は、I 期 64%、II/III 期 35%、IV 期 18%であった (*p* = 0.006)。I 期 vs. II/III/IV 期の解析では 2 年局所制御率は 64% vs. 28%であり (*p* = 0.01)、I/II/III 期 vs. IV 期の解析では 43% vs. 18%であった (*p* = 0.009)。

b)

図 23. 陽性例の代表的写真 a) p53 陽性例、b)MIB-1 陽性例、c)HER-2 陽性例. c)HIF-1α 陽性例.

HC	tota	I= 93	2y-OS	SD p value	2y-LC	SD p value	2y-DFS	SD p value
	c	%		log-rank		log-rank		log-rank
p53				<i>p</i> < 0.0001		<i>p</i> = 0.0005		p < 0.0001
High(IRS >= 4)	64	%69	50%	(%9)	57%	(%)	44%	(%9)
Low(IRS < 4)	29	31%	17%	(%2)	36%	(10%)	13%	(6%)
MIB-1				p = 0.91		p = 0.71		p = 0.46
High(IRS >= 6)	51	54%	41%	(%2)	51%	(8%)	33%	(%)
Low(IRS <= 4)	42	46%	38%	(%8)	50%	(8%)	37%	(8%)
HER-2				p = 0.02		p = 0.003		p = 0.003
Positive(1+, 2+)	13	14%	18%	(11%)	%0	(%0)	%0	(%0)
Negative(0)	80	86%	43%	(%9)	57%	(%9)	41%	(%9)
HIF-1 α				p = 0.75		p = 0.99		p = 0.26
Positive(1+, 2+)	62	67%	38%	(%9)	49%	(%2)	32%	(6%)
Negative(0)	31	33%	42%	(%6)	53%	(10%)	38%	(10%)

表10. 染色の陽性率と単変量解析結果

図 24. 全生存率のカプラン・マイヤー曲線 (研究 1)

累積生存率(低発現/陰性)
◆ 打ち切り例(低発現/陰性)
── 累積生存率(高発現/陽性)
● 打ち切り例(高発現/陽性)

図 25. 局所制御率のカプラン・マイヤー曲線 (研究1)

──── 累積生存率(低発現/陰性)
◆ 打ち切り例(低発現/陰性)	
── 累積生存率(高発現/陽性)
● 打ち切り例(高発現/陽性)	

図 26. 無病生存率のカプラン・マイヤー曲線 (研究 1)

時間(月)

—— 累積生存率	(低発現/陰性)
◆ 打ち切り例(1	氐発現/陰性)
── 累積生存率	(高発現/陽性)
◆ 打ち切り例(ネ	高発現/陽性)

時間(月)
Factor		n	2y-OS	SD	p value	2y-LC	SD	p value	2y-DFS	SD	p value
		total=93			log-rank			log-rank			log-rank
Age					p = 0.32			p = 0.46			p = 0.35
	<65	37	38%	(8%)		55%	(9%)		30%	(8%)	
	>=65	56	40%	(7%)		47%	(7%)		38%	(7%)	
Sex					p = 0.70			p = 0.58			<i>p</i> = 0.80
	Male	84	41%	(5%)		52%	(6%)		36%	(5%)	
	Female	e 9	22%	(14%)		32%	(18%)		27%	(16%)	
Locatio	on				<i>p</i> = 0.02			p = 0.77			p = 0.35
	Се	7	43%	(19%)		0%	(0%)		17%	(16%)	
	Ut	15	20%	(10%)		46%	(14%)		23%	(11%)	
	Mt	46	37%	(7%)		50%	(8%)		34%	(7%)	
	Lt	25	55%	(10%)		60%	(10%)		48%	(10%)	
Tumorl	Length				<i>p</i> = 0.54			p = 0.77			<i>p</i> = 0.94
	=<5cm	39	41%	(8%)		51%	(9%)		36%	(8%)	
	>5cm	54	38%	(7%)		49%	(7%)		34%	(7%)	
T-stage	e				<i>p</i> = 0.03			p = 0.07			<i>p</i> = 0.35
	1	21	67%	(10%)		78%	(10%)		66%	(11%)	
	2	12	50%	(14%)		42%	(14%)		33%	(14%)	
	3	34	37%	(8%)		47%	(9%)		29%	(8%)	
	4	26	15%	(7%)		34%	(11%)		17%	(8%)	
	1 or 2	33	61%	(9%)	p = 0.01	64%	(9%)	p = 0.20	54%	(9%)	p = 0.005
	3 or 4	60	28%	(6%)		42%	(7%)		24%	(6%)	
Stage					p = 0.14			p = 0.07			p = 0.006
-	I	17	65%	(12%)		79%	(11%)		64%	(13%)	
	ll or III	46	41%	(7%)		47%	(8%)		35%	(7%)	
	IV	30	22%	(8%)		38%	(11%)		18%	(7%)	
Not	I (II - IV) 76	34%	(6%)	<i>p</i> = 0.16	43%	(6%)	<i>p</i> = 0.03	28%	(5%)	<i>p</i> = 0.01
Not	IV (I - III) 63	48%	(6%)	p = 0.07	55%	(7%)	p = 0.14	43%	(6%)	p = 0.009

表 11. 背景因子による生存分析

図 27. 背景因子ごとの全生存率のカプラン・マイヤー曲線 (研究 1)

図 27 (続き) 背景因子ごとの全生存率のカプラン・マイヤー曲線 (研究 1)

図 28. 背景因子ごとの局所制御率のカプラン・マイヤー曲線 (研究 1)

は 20. (税さ) 背景因子ごとの局所制御率のカプラン・マイヤー曲線 (研究 1)

図 29. 背景因子ごとの無病生存率のカプラン・マイヤー曲線 (研究1)

図 29. (続き) 背景因子ごとの無病生存率のカプラン・マイヤー曲線 (研究 1)

図 29. (続き) 背景因子ごとの無病生存率のカプラン・マイヤー曲線 (研究 1)

82

生存分析で有意差がついた p53 と HER-2 それぞれの背景因子の比較を表 12、 表 13 に示す。p53 高発現群と低発現群の背景因子、および、HER-2 陽性群と陰性 群の背景因子には有意な差を認めなかった。

多変量解析は、全生存率については p53、HER-2、原発巣の占拠部位、T ステ ージで行い(図 30)、p53 陽性、T1/T2、Lt は予後良好因子、HER-2 陽性は予後不 良因子であった。ハザード比はそれぞれ、p53 陰性で 2.57(95%CI: 1.51~4.39、*p* = 0.0005)、HER-2 陰性で 0.36(95%CI: 0.18~0.72、*p* = 0.004)、T1/T2 で 2.65(95%CI: 1.48~4.73、*p* = 0.001)、Lt 食道癌で 0.26(95%CI: 0.12~0.60、0.002)であった。

局所制御率についての多変量解析は、p53、HER-2、病期の3因子で行い(図 31)、p53陽性は局所制御良好因子、HER-2陽性は局所制御不良因子であった。ハ ザード比はそれぞれ、p53陰性で3.05(95%CI:1.64~5.68、p=0.0004)、HER-2陰 性で0.31(95%CI:0.15~0.65、p=0.002)、I期で0.45(95%CI:0.17~1.14、p=0.09) であった。

無再発生存率についての多変量解析は、p53、HER-2、病期で行い(図 32)、p53 陽性とⅠ期は無再発生存率の予後良好因子、HER-2 陽性は予後不良因子であった。 ハザード比はそれぞれ、p53 陰性で 3.77(95%CI: 2.17~6.57、p < 0.0001)、HER-2 陰性で 0.37 (95%CI: 0.19~0.71、p = 0.003)、I 期で 0.36 (95%CI: 0.15~0.85、p = 0.02) であった。

83

表 12. p53 発現と背景因子の比較	
----------------------	--

		Total	p53 exp	ression	
			High	Low	χ2 <i>p</i> value
		(n=93)	(n=64)	(n=29)	
p53	High	69%	-	-	-
	Low	31%	-	-	
MIB-1	High	54%	52%	18%	0.35
	Low	46%	48%	82%	
HER-2	Positive	14%	16%	10%	0.72
	Negative	86%	84%	90%	
HIF-1	Positive	67%	64%	72%	0.43
	Negative	33%	36%	28%	
Age	<65	40%	39%	41%	0.83
-	>=65	60%	61%	59%	
Sex	Male	90%	92%	86%	0.60
	Female	10%	8%	14%	
Location	Ce	8%	9%	3%	0.20
	Ut	16%	11%	28%	
	Mt	49%	52%	45%	
	Lt	27%	28%	24%	
TumorLength	=<5cm	42%	44%	38%	0.60
_	>5cm	58%	56%	62%	
T-stage	1 or 2	35%	39%	28%	0.28
-	3 or 4	65%	61%	72%	
Stage	I.	18%	22%	10%	0.41
-	ll or III	49%	47%	55%	
	IV	32%	31%	34%	
	Not I (II - IV)	82%	78%	90%	0.18
	Not IV (I - III)	68%	69%	66%	0.76

Abbreviations: Ce = cervix, Ut = upper thoracic,

Mt = middle thoracic, Lt = lower thoracic.

		Total	HER-2 expression		
			Positive	Negative	χ2 <i>p</i> value
		(n=93)	(n=13)	(n=80)	
p53	High	69%	68%	77%	0.68
	Low	31%	34%	23%	
MIB-1	High	54%	54%	62%	0.60
	Low	46%	46%	38%	
HER-2	Positive	14%	-	-	-
	Negative	86%	-	-	
HIF-1	Positive	67%	66%	69%	0.96
	Negative	33%	35%	31%	
Age	<65	40%	40%	38%	0.92
	>=65	60%	60%	62%	
Sex	Male	90%	91%	85%	0.81
	Female	10%	9%	15%	
Location	Се	8%	6%	15%	0.22
	Ut	16%	14%	31%	
	Mt	49%	53%	31%	
	Lt	27%	28%	23%	
TumorLength	=<5cm	42%	54%	38%	0.78
	>5cm	58%	73%	62%	
T-stage	1 or 2	35%	34%	46%	0.58
	3 or 4	65%	66%	54%	
Stage	I	18%	20%	8%	0.18
	ll or III	49%	51%	38%	
	IV	32%	29%	54%	
	Not I (II - IV)	82%	80%	92%	0.50
	Not IV (I - III)	68%	71%	46%	0.14

表 13. HER-2 の発現と背景因子の比較

Abbreviations: Ce = cervix, Ut = upper thoracic,

Mt = middle thoracic, Lt = lower thoracic.

総括的な帰無仮説:0S 打ち切り変数:0S打ち切り モデル:比例ハザード

	カイ2乗	自由度	p值
Wald検定	34.285	6	<. 0001
スコア検定	37.758	6	<. 0001
尤度比検定	37.449	6	<. 0001

モデルの係数:0S 打ち切り変数:0S打ち切り モデル:比例ハザード

	自由度	係数	標準誤差	係数/標準誤差	カイ2乗	p值	Exp(係数)
Location	3		•	•	10. 274	. 0164	•
Ce	1	583	. 530	-1.100	1. 211	. 2712	. 558
Lt	1	-1.335	. 423	-3. 156	9.959	. 0016	. 263
Mt	1	556	. 345	-1.611	2.595	. 1072	. 573
T(L/S) : L	1	. 974	. 296	3. 292	10.839	. 0010	2.650
HER2 : N	1	-1.015	. 353	-2.872	8. 251	. 0041	. 362
p53 : N	1	. 945	. 272	3. 478	12.099	. 0005	2. 574

信頼区間:0S 打ち切り変数:0S打ち切り モデル:比例ハザード

	Exp(係数)	95%下側	95%上側口
Location : Ce	. 558	. 198	1.577
Location : Lt	. 263	. 115	. 603
Location : Mt	. 573	. 291	1.128
T(L/S) : L	2.650	1.483	4.733
HER2 : N	. 362	. 181	. 724
p53 : N	2. 574	1.511	4.385

図 30. 全生存率の多変量解析

総括的な帰無仮説:LC 打ち切り変数:LC打ち切り モデル:比例ハザード

- / // // // //	カイ2乗	自由度	p值
Wald検定	22.041	3	<. 0001
スコア検定	24.464	3	<. 0001
尤度比検定	22.093	3	<. 0001

モデルの係数:LC 打ち切り変数:LC打ち切り モデル:比例ハザード

	自由度	係数	標準誤差	係数/標準誤差	カイ2乗	p値	Exp(係数)
p53 : N	1	1.115	. 317	3. 515	12.352	. 0004	3.049
HER2 : N	1	-1.177	. 383	-3.074	9.448	. 0021	. 308
notI:I	1	810	. 480	-1.689	2.851	. 0913	. 445

信頼区間:LC 打ち切り変数:LC打ち切り モデル:比例ハザード

モデル:よ	北例ハザード			
	Exp(係数)	95%下側	95%上側□	l
p53 : N	3. 049	1.637	5.676	
HER2 : N	. 308	. 145	. 653	
notI : I	. 445	. 174	1.139	

図 31. 局所制御率の多変量解析

総括的な帰無仮説:DFS 打ち切り変数:DFS打ち切り モデル:比例ハザード

カイ2乗 白由度

	カイ2乗	自由度	p値
Wald検定	33.998	4	<. 0001
スコア検定	38.082	4	<. 0001
尤度比検定	34.165	4	<. 0001

モデルの係数:DFS 打ち切り変数:DFS打ち切り モデル:比例ハザード

モノル・ル別・							
	自由度	係数	標準誤差	係数/標準誤差	カイ2乗	p値	Exp(係数)
p53 : N	1	1. 328	. 283	4.694	22.029	<. 0001	3. 773
HER2 : N	1	-1.001	. 338	-2.962	8.775	. 0031	. 368
Stage	2	•	-		5.410	. 0669	
Ι	1	-1.024	. 441	-2.320	5.382	. 0203	. 359
II/III	1	291	. 278	-1.046	1.095	. 2954	. 747

信頼区間:DFS 打ち切り変数:DFS打ち切り モデル:比例ハザード

	Exp(係数)	95%下側	95%上側□
p53 : N	3. 773	2. 167	6.570
HER2 : N	. 368	. 190	. 713
Stage : I	. 359	. 151	. 853
Stage : II/III	. 747	. 433	1.290

図 32. 無病再発率の多変量解析

4. 研究 2「食道扁平上皮癌における CLDN-1、CLDN-4、CLDN-5、CLDN-7 の発現
と根治的化学放射線療法の予後との関係」

4.1 目的

化学放射線療法は、局所治療である放射線療法に、全身療法である化学療法を 組み合わせていることによって予後を改善するが、根治治療を行っても局所または 遠隔にしばしば再発するのは、序論で触れたとおりである。癌の浸潤・転移の機構 については、そのメカニズム、微小環境について、近年研究が盛んである。今回、 前述した研究 1「食道扁平上皮癌において根治的化学放射線療法を施行した 93 例 についての HER-2、p53、MIB-1、HIF-1αの発現と臨床成績の関係」では食道扁平 上皮癌の根治的化学放射線療法においては、p53 と HER-2 が予後因子になるという 結果に至った。そして、この研究 1 では、MIB-1 および HIF-1αの発現と臨床成績 の間には、有意な関係を認めなかった。

研究1開始時点では、筆者は HIF-1a が治療効果予測因子になるのではないか と予測していた。それは、一般に低酸素環境では放射線感受性は低下すると考えら れており、低酸素マーカーである HIF-1a と放射線治療は密接な関係があると予測 されたからであった。HIF-1a 単独、もしくは、HIF-1a と p53 など他のバイオマー カーとの発現の組み合わせによって治療効果予測因子になるのではないかと考え られた。しかし、前述のように HIF-1a は単独では治療効果予測因子とはならず、 さらに附2として巻末に附したように、他のバイオマーカーの発現状況と組み合わ せて検討しても、予後因子とはならなかった。

89

これをふまえ、新規の予後因子となるようなバイオマーカーを検討したいと考 えた。そこで、いまだ食道扁平上皮癌での報告が極めて乏しく、また、浸潤・転移 の機構に関わる膜タンパクであるクローディン(Claudin、CLDN)に着目した。ク ローディンは細胞接着因子のひとつで、タイトジャンクションを形成する4回膜貫 通型蛋白質である。1998 年京都大学の月田承一郎博士により発見され、現在まで に少なくとも24 種類のファミリーが同定されている。クローディンについては、 食道扁平上皮癌における発現状況についての報告はなく、発現状況について検討す ること自体も意義があると考えられたため、症例を限った予備研究を行わず、当初 より93 例を対象とした検討を行った。食道扁平上皮癌における発現状況の調査お よび、クローディンの発現と臨床成績の関係を調査することを目的に、研究1の症 例で免疫染色を行った。

4.2 対象と方法

4.2.1 症例

研究1と同一の根治的化学放射線療法を施行した食道扁平上皮癌93例を対象 とした。病期はAJCCのTNM分類第5版⁽⁵⁸⁾に基づいて決定している。

なお、研究1同様に、東京大学医学部附属病院倫理委員会にて審査をうけ、審 査番号 3669 で承認されている。

4.2.2 免疫染色

治療前の内視鏡検査の際に採取され、10%中性緩衝ホルマリンにて固定され、 パラフィン包埋されて保存されている腫瘍検体を用いた。パラフィンブロックを厚 さ4µmに薄切してスライドを作成した。免疫染色に用いた1次抗体(希釈倍率) は、CLDN-1(1:50)、CLDN-4(1:400)、CLDN-5(1:100)、CLDN-7(1:200)の4 種類である。すべてのCLDN抗体はZymed社(サンフランシスコ、カリフォルニ ア)製を使用した。染色は自動染色機BenchMarkXT(Roche®(Ventana®))を用い た。免疫染色後、緩衝液を水洗したのちに、ヘマトキシリンで核染色を行った。そ ののち、エタノール・キシレンで脱水・透徹し、封入した。

免疫染色の判定は、経験ある病理医を含む2名の医師によって行った。CLDN-1 と-7は0、1+、2+、3+の4段階に、CLDN-4と5は0、1+、2+の3段階に判定した。 高発現/低発現の群わけは、CLDN-1は0と1+を低発現、2+と3+を高発現とし、 CLDN-4は0と1+を低発現、2+を高発現、CLDN-5は0+を低発現、1+と2+を高発 現、CLDN-7は0と1+を低発現、2+と3+を高発現とした(図33)。

なお、陽性染色のある癌細胞クラスターが1つでもあれば陽性と判断した。判 定の際には患者の臨床情報と照らし合わせることなく判定を行った。

4.2.3 統計解析

研究1と同様に行った。

生存期間も研究1同様、化学放射線療法の第1日目から起算して、患者死亡または2012年6月30日までの期間を算出した。

4.3 結果

4.3.1 症例

症例は研究1と完全に同一である。

4.3.2 免疫染色

各クローディンの高発現率(陽性率)はそれぞれ CLDN-1 で 70%、CLDN-4 で 22%、CLDN-5 で 12%、CLDN-7 で 27%であった。

4.3.3 統計学的解析

クローディンの発現についての生存分析の結果を表14および図34-36に示す。 CLDN-5 陽性群と陰性群の2年局所制御率は18% vs. 56% (*p*=0.01) で、有意差を 認めた。その他の CLDN については、全生存率、局所制御率、無病再発率に有意 な差を認めなかった。

生存分析で有意差がでた CLDN-5 の背景因子の比較を表 15 に示す。 χ^2 検定で は CLDN-4 と CLDN-5 の発現に相関を認めた (p = 0.01)。また、原発巣の占拠部位 (p = 0.04) に有意な差を認めた。T ステージについては T1/T2 症例で CLDN が発 現する傾向を認めた (p = 0.08)。

多変量解析は、局所制御率については CLDN-5、原発巣の占拠部位、病期(I 期 vs. II-IV 期)で行った(図 37)。ハザード比はそれぞれ、CLDN-5 陰性で 0.36(95% CI: 0.16~0.78、p=0.009)、I 期で 0.29(95% CI: 0.11~0.76、p=0.01)であった。

CLDN-11+x200

CLDN-1 2+ x200

CLDN-1 3+ x200

CLDN-41+x200

CLDN-42+x200

CLDN-51+x400

CLDN-52+x400

CLDN-71+x200

CLDN-72+x200

CLDN-73+x200

図 33. CLDN の免疫染色

HC	ء	2y-OS	SD p value	2y-LC	SD p value	2y-DFS	SD p value
ţ	otal=93	-	log-rank		log-rank		log-rank
CLDN1			p = 0.81		p = 0.50		<i>p</i> = 0.19
Positive(2+)	65	36%	(%)	48%	(%)	30%	(%9)
Negative(0, 1+)	28	46%	(%6)	55%	(10%)	47%	(10%)
CLDN4			p = 0.16		p = 0.40		p = 0.20
Positive(2+)	20	30%	(10%)	50%	(12%)	20%	(10%)
Negative(0, 1+)	73	42%	(%9)	50%	(%9)	38%	(%9)
CLDN5			p = 0.48		p = 0.01		p = 0.13
Positive(1+, 2+)	1	36%	(15%)	18%	(12%)	6%	(%6)
Negative(0)	82	40%	(2%)	56%	(%)	38%	(%9)
CLDN7			p = 0.35		p = 0.99		p = 0.68
Positive(2+)	25	40%	(10%)	52%	(11%)	35%	(10%)
Negative(0, 1+)	68	39%	(%9)	49%	(%2)	35%	(6%)

の発現と生存分析
CLDN
表 14.

図 34. CLDN の発現と全生存率の カプラン・マイヤー曲線

累積生存率(低発現/陰性)
● 打ち切り例(低発現/陰性)
── 累積生存率(高発現/陽性)
◆ 打ち切り例(高発現/陽性)

図 35. CLDN の発現と局所制御率の カプラン・マイヤー曲線

── 累積生存率(低発現/陰性)
● 打ち切り例(低発現/陰性)
── 累積生存率(高発現/陽性)
◆ 打ち切り例(高発現/陽性)

図 36. CLDN の発現と無病生存率の カプラン・マイヤー曲線

	- 累積生存率(低発現/陰性)
•	打ち切り例(低発現/陰性)
	- 累積生存率(高発現/陽性)
•	打ち切り例(高発現/陽性)

表 15.	CLDN-5 の発現と背景因子
-------	-----------------

		Total	Claudin-5	expression	
			Positive	Negative	χ2 <i>p</i> value
		(n=93)	(n=11)	(n=82)	
Claudin-1	Positive	70%	82%	68%	0.57
	Negative	30%	18%	32%	
Claudin-4	Positive	22%	55%	17%	0.01
	Negative	78%	45%	83%	
Claudin-5	Positive	12%	-	-	-
	Negative	88%	-	-	
Claudin-7	Positive	27%	55%	23%	0.07
	Negative	73%	45%	77%	
Age	<65	40%	36%	40%	0.94
	>=65	60%	64%	60%	
Sex	Male	90%	91%	90%	0.64
	Female	10%	9%	10%	
Location	Се	8%	18%	6%	0.04
	Ut	16%	36%	13%	
	Mt	49%	45%	50%	
	Lt	27%	0%	30%	
TumorLength	=<5cm	42%	64%	39%	0.22
	>5cm	58%	36%	61%	
T-stage	1 or 2	35%	63%	32%	0.08
	3 or 4	65%	37%	68%	
Stage	I	18%	27%	17%	0.50
-	ll or III	49%	55%	49%	
	IV	32%	18%	34%	
	Not I (II - IV)	82%	73%	83%	0.68
	Not IV (I - III)	68%	82%	66%	0.47

Abbreviations: Ce = cervix, Ut = upper thoracic,

Mt = middle thoracic, Lt = lower thoracic.

総括的な帰無仮説:LC 打ち切り変数:LC打ち切り モデル:比例ハザード

	カイ2乗	自由度	p値
Wald検定	13.082	5	. 0226
スコア検定	13. 527	5	. 0189
尤度比検定	13. 288	5	. 0208

モデルの係数:LC 打ち切り変数:LC打ち切り モデル:比例ハザード

	自由度	係数	標準誤差	係数/標準誤差	カイ2乗	p値	Exp(係数)
CLDN5 : N	1	-1.036	. 399	-2.600	6.758	. 0093	. 355
notI : I	1	-1.236	. 492	-2.511	6.304	. 0120	. 291
Location	3	•		•	. 570	. 9034	•
Ce	1	087	. 620	141	. 020	. 8881	. 916
Lt	1	344	. 479	719	. 517	. 4720	. 709
Mt	1	241	. 422	571	. 327	. 5677	. 786

信頼区間:LC 打ち切り変数:LC打ち切り モデル:比例ハザード _{Fvn(係数)}

モナル:比例ハサート							
	Exp(係数)	95%下側	95%上側口				
CLDN5 : N	. 355	. 162	. 775				
notI : I	. 291	. 111	. 763				
Location : Ce	. 916	. 272	3.092				
Location : Lt	. 709	. 277	1.812				
Location : Mt	. 786	. 343	1. 798				

図 37. 局所制御率についての CLDN5 の多変量解析

5. 考察

5.1 概要

本稿は、大きく2つの研究と1つの予備研究からなる。いずれも食道扁平上皮 癌に対して根治的化学放射線療法を行った患者を対象とし、治療前の生検検体を用 いた。各種バイオマーカーの抗体を使用して免疫染色を行い、臨床成績との関係を 調査することにより、予後予測因子としての可能性を検討するものである。

まず予備研究において、10 症例を対象に、16 種類のバイオマーカーの発現を 調査した。ここでは、①MIB-1 高発現群で全生存率が良好、②HER-2 および ER が 陰性で局所制御率と無再発生存率が良好、③有意差はつかないが、HIF-1α陽性群 で全生存率が良好な傾向、が示された。症例数が 10 症例と少なく結果の信頼性は 十分でないが、この結果を参考に、次の研究へ進んだ。

研究1では、予備研究をふまえ p53、MIB-1、HER-2、HIF-1αの4種類につい て調査した。予備研究の標本を検鏡すると、ER は陽性と陰性の判定が比較的難し く、予後因子として免疫染色のみで判定するには不向きと考えられたため、除外し た。ここでは、①p53 陽性所見は全生存率・局所制御率・無再発生存率の予後良好 因子、②HER-2 陽性所見は全生存率・局所制御率・無再発生存率の予後不良因子、 が示された。

続いて、研究2は、研究1と同じ症例を用い、癌の浸潤・転移機構に関わる因 子として、クローディンの調査を行った。食道癌は根治的化学放射線療法を施行し、 一度 CR (complete response) が得られた後にも再発する場合がしばしばあり、

100

癌細胞が潜んでいく機序を理解する一助として、研究2を行った。この研究では、 単変量解析では CLDN-5 が局所制御率の予後不良因子であると考えられた。症例 数は多くは無いが参考として、局所制御率に関して CLDN-5 の発現と原発巣占拠 部位、T 因子について多変量解析を施行したところ、多変量解析では CLDN-5 の 局所制御率への有意性は消失した。

5.2 食道癌の根治的化学放射線療法

今回の対象症例に施行した根治的化学放射線療法は、RTOG 85-01 での手法を 踏襲している。RTOG 85-01 との相違点としては、プラチナ製剤として CDDP でな く NDP を使用している点がある。NDP は CDDP よりも骨髄抑制や嘔吐などの副作 用の点で勝っており、しかも成績は悪化しない⁽⁶⁰⁾ため、NDP を採用した。今回対 象とした 93 例の生存期間中央値は 18 ヶ月、2 年全生存率は 39%、2 年局所制御率 は 50%、2 年無再発生存率は 35% であった。これは RTOG 94-05 (INT0123) 試験と 比べて劣らない成績である (序文参照)。

5.3 予備研究と研究1

5.3.1 p53 とアポトーシス・細胞周期

p53 はおそらく最も有名な癌抑制遺伝子の1つである⁽³⁸⁻⁴⁰⁾が、もともとは*p53* 遺伝子がコードするタンパク質の分子量(約53,000 Da)にちなんで名づけられた。 p53 タンパク質(特に G1 期から S 期への移行)を通して、細胞増殖の調節にかか わっている。DNA に損傷を受けた細胞が S 期へ入るのを妨げる、いわばチェック ポイントの働きをしていると考えられている。p53の代表的な転写標的として、細胞周期 G1 期から S 期への移行にとって重要なサイクリン依存性キナーゼ (CDK) の 21k Da 阻害タンパク質である p21⁽⁴⁰⁾と、細胞増殖の阻害タンパク質である GADD45⁽⁶¹⁾を挙げることができる。DNA 傷害や低酸素、癌遺伝子活性化などによる細胞ストレスによって、p53の細胞内での発現レベルが増加する。すなわち、増殖を抑制すべき時期に発現レベルが増加し、細胞を守っていると考えられる。

さらに p53 は、プログラム細胞死あるいはアポトーシスにも関与している。 DNA 傷害を引きおこす放射線や種々の抗癌剤に反応して、p53 はいくつかの種類 の細胞でアポトーシスのプログラムを活性化する。変異 p53 がある細胞では、DNA 損傷を受けてもアポトーシスに陥らないために、多くの変異を蓄積することになり、 直接に癌化を促す。現在、ほとんどの癌治療法は、放射線療法でも化学療法でも、 細胞 DNA の傷害に基づいている。これらの治療により、細胞はアポトーシスのみ ならず壊死によっても死にいたる。細胞や腫瘍を放射線や抗癌剤で処理したあとに、 よくアポトーシスの徴候がみられることから、これらの治療によりアポトーシスが 誘導されるのであり、治療に対する抵抗性の原因の1つはアポトーシス機構の異常 であるとみなされることが多かった⁽⁶²⁾。たとえば、内因性の変異型 p53 タンパク質 をもつ大腸癌細胞に野生型 p53 遺伝子をトランスフェクションすると、5-FU、カン プトテシン、および放射線に対する感受性が増大するという報告がある^(63,64)。また、 p53 が欠失すると、神経芽腫細胞が高度の多剤耐性になるという報告もある⁽⁶⁵⁾。近 年では癌細胞のアポトーシスを誘導する治療方式が開発されつつある(60)。抗アポト ーシスタンパク質である Bcl-2 をターゲットに、Bcl-2 の働きを抑制する低分子化

合物などが開発されている。しかし、実際の癌治療の効果判定の基本的な尺度は、 治療によって癌細胞の増殖力をいかに抑え込み、縮小できるかということであり、 この増殖力抑制の効果は、コロニー形成アッセイで測定することができる。いくつ かの研究によれば、この方法で調べた細胞の生存率の低下はアポトーシスの程度と はあまり合致しない⁽⁶⁷⁾。アポトーシスは、抗癌剤によって死をもたらす主要な機構 ではなく、すでに自己増殖能を失った細胞を処理するための経路になっているかも しれないとも考えられている⁽³⁰⁾。アポトーシスと抗癌治療感受性の問題はまだ決着 がついていない。

一方で、放射線治療または化学療法によってひきおこされる DNA 損傷は、細胞周期の進行に遅延をもたらす、いわゆる細胞周期チェックポイントが損なわれる と、DNA 相同組み換え修復機構が不完全になる。そこで、チェックポイントで作 用するタンパク質を阻害することにより、抗癌治療に対する感受性を上昇させる試 みもなされている⁽⁶⁸⁾。

ここで今回の結果について検討したい。過去の報告では、p53 陽性群は放射線 や化学療法への感受性が低く、予後も不良であるとされている⁽⁶⁹⁾が、下咽頭癌では p53 陽性群が予後良好との報告もあり⁽⁷⁰⁾、前述のように、アポトーシスと癌の関わ りと同様、いまだ決着に至ってはいない。今回の研究では、p53 陽性群で予後良好 であった。そもそも放射線治療による細胞死のほとんどは、放射線により DNA 損 傷を受け、それを修復しきれずに数回分裂した後に細胞死をおこす、「分裂死」で ある。放射線による DNA 損傷は1本鎖損傷と2本鎖損傷があるが、1本鎖損傷の 場合は通常は速やかに修復され、2本鎖損傷が事実上の主な作用機序である。しか し、p53 に異常をきたしていると DNA 損傷の修復機能に障害がある状態となり、 この修復がおこりづらくなっていると考えられる。この仮定で考えれば、p53 の異 常発現例というのは、化学放射線治療においてはむしろ放射線の治療効果がよく出 る症例であり、予後良好となったのではないかと考えられる。今後、放射線治療と p53 の関わりについては、血清マーカーと治療効果の関係や、再発腫瘍での発現な どの研究も必要と考える。

今回の研究においては、p53 の発現状況を免疫染色で検討した。正常細胞では 正常の p53 タンパクは非常に半減期が短く、免疫染色で陽性となるような量は存在 しない。しかし、p53 の変異による異常 p53 タンパクは核内に蓄積する。一般には、 p53 の陽性所見は、この異常 p53 タンパクの発現を見ていると考えられている。し かし、腫瘍における免疫染色での p53 の発現と、変異型 p53 の検出は、過去にさま ざまな報告があり^(44,71)、免疫染色の発現と変異型 p53 の検出が必ずしも一致しない ことも報告されており、注意が必要である。

5.3.2 細胞周期関連タンパク質-p21、p16、Cyclin-D1

細胞周期に関わる遺伝子/タンパク質は、p53 だけではない。p21 タンパク質 および p16 タンパク質も細胞周期調節、特に G1 期停止に寄与する。p21 タンパク 質と p16 タンパク質は、老化した線維芽細胞で増加し、G1 期停止をおこす⁽⁷²⁾(図 38 図 38)。細胞周期停止は、治療薬による場合も含め、DNA 損傷への反応として もおこる。この過程は S 期に損傷した DNA の複製を防げる。細胞周期を回転させ る役割の Cyclin-D1 などと対比して、サイクリンをアクセル、p21 などをブレーキ

図 38. 細胞周期と G1 チェックポイント

と表現する場合もある。サイクリンは CDK-サイクリン複合体を成して細胞周期を 回転させるほうに働くが、p21 はこのサイクリン E-CDK2 複合体に結合して作用を 阻害し、同じように作用する p27、p57 とともに、Cip/Kip ファミリーと呼ばれる。 また、p16 はサイクリン D と拮抗することによって、サイクリン D-CDK4、6 の作 成を阻害する。p16 は同様に作用する p15、p18、p19 とともに Ink4 ファミリーと呼 ばれる。Ink4 ファミリーと Cip/Kip ファミリーをあわせて、CDK 阻害因子(CDK inhibitor: CKI)と呼ばれる。

癌細胞においてはこの細胞周期調節が脱制御している状態にある。その脱制御 は、Cyclin-D1の増幅や、p21の欠失、p16の欠失やメチル化によって生じる。ヒト の癌の予後予測における p21の価値ははっきりしていない。たとえば、少数の小規 模研究で、乳癌において p21の低値が予後不良と相関することが示されているが、 他の研究では p21の高値が予後不良と相関することが示されている⁽⁷³⁾。一方、p21 タンパク質の減少は大腸癌の 33%に見られるとされており⁽³⁰⁾、大腸癌においては p21の減少が独立予後因子であることが多変量解析によって示されている⁽⁷⁴⁾。

Cyclin-D1 の異常発現は、リンパ腫や頭頚部癌、肺や食道の扁平上皮癌、乳癌 や膀胱癌などで認められる。Cyclin-D1 は組織培養やマウスにおいて発癌性を示し、 乳癌の 45%でその過剰発現を認められているが、乳癌の予後と Cyclin-D1 の増加と の間に確固とした相関はない⁽⁷⁵⁾。Cyclin-D1 の過剰発現はエストロゲンレセプター (ER) が陽性のときに見られ、かえって予後良好とする研究が多い。

このような細胞周期 G1 チェックポイントで作用する分子は、今回は予備研究の 10 症例のみで検討した。化学放射線療法においては、化学療法も放射線療法も

どちらも DNA を損傷する方向に働く。さらに X 線外照射においては、放射線効果 としての細胞死は分裂死が主なものであり、細胞周期の脱制御状況と深く関わって いると考えられる。しかし、今回の検討では、食道癌の根治化学放射線療法におい て、これらの分子と予後との間には関係を見出せなかった。

5.3.3 Bcl-2 とアポトーシス

Bcl-2は、アポトーシス抑制活性を持つ癌遺伝子である。Bcl-2の機能は、当初 は他の癌遺伝子と同じように、細胞増殖に関与していると予想されていたが、1988 年、Vaux らにより、IL-3 依存性細胞の IL-3 除去時の生存を Bcl-2 が保障するとい うことが示された。続いて、1989 年には、辻本により、Bcl-2 がストレスや抗癌剤 によるアポトーシスを抑制することが証明され、Bcl-2 が抗アポトーシス活性を持 つことが明らかとなった。このように、Bcl-2 はアポトーシス抑制活性を持つ最初 の例であり、また配列が明らかになった最初のアポトーシス関連遺伝子である。そ の後、Bcl-2 はかなり広範なアポトーシスを効率よく抑制することが明らかとなり、 アポトーシス制御の最も重要な因子の一つと考えられている。また、Bcl-2 のアポ トーシス抑制活性が明らかになって以来、多くのファミリー遺伝子が同定されてお り、その相互作用ネットワークにより、アポトーシス実行の制御を行なっている。 Bcl-2 ファミリータンパク質の主な作用部位はミトコンドリア膜であり、この膜透 過性を制御することにより、細胞の生死を決定している。

また、Bcl-2 は癌遺伝子の一つと考えられており、ゲノムの突然変異率を上昇 させることにより癌化に寄与している可能性が報告されている。 今回の10症例での検討では、Bcl-2は全体に染色性が低かった。ヒトの癌では しばしば増加するといわれているが、予後との相関はわかっていない。

5.3.4 HER-2 と分子標的薬

ヒト上皮増殖因子レセプター2(human epidermal growth factor receptor 2: HER-2) は、上皮成長因子受容体 (epidermal growth factor receptor: EGFR) ファミリーの1 つで、チロシンキナーゼ受容体である。正常細胞において細胞の増殖、分化などの 調節に関与しているが、HER-2遺伝子の増幅がおこると、細胞の増殖・分化の制御 ができなくなり、細胞は悪性化する。すなわち HER-2 遺伝子は癌遺伝子でもあり、 頭頸部扁平上皮癌、神経膠腫、乳癌、肺癌、大腸直腸癌、前立腺癌といった多くの 種類の癌で遺伝子増幅がみられる^(76,77)。およそ 25%の乳癌で過剰発現を認める。 過剰発現は、疾患の悪性度が高いことと、予後が悪いことに関係している。しかし、 抗 HER-2 ヒト化モノクローナル抗体であるトラスツズマブ (ハーセプチン®) を HER-2 タンパク質過剰発現の転移性乳癌の女性に化学療法と併用して使用するこ とによって、生存が延長した⁽⁷⁸⁾。さらに、国際共同第Ⅲ相臨床試験 ToGA 試験 (B018255)において、HER-2 陽性進行・再発胃癌で、トラスツズマブの併用によ り、全生存期間の有意な延長が示され⁽⁷⁹⁾、2010年1月にEU、10月に米国におい て「HER-2 陽性転移性胃癌または胃食道接合部癌」へのトラスツズマブの適応が 承認された。2011 年 3 月には、本邦でもトラスツズマブの「HER-2 過剰発現が確 認された治療切除不能な進行・再発の胃癌または胃食道接合部癌」への追加適応が 承認された。
食道扁平上皮癌における HER-2 発現についても、いくつかの研究が報告され ている。三村らは食道扁平上皮癌患者の 29.4%で HER-2 が発現していたとし、*in vitro* で HER-2 強発現食道扁平上皮癌細胞株に herceptin と lapatinib を投与し、増殖 抑制とアポトーシスの増加を確認した^(80,81)。また、松本らは食道扁平上皮癌の化学 放射線療法の感受性予測因子として、HER-2 発現は治療抵抗性であると述べている (⁸²⁾。これらの報告は今回の研究結果と矛盾しない。今回の研究では遺伝子増幅では なく、免疫染色で評価を行っても同様の結果を得られた。食道癌においても、HER-2 高発現食道扁平上皮癌については、抗 HER-2 ヒト化モノクローナル抗体の適用も 検討されるべきと考える。また、血清 HER-2 は組織学的 HER-2 陽性と相関してい るとされており、今後は血清 HER-2 と臨床成績との関係や、経時的変化、上昇と 再発の関係など、実地臨床に即した研究が求められる。

5.3.5 癌の浸潤・転移の機構-VEGF、E-cadherin、MMP

癌の転移は、①癌細胞の癌組織からの遊離、②周囲組織への浸潤、③血管内へ 侵入、④血管内の移動と転移臓器血管内での停止、⑤血管外への遊出、⑥転移臓器 への着床、⑦転移巣の形成など、転移カスケードと呼ばれる多数のステップを経て 成立する⁽³⁵⁾。これらのステップが成立するには、癌細胞と周囲の細胞、細胞外マト リックスとの相互作用が重要な役割を担っている。

腫瘍血管新生は腫瘍の増殖にとって不可欠であると同時に、癌の転移に際して も重要である。腫瘍血管では周皮細胞と血管との接着がルーズであるため、原発巣 から離脱した癌細胞が侵入しやすく、転移形成の経路となりうる。腫瘍血管新生の もっとも重要な促進因子として VEGF が知られている。

細胞接着因子の機能低下は癌細胞の原発巣からの離脱を引きおこすが、その接着因子として E-cadherin が重要である。E-cadherin は α、β-catenin と複合体を形成 して細胞間接着を保持している。これらの遺伝子に変異が生じると、細胞接着機能 が低下し、癌細胞からの離脱が生じる⁽⁸³⁾。また、β-catenin は転写促進因子として cyclin-D1 の発現を高める⁽⁸⁴⁾。食道癌については、食道扁平上皮癌 416 例の検討で、 E-cadherin 低発現と cyclin-D1 高発現はそれぞれ独立予後規定因子との報告がある

癌細胞は周囲に存在するコラーゲンやラミニンなどにより構成される細胞外 基質(extracellular matrix: ECM)を分解し、ECM への接着を足場に遊走する。ECM を分解する酵素として MMP が重要な役割を果たしている⁽⁸⁵⁾。MMP は金属を活性 中心に持つタンパク分解酵素で、これまでに 20 種類以上が同定されているが、そ の中でも特に MMP-7 が重要な役割を果たしている。MMP-7 は分泌された後、トリ プシンによって活性化される。MMP-7 およびトリプシンは食道癌浸潤先進部の癌 細胞に強く発現し、それがともに発現している症例では、癌の浸潤・転移が有意に 多く、予後不良である^(53,86)。

これらの浸潤・転移カスケードにかかわる因子について、今回の研究では臨床 成績とタンパク質発現の間に有意な関係を認めることができなかった。理由として は、内視鏡した生検検体を用いており、真の癌の浸潤部が採取できていないことが 考えられる。

5.3.6 癌の浸潤・転移と上皮間葉転換

近年、上皮間葉転換(epithelial-mesenchymal transition: EMT)が癌の浸潤・転 移、とくに脈管内への侵入に関連することが示唆されている⁽⁸⁷⁾。EMT とは、上皮 細胞が間葉系細胞の形質を獲得する現象である。本来は発生・器官形成のさまざま な局面で観察されているが、癌細胞の悪性化や浸潤・転移の過程においても重要な 役割を担う⁽⁸⁸⁾。上皮細胞が癌化する過程において、細胞極性が失われて細胞間接着 が減弱し、細胞の運動性が亢進して周辺組織への浸潤能が高まる。TGF-β は多彩な 生理活性をもつが、EMT を制御する最も重要な因子である。チロシンキナーゼ型 受容体や Ras シグナルと協調しつつ、転写抑制因子の発現を誘導する。これらの因 子は、上皮細胞の性質を規定する E-cadherin などを抑制する。TGF-β はさらに MMP (matrix metalloproteinase) や細胞外マトリックスの発現制御にかかわり、浸潤・転 移のあらゆる段階で多面的に動く。癌細胞における EMT は、低酸素応答、抗癌剤 耐性などとの関連も指摘されている。

5.3.7 癌と低酸素-HIF-1a

低酸素は癌の分化に大きな影響をおよぼし、アポトーシス感受性や治療耐性に 深くかかわっている。また、低酸素は血管新生の強力な誘導因子であり、同時に炎 症・免疫系細胞の活性化にも関与する。組織マクロファージが低酸素に反応して、 血管新生因子やサイトカインを産生することはよく知られている。

末梢組織において、1本の毛細血管が正常細胞を維持するために必要十分な酸素を、拡散によって供給できる距離は約 110μm といわれる。これを反映するよう

に、たとえば正常の食道粘膜では乳頭内毛細管ループが約 100µm 間隔で構築され ている。腫瘍の増殖、代謝亢進により酸素の需要と供給のバランスが崩れたときに 低酸素環境は生じるが、そこに新たに誘導される腫瘍血管は、形態学的にも機能的 にも正常血管とは異なるもので、いびつな低酸素環境はあらゆる浸潤性固形癌にお いて多かれ少なかれ存在する。このように、血管新生や免疫応答におよぼす低酸素 の影響は、癌の生態を理解するうえできわめて重要である。

放射線感受性と低酸素については序論で触れたが、今回の研究では根治的化学 放射線療法を施行した食道扁平上皮癌の予後と低酸素マーカーHIF-1αの発現とは、 明らかな関係を認めなかった。この理由としてはいくつかの事柄が考えられる。ひ とつは、放射線治療単独ではなく、化学放射線療法同時併用であったため、放射線 抵抗性がマスクされたという可能性がある。また、生検検体であり、組織切片が微 小であるため、腫瘍内部は低酸素環境であったとしても、露出して採取される病変 は比較的酸素に曝されており、このためにそもそも HIF-1α の発現が腫瘍そのもの の低酸素環境を厳密に表していない可能性がある。

5.4 研究2クローディンの研究

クローディン(Claudin: CLDN)は密着結合(tight junction: TJ)の主要な接着 分子で、これまでに 24 種類のサブタイプが見つかっており、これらがファミリー を形成している。癌の種類によって CLDN ファミリーの発現パターンは大きく異 なることが報告されている。たとえば、CLDN-4の発現は膵臓癌や前立腺癌で増加 しているが、肝細胞癌や腎臓癌では減少している。CLDNの発現は細胞の癌化や癌 の浸潤・転移を抑制する方向に作用するものと想定されてきたが、CLDN-1 や CLDN-4 の発現はむしろ癌の浸潤・転移の促進に働く可能性があるとの報告もでて きている^(89,90)。逆に、CLDN-1 は癌の浸潤・転移の抑制因子となるという研究結果 もあり、癌の浸潤・転移に関する CLDN の役割およびその分子機構の詳細につい ては、今後の更なる検討が必要である。

今回の研究2では、CLDN-1、-4、-5、-7 について検討した。浸潤・転移に関 わる分子と考えての検討であったが、CLDN-5 が局所制御率との関わりを認めたの みであった。CLDN-5 は血管内皮細胞に特異的に発現するとされ、血管内皮のバリ ア機能を担っている。今回、CLDN-5 陽性例で単変量解析では有意に局所制御不良 であった。通常血管内皮細胞に発現している CLDN-5 が腫瘍細胞に出現していると いう異常発現の状態であり、上皮細胞から EMT をおこしている状態なのかもしれ ない。

5.5 当研究の限界

今回、癌の微小環境に関わる分子を幅広く調査し、食道扁平上皮癌の根治的化 学放射線療法との関わりについて検討した。この研究の限界としては、病期がⅠ期 からⅣ期まですべて含まれてしまうこと、後ろ向き試験であることがある。また、 単一施設での治療経験であり、このために治療条件は比較的均一と考えられるが、 患者背景などに多少の偏りがある可能性も否定できない。

また、生検検体を用いていることも弱点のひとつである。当研究は、手術症例 ではなく、根治的化学放射線療法を施行した症例を対象としている。このため、手 術検体が入手できず、生検検体で評価せざるを得ない。しかし、生検検体はあくま で腫瘍の一部であることは当然であり、腫瘍全体の性質をどの程度反映できている かという点において、疑問が残る。とりわけ、腫瘍の浸潤部の中心は生検では届か ないような深部にあると推測され、表面の生検検体で腫瘍の性質を評価することは ある程度のリスクを孕んでいるといえる。しかしながら、最終的な臨床応用を目標 とするのであれば、治療前の生検検体で評価し、予後予測を行うことこそが重要で あろうことは容易に推測できる。今回のバイオマーカーの発現状況の評価において は、専門の病理医の指導のもと、腫瘍の表層の性質を見るのではなく、腫瘍浸潤部 の性質をより強く評価するなど、限られた生検検体の中で、より正確に腫瘍の性質 を把握できるように努めている。

生検検体を用いたことの危険性は他にも存在する。p53 および MIB-1 の評価に ついては、IRS システムを用いた判定量的評価を行っており、陽性細胞の広がりも 評価に含んでいる。しかし HER-2、HIF-1α、CLDN については、陽性染色を示す癌 細胞クラスターがひとつでもあれば陽性と判定した。これはつまり、生検検体を多 数採取し、検査すればするほど陽性率が高まりうるということである。事実、過去 の報告でも、それぞれの分子生物学的バイオマーカーの陽性率は報告によってまち まちであり、染色条件や抗体などの条件のほかに、生検個数も陽性率に寄与してい る可能性が高い。今回は後ろ向き研究であり、恣意的に多くの生検を施行したよう な事例には遭遇し得ないが、これらのバイオマーカーを予後因子として実際に臨床 応用するとなれば、病理学的診断の正確性や恒常性を整えることが必須となるであ ろう。 免疫染色で評価している点は、この研究の限界のひとつと言えるであろうか。 免疫組織化学、特に酵素抗体法は病理診断や形態学的研究に広く用いられている。 免疫組織化学は生体内の物質の存在と分布を、生物試薬を用いて高感度に、かつ特 異性高く検出する方法である。その特徴として1)手技的に易しい、2)応用範囲が広 いなどが挙げられる。免疫染色の結果が直接的に細胞異常を明示しているわけでは ない。とくに p53 については、前項で述べたように、免疫染色と遺伝子異常の双方 を検討した報告が多く存在し、議論されている。しかし、生体内において機能する タンパクの証明にはやはり免疫染色が重要であり、精度を保つよう十分に配慮した 検査法のもと、慎重な解釈とともに臨床に用いられるべきと考えられる。

5.6 今後の展望

今後の発展として望まれることとしては、病期をさらに限局させた調査や、血 清マーカー(たとえば血清 HER-2 や血清 p53 など)で再発予測ができるか否かの 検討、などが考えられる。

再発腫瘍でのタンパク質発現の状況の検討は、治療に伴う腫瘍の経時的変化を 追うことができ、また再発しやすい腫瘍を判別するにあたり、重要な課題である。 例えば HIF-1 については、放射線治療を生き延びた癌細胞は HIF-1 活性を獲得して 腫瘍内血管に向かって移動するという報告もある⁽⁹¹⁾。腫瘍におけるタンパク発現を 経時的に追うことによって、放射線治療や化学放射線治療に抵抗性を示す腫瘍の特 性や、局在を明らかにできる可能性がある。 治療法の選択という観点からは、手術症例でのバイオマーカーの報告も十 分に検討されるべきである。例えば、手術例を対象とした過去の報告では、p53 高 発現症例は予後不良であるとされており、今回の研究では p53 高発現症例は化学放 射線療法において予後良好因子であった。すなわち、p53 高発現症例は手術よりも 化学放射線療法に適している可能性がある。無論、今回の研究結果と相反する過去 の報告もあり、臨床応用する際には十分な検討が不可欠ではあるが、このように、 手術例の検討と化学放射線療法での検討を比較していくことにより、適切な治療法 選択の一助となるであろう。抗 VEGF 抗体をはじめとした分子標的薬も、最近では *in vitro* で食道扁平上皮癌に有効性を示したとの報告もあり、興味深い。今回の研 究結果をふまえれば、抗 HER-2 抗体による分子標的治療も効果を示すことが期待 できる。各種臓器の腺癌を主体に個別化医療が進む今日、本邦に多い食道扁平上皮 癌についても、詳しい調査を重ねることで、個別化医療・予後改善に一歩ずつ近づ いていくことができると考える。 食道癌は難治癌のひとつであり、とくに本邦では扁平上皮癌の占める割合が大 きい。食道扁平上皮癌に対して根治的化学放射線療法を行った患者を対象とし、治 療前の生検検体を用い、各種バイオマーカーの抗体を使用して免疫染色を行った。 免疫染色での各種バイオマーカーの発現状況と臨床成績との関係を調査すること により、予後予測因子としての可能性を検討した。

p53、HER-2 は食道扁平上皮癌の予後(全生存率・局所制御率・無病再発率) に関係があることが分かった。p53 陽性所見は予後良好因子、HER-2 陽性所見は予 後不良因子であった。また、密着結合 (タイトジャンクション)を形成する CLDN-5 陽性所見が、所制御不良因子である可能性も示唆された。

7. 附1「HIF-1αの免疫染色の条件検討」

免疫染色において、染色の条件設定は大変重要である。染色する抗体によって 適切な条件を設定する必要があり、条件が最適でない場合、誤った結果を導いてし まうこともある。染色状況は検体状況、抗体の種類、希釈濃度、賦活処理、1次抗 体反応時間、手技などによって異なる。今回研究1で使用した抗体のうち、HIF-1a については、最適の染色条件が確定していない。そこで、今回の本研究に先立ち、 HIF-1a の染色条件の検討を行った。

7.1 条件検討①

BD Biosciences 社(アメリカ合衆国、カルフォルニア)の HIF-1a 抗体を使用 した。BD Biosciences 社の HIF-1a 抗体を使用した過去の論文を参考に⁽⁹²⁾、条件検 討を行った。正常腎細胞と腎細胞癌の roll を陽性コントロールにおいた。まず、5 種類の染色条件を検討した(表 16)。その結果、染色条件 No.4 と No.5 では全く染 色されなかったが、染色条件 No.1、No.2、No.3 では核の良好な染まりを認めた(図 39)。しかし、一部ではバックグラウンドの染色も目立った。

7.2 条件検討②

条件検討①を踏まえ、抗原の賦活化のための前処置で用いるクエン酸バッファ ーを pH 9.0 に替え、内因性ペルオキシダーゼによるバックグラウンドの発色を抑 える目的で、条件検討を行った。この検討での条件を表 17 に示す。

牛検討①における染色条件	
₩	
16.	
表	

	条件検討①					
	Pretreat	ment	Blocking	Titer	Incubation	Note
~	Heating (120°C 15min)	Citrate buffer (pH 6.0)	S-block	x2000	room temperature, overnight	manually
2	Heating (120°C 15min)	Citrate buffer (pH 6.0)	S-block	x1000	room temperature, overnight	manually
ო	Heating (120°C 15min)	Citrate buffer (pH 6.0)	S-block	x500	room temperature, overnight	manually
4	Microwave (120°C 60min)	1mM EDTA (pH 8.0)	AB-block	x1000	room temperature, 120min	VENTANA
S	Microwave (120°C 60min)	1mM EDTA (pH 8.0)	AB-block	x500	room temperature, 120min	VENTANA

図 39 条件検討①の染色結果

陽性コントロールが、条件4、5ではまったく染まらなかった.

表17.条件検討②における染色条件

条件検討②

	Pretrea	tment	Blocking	Titer	Incubation	Note
9	Heating (120°C 15min)	Citrate buffer (pH 9.0)	S-block	x1000	room temperature, overnight	manually
2	Heating (120°C 15min)	Citrate buffer (pH 9.0)	S-block	x500	room temperature, overnight	manually

図 40. 条件検討②の染色結果

陽性コントロールでの核への染色は良好だが、組織が崩れている。

この結果、核の染まりは認めるものの、pH が高すぎたために組織が壊れてしまった(図40)。一次抗体の希釈濃度は、1000倍が適切と考えられた。

7.3 条件検討③

条件検討①および②を経て、染色条件はオートクレーブ 120 度 15 分、クエン 酸バッファーpH 6.0、一次抗体希釈倍率 1000 倍、インキュベーション時間室温一 晩、ジアミノベンジジン (DAB) 反応時間 10 分で(表 16 の条件 2)、研究 1 で用 いる 93 例の染色を行った。

その結果、組織以外のバックグラウンドが高く、大部分は判定に問題ないものの、一部で判定困難な症例が出てしまった(図 41)。

7.4 条件検討④

条件検討③の結果を踏まえ、染色の各行程で洗浄に用いる PBS (Phosphate buffered saline)を、界面活性剤加 PBS (phsophate buffered saline with tween 20: PBST) に変更し、高い洗浄力でコンタミネーションを予防する方針とした。また、染色を 93 症例同時に施行したために、手技中の時間差や乾燥が生じてしまい、バックグ ラウンドの発色を生じている可能性があると考えられた。このため、93 症例を約 半分ずつにわけて染色し、これらを防止した。さらに、DAB の反応時間を 10 分か ら 8 分に短縮した。

この結果、バックグラウンドが抑えられ、陰性部分と陽性部分の判別がしやす い、よい状態の染色結果を得られた(図 42)。

7.5 条件検討まとめ

以上の条件検討より、染色条件はオートクレーブ 120 度 15 分、クエン酸バッファーpH 6.0、一次抗体希釈倍率 1000 倍、インキュベーション時間室温一晩、DAB 反応時間 8 分で、各種行程に PBS でなく PBST を使用するのが最適と考えられた。

図 42. 乾燥などによりバックグラウンドが強く発色 してしまい、判定困難になったスライド

図 41. 最適と考えられた条件での染色

8. 附2「各分子生物学的マーカーの発現の相関とサブグループ解析」

研究1および研究2では、同一の93例の食道扁平上皮癌の治療前生検検体を 対象とし、免疫染色を施行することによって、8種類の分子生物学的マーカー(p53、 MIB-1、HER-2、HIF-1α、CLDN-1、CLDN-4、CLDN-5、CLDN-7)の発現状況を調 べ、臨床成績との関係について検討した。ここで、研究1ではp53およびHER-2 が、研究2ではCLDN-5が臨床成績との関わりがあることが明らかになった。そし て、p53、HER-2、CLDN-5以外のバイオマーカー、すなわちMIB-1、HIF-1α、CLDN-1、 CLDN-4、CLDN-7は、今回の研究では、食道扁平上皮癌の化学放射線療法症例に おいて、臨床成績との有意な相関を認めなかった。

しかしながら、既存の報告などを参照すれば、こういったバイオマーカーは単 独では予後因子とはならずとも、複数のバイオマーカーの条件付け(例えば、蛋白 A が陽性かつ蛋白 B で予後不良など)によって臨床成績との関わりを導いている 報告も少なくなく、今回の研究においても、同様のサブグループ解析は必要である と考えられる。

8.1方法

研究1および研究2で検討した8種類の分子生物学的マーカー(p53、MIB-1、 HER-2、HIF-1 α 、CLDN-1、CLDN-4、CLDN-5、CLDN-7)から任意の2種類を選択 し(28通りの組み合わせ)、免疫染色での発現状況についてそれぞれ検討した。具 体的には、2種類ずつの組み合わせについての陽性/陰性の発現の比率を求め、 χ^2 検定で有意性の検定を行った。さらにその28通りの組み合わせごとに全生存率に おけるサブグループ解析を行なった。全生存率での解析は、カプラン・マイヤー法 により評価し、群間検定にはログランク検定を用いた。

8.2 結果

任意の2種類のバイオマーカーの組み合わせ(28通り)の発現状況と、 χ^2 検定で求めたp値を表18に示す。HER-2 とCLDN-5(p=0.006)、CLDN-4 とCLDN-5(p=0.01)、CLDN-4 とCLDN-5(p=0.001)で発現に有意な相関を認めた。それ以外の組み合わせには、発現に有意な相関を認めなかった。

さらに、組み合わせごとの生存解析(図 43)では、p53 と HER-2 の組み合わ せにおいて"p53 陽性かつ HER-2 陰性"で、その他 3 つのパターンよりも有意に予後 良好であった(p = 0.006)。それ以外の組合せでは有意差は認めなかった。

8.3 考察

免疫染色でのバイオマーカーの発現状況の相関を検討すると、HER-2 と CLDN-5 に有意な相関を認めた (*p* = 0.006)。HER-2 は研究1で、CLDN-5 は研究2 で、いずれも予後との相関が示唆されたバイオマーカーである。HER-2 と CLDN-5 自体が相関しているために、いずれも予後因子となった可能性がある。HER-2 およ び CLDN-5 が相関している分子学的機序は不明であり、過去の報告でも、HER-2 と CLDN-5 を同一症例で解析した報告はない (2013 年 2 月現在)。今後、これらの バイオマーカーの関わりや機序について検討されるべきと考えられる。 一方、生存解析においては、すでに単独で予後との相関が認められている p53 陽性かつ HER-2 陰性で有意な相関を認めたのみであった。今回のサブグループ解 析によって、研究1および研究2では有意差がでなかったが組み合わせによって予 後因子となりうるような組み合わせは認められなかった。

$p53 \xrightarrow{(+)} 4\% 27\%$ $p53 \xrightarrow{(+)} 9\% 23\%$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\rho = 0.07 \frac{\text{CLDN7}}{(+) 7\%} \frac{(+) (-)}{(-) 20\% 68\%}$
$p = 0.90 \xrightarrow{(+)} (+) \xrightarrow{(-)} (-)$	$\rho = 0.12 \frac{\text{CLDN4}}{(+)} \frac{15\%}{20\%}$ MIB-1 $\frac{(+)}{(-)} \frac{15\%}{7\%} \frac{40\%}{39\%}$	$\rho = 0.21 \frac{\text{CLDN4}}{(+)} \frac{1}{(+)} \frac{1}{(+)} \frac{1}{(-)} \frac{1}{(-)$	$\rho = 0.48 \frac{\text{CLDN4}}{(+)} \frac{13\%}{54\%}$ HIF-1 (-) 9\% 25\%	$\rho = 0.99 \frac{\text{CLDN4}}{(+)} \frac{15\%}{55\%}$ $CLDN1 \frac{(+)}{(-)} \frac{7\%}{7\%} \frac{23\%}{23\%}$	発現の相関 _{分率で表示し、}	
p = 0.72	$p = 0.28 \frac{\text{CLDN1}}{(+)} (-)$ $MIB-1 \frac{(+)}{(-)} \frac{14\%}{29\%} 16\%$	$p = 0.79 \frac{\text{CLDN1}}{(+)} (-)$ HER-2 $\frac{(+)}{(-)} \frac{3\%}{59\%}$	$p = 0.08 \frac{\text{CLDN1}}{(+)} \frac{(+)}{(-)} \frac{(-)}{19\%} \frac{(-)}{14\%}$		各バイオマーカーの さける発現の比率を百9	で得られる p 値を示す。
$p = 0.43 \xrightarrow{\text{IIII} - 1}{\text{P53}} (+) \xrightarrow{\text{P58}} (-) \xrightarrow{\text{P58}} 9\%$	$\rho = 0.18 \frac{\text{HIF}-1}{(+)} \frac{\text{H}}{(+)} \frac{\text{H}}{(-)}$ $\text{MIB}-1 \frac{(+)}{(-)} \frac{10\%}{27\%} \frac{15\%}{18\%}$	$p = 0.92 \qquad \begin{array}{c c} HIF-1 \\ \hline (+) & (-) \\ HER-2 \\ \hline (-) & 57\% & 29\% \end{array}$			表 18. 全体によ	X ² 検定マ

R-2	-)	58%	28%	
HΕ	(+)	11%	3%	
62	12	(+)	(-)	
0	р – д	. E 3	000	

$= 0.60 + \frac{1}{(+)} = 0.61 + \frac{1}{5} = $	HER-2	(-) (-	% 46%	% 40%
= 0.60 -1 (+)	-	÷	9	2 2
- 0.	0	60	(+)	(-)
. d MIB		р = U.		

3-1	(-)	33%	12%
MIE	(+)	36%	19%
30.0	0.00	(+)	(-)
<i>p</i> = 0		50 20	000

O	67	MIB	-1
$\rho = 0$.07	(+)	(-)
" 52	(+)	31% (+/-10%)	32% (+/-9%)
p55	(-)	17% (+/-9%)	0%

p = 0.	55	(+)	(-)
" 52	(+)	28% (+/-9%)	35% (+/-11%)
p53	(-)	14% (+/-8%)	0%

― 累積生存率 (層別変数陰性/群分け変数陰性)
 打ち切り例(層別変数陰性/群分け変数陰性)
— 累積生存率 (層別変数陰性/群分け変数陽性)
🔸 打ち切り例(層別変数陰性/群分け変数陽性)
— 累積生存率 (層別変数陽性/群分け変数陰性)
 打ち切り例(層別変数陽性/群分け変数陰性)
― 累積生存率 (層別変数陽性/群分け変数陽性)
🔸 打ち切り例(層別変数陽性/群分け変数陽性)

n = 0 (206		HER-2
p = 0.000		(+)	(-)
~ 52	(+)	0%	36% (+/-8%)
p53	(-)	0%	12% (+/-6%)

p = 0.	90	(+)	(-)
~F2	(+)	29% (+/-8%)	35% (+/-12%)
p53	(-)	10% (+/-6%)	13% (+/-12%)

図 43. 各バイオマーカーの発現
 状況の組み合わせごとの全生存率
 のカプラン・マイヤー曲線
 図下の表にログランク検定による
 p 値と、4 年生存率を示す。

ρ = 0.14		CLDN4	
		(+)	(-)
p53	(+)	24% (+/-13%)	34% (+/-8%)
	(-)	0%	13% (+/-7%)

m = 0.75		CLDN5	
p = 0.75		(+)	(–)
	(+)	14% (+/-13%)	34% (+/-7%)
рэз	(-)	0%	12% (+/-7%)

m - 0.20		01011	
p = 0.29		(+)	(-)
p53	(+)	0%	33% (+/-7%)
	(-)	25% (+/-15%)	5% (+/-5%)

― 累積生存率 (層別変数陰性/群分け変数陰性)
 打ち切り例(層別変数陰性/群分け変数陰性)
— 累積生存率 (層別変数陰性/群分け変数陽性)
◆ 打ち切り例(層別変数陰性/群分け変数陽性)
— 累積生存率(層別変数陽性/群分け変数陰性)
 打ち切り例(層別変数陽性/群分け変数陰性)
― 累積生存率 (層別変数陽性/群分け変数陽性)
◆ 打ち切り例(層別変数陽性/群分け変数陽性)

各バイオマーカーの発現状況の組 み合わせごとの全生存率のカプラ ン・マイヤー曲線 図下の表にログランク検定による

p 値と、4 年生存率を示す。

p = 0.91		HIF-1	
		(+)	(-)
MIB-1	(+)	29% (+/-8%)	18% (+/-14%)
	(-)	16% (+/-9%)	29% (+/-11%)

m = 0.20		CLDN4	
p = 0.20		(+)	(–)
MIB-1	(+)	14% (+/-12%)	31% (+/-8%)
	(-)	17% (+/-15%)	24% (+/-8%)

m = 0.74		CLE	DN1
p = 0.74		(+)	(–)
	(+)	24% (+/-8%)	34% (+/-14%)
	(–)	24% (+/-9%)	24% (+/-12%)

p = 0.50		(+)	(–)
MIB-1	(+)	13% (+/-12%)	30% (+/-8%)
	(-)	0%	25% (+/-8%)

各バイオマーカーの発現状況の組 み合わせごとの全生存率のカプラ ン・マイヤー曲線 図下の表にログランク検定による

p 値と、4 年生存率を示す。

p = 0.34		CLDN7	
		(+)	(-)
MIB-1	(+)	24% (+/-18%)	24% (+/-8%)
	(-)	25% (+/-15%)	24% (+/-8%)

26% (+/-7%)

(-)

32% (+/-10%)

p = 0.93		HIF-1	
		(+)	(-)
HER-2	(+)	0%	0%
	(-)	27% (+/-7%)	30% (+/-9%)

図 43. (続き)

各バイオマーカーの発現状況の組 み合わせごとの全生存率のカプラ ン・マイヤー曲線 図下の表にログランク検定による p値と、4年生存率を示す。

ρ = 0.64		CLDN5	
		(+)	(–)
HER-2	(+)	0%	0%
	(-)	17% (+/-15%)	30% (+/-6%)

p = 0.41		CLDN7	
		(+)	(-)
	(+)	0%	0%
	(-)	25% (+/-19%)	27% (+/-6%)

— 累積生存率 (層別変数陰性/群分け変数陰性)
 打ち切り例(層別変数陰性/群分け変数陰性)
— 累積生存率 (層別変数陰性/群分け変数陽性)
✤ 打ち切り例(層別変数陰性/群分け変数陽性)
— 累積生存率 (層別変数陽性/群分け変数陰性)
 打ち切り例(層別変数陽性/群分け変数陰性)
— 累積生存率 (層別変数陽性/群分け変数陽性)
◆ 打ち切り例(層別変数陽性/群分け変数陽性)

各バイオマーカーの発現状況の組 み合わせごとの全生存率のカプラ ン・マイヤー曲線 図下の表にログランク検定による p値と、4年生存率を示す。

p = 0.45		CLI	DN5
		(+)	(-)
	(+)	0%	27% (+/-7%)
	(-)	25% (+/-22%)	28% (+/-9%)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0.45	CLDN7	
LIE-1 (+) 17% (+/-13%) 26% (+/-7%)	$\rho = 0.4$	0.45	(+)	(-)
		1 (+)	17% (+/-13%)	26% (+/-7%)
IIII-1 (-) 57% (+/-19%) 21% (+/-8%)		(-)	57% (+/-19%)	21% (+/-8%)

ρ 0.10		(+)	(-)
CLDN1	(+)	18% (+/-11%)	25% (+/-7%)
	(-)	17% (+/-15%)	34% (+/-11%)

― 累積生存率 (層別変数陰性/群分け変数陰性)
 打ち切り例(層別変数陰性/群分け変数陰性)
― 累積生存率 (層別変数陰性/群分け変数陽性)
🔹 打ち切り例(層別変数陰性/群分け変数陽性)
― 累積生存率 (層別変数陽性/群分け変数陰性)
 打ち切り例(層別変数陽性/群分け変数陰性)
― 累積生存率 (層別変数陽性/群分け変数陽性)
◆ 打ち切り例(層別変数陽性/群分け変数陽性)

<u> </u>			
p = 0.50		(+)	(-)
CLDN1	(+)	11% (+/-11%)	25% (+/-7%)
	(-)	0%	31% (+/-10%)

各バイオマーカーの発現状況の組 み合わせごとの全生存率のカプラ ン・マイヤー曲線 図下の表にログランク検定による

p値と、4年生存率を示す。

ρ = 0.30		CLI	ON7
		(+)	(-)
	(+)	0%	22% (+/-7%)
GLDINT	(-)	40% (+/-22%)	28% (+/-10%)

p = 0.93		CLDN5	
		(+)	(-)
	(+)	17% (+/-15%)	14% (+/-12%)
GLDIN4	(-)	0%	30% (+/-6%)

p = 0.34		(+)	(–)
CLDN5	(+)	17% (+/-15%)	0%
	(-)	24% (+/-18%)	26% (+/-6%)

各バイオマーカーの発現状況の組 み合わせごとの全生存率のカプラ ン・マイヤー曲線 図下の表にログランク検定による p値と、4年生存率を示す。

この研究にあたり、常に包括的な姿勢で的確なご指導を賜りました指導教官の 中川恵一准教授に深く感謝申し上げます。また、放射線治療の臨床と研究全般、論 文作成にいたるまで、基礎の基礎から辛抱強く丁寧にご指導いただいた山下英臣助 教に、心より御礼申し上げます。そして、東京大学医学部附属病院人体病理学教室 の松坂恵介先生には、病理標本すべてに目を通していただき、さらに必要に応じて 異なる日に判定のチェックをするなど、免疫染色の判定および抗体染色の方針づけ について、多大なるご協力を賜りました。深く感謝申し上げます。免疫染色の実際 については、東京大学医学部医学系研究科の佐久間慶技師に全面的にご協力いただ き、免疫染色の基礎から備品の使い方まで、丁寧にご指導いただきました。最初に 病理学的観点についてご相談させていただき、導いてくださった現在は帝京大学医 学部病理学講座の宇於崎宏教授、さらに教室の先生方のご協力や研究室の提供を快 諾くださった東京大学医学部附属病院人体病理学教室の深山正久教授に心より御 礼申し上げます。東京大学医学部附属病院放射線治療部の皆様には、研究と臨床を 往復する私を力強くサポートいただきました。皆様のご支援なくして本研究を完成 させることはできなかったと思います。最後に、大学院在籍中の結婚・出産とそれ に続く育児に際し、多大な苦労をかけてしまったにもかかわらず、終始あたたかく 受け止め、支え、応援してくれた、父母と姉と夫と、長男の健に心より感謝します。

135

1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics. CA Cancer J Clin 61:69-90,2011

2. American Cancer Society: Cancer Facts and Figures 2012. Atlanta: American Cancer Society,2012

3. Devesa SS, Blot WJ, Fraumeni JF Jr: Changing patterns in the incidence of esophageal and gastric carcinoma in the United States. Cancer 83:2049-2053,1998

4. Lagergren J, Bergstrom R, Lindgren A, Nyren O: Symptomatic gastroesophageal reflux as a risk factor for esophageal adenocarcinoma. N Engl J Med 340:825-831,1999

5. 厚生労働省大臣官房統計情報部 編: 平成 21 年人口動態統計,2009

6. The American Joint Committee for Cancer: Staging and End Results Reporting 2007 Staging System, 2007

7. 日本食道学会編:臨床・病理食道癌取扱い規約第10版.

8. The Japan Esophageal Society: Comprehensive Registry of Esophageal Cancer in Japan, 3rd Edition (1998,1999),2002

9. Walsh TN, Noonan N, Hollywood D, Kelly A, Keeling N, Hennessy TP: A comparison of multimodal therapy and surgery for esophageal adenocarcinoma. N Engl J Med 335:462-467,1996

10. Tietjen TG, Pasricha PJ, Kalloo AN: Management of malignant esophageal stricture with esophageal dilation and esophageal stents. Gastrointest Endosc Clin N Am 4:851-862,1994

11. Cooper JS, Guo MD, Herskovic A, Macdonald JS, Martenson JA Jr, Al-Sarraf M,

Byhardt R, Russell AH, Beitler JJ, Spencer S, Asbell SO, Graham MV, Leichman LL: Chemoradiotherapy of locally advanced esophageal cancer: long-term follow-up of a prospective randomized trial (RTOG 85-01). Radiation Therapy Oncology Group. JAMA 281:1623-1627,1999

12. Smith TJ, Ryan LM, Douglass HO Jr, Haller DG, Dayal Y, Kirkwood J, Tormey DC, Schutt AJ, Hinson J, Sischy B: Combined chemoradiotherapy vs. radiotherapy alone for early stage squamous cell carcinoma of the esophagus: a study of the Eastern Cooperative Oncology Group. Int J Radiat Oncol Biol Phys 42:269-276,1998

13. Minsky BD, Pajak TF, Ginsberg RJ, Pisansky TM, Martenson J, Komaki R, Okawara G, Rosenthal SA, Kelsen DP: INT 0123 (Radiation Therapy Oncology Group 94-05) phase III trial of combined-modality therapy for esophageal cancer: high-dose versus standard-dose radiation therapy. J Clin Oncol 20:1167-1174,2002

14. Ajani JA, Winter K, Komaki R, Kelsen DP, Minsky BD, Liao Z, Bradley J, Fromm M, Hornback D, Willett CG: Phase II randomized trial of two nonoperative regimens of induction chemotherapy followed by chemoradiation in patients with localized carcinoma of the esophagus: RTOG 0113. J Clin Oncol 26:4551-4556,2008

15. Bosset JF, Gignoux M, Triboulet JP, Tiret E, Mantion G, Elias D, Lozach P, Ollier JC, Pavy JJ, Mercier M, Sahmoud T: Chemoradiotherapy followed by surgery compared with surgery alone in squamous-cell cancer of the esophagus. N Engl J Med 337:161-167,1997

16. Urba SG, Orringer MB, Turrisi A, Iannettoni M, Forastiere A, Strawderman M: Randomized trial of preoperative chemoradiation versus surgery alone in patients with locoregional esophageal carcinoma. J Clin Oncol 19:305-313,2001

17. Tepper J, Krasna MJ, Niedzwiecki D, Hollis D, Reed CE, Goldberg R, Kiel K, 137 Willett C, Sugarbaker D, Mayer R: Phase III trial of trimodality therapy with cisplatin, fluorouracil, radiotherapy, and surgery compared with surgery alone for esophageal cancer: CALGB 9781. J Clin Oncol 26:1086-1092,2008

18. Murakami M, Kuroda Y, Nakajima T, Okamoto Y, Mizowaki T, Kusumi F, Hajiro K, Nishimura S, Matsusue S, Takeda H: Comparison between chemoradiation protocol intended for organ preservation and conventional surgery for clinical T1-T2 esophageal carcinoma. Int J Radiat Oncol Biol Phys 45:277-284,1999

19. Nishimura Y, Okuno Y, Ono K, Mitsumori M, Nagata Y, Hiraoka M: External beam radiation therapy with or without high-dose-rate intraluminal brachytherapy for patients with superficial esophageal carcinoma. Cancer 86:220-228,1999

20. Sai H, Mitsumori M, Araki N, Mizowaki T, Nagata Y, Nishimura Y, Hiraoka M: Long-term results of definitive radiotherapy for stage I esophageal cancer. Int J Radiat Oncol Biol Phys 62:1339-1344,2005

21. Nemoto K, Matsumoto Y, Yamakawa M, Jo S, Ito Y, Oguchi M, Kokubo N, Nishimura Y, Yamada S, Okawa T: Treatment of superficial esophageal cancer by external radiation therapy alone: results of a multi-institutional experience. Int J Radiat Oncol Biol Phys 46:921-925,2000

22. Nemoto K, Yamada S, Hareyama M, Nagakura H, Hirokawa Y: Radiation therapy for superficial esophageal cancer: a comparison of radiotherapy methods. Int J Radiat Oncol Biol Phys 50:639-644,2001

23. Nishimura Y, Suzuki M, Nakamatsu K, Kanamori S, Yagyu Y, Shigeoka H: Prospective trial of concurrent chemoradiotherapy with protracted infusion of 5-fluorouracil and cisplatin for T4 esophageal cancer with or without fistula. Int J Radiat Oncol Biol Phys 53:134-139,2002 24. 日本放射線専門医会・医会,日本放射線腫瘍学会,日本医学放射線学会編集:放射線治療計画ガイドライン・2008,2008

25. Ishikura S, Nihei K, Ohtsu A, Boku N, Hironaka S, Mera K, Muto M, Ogino T, Yoshida S: Long-term toxicity after definitive chemoradiotherapy for squamous cell carcinoma of the thoracic esophagus. J Clin Oncol 21:2697-2702,2003

26. Lin SH, Wang L, Myles B, Thall PF, Hofstetter WL, Swisher SG, Ajani JA, Cox JD, Komaki R, Liao Z: Propensity Score-based Comparison of Long-term Outcomes With 3-Dimensional Conformal Radiotherapy vs Intensity-Modulated Radiotherapy for Esophageal Cancer. Int J Radiat Oncol Biol Phys,2012

27. Nishimura Y, Koike R: [IMRT for esophageal neoplasms]. Gan To Kagaku Ryoho 38:1421-1423,2011

28. Ohtsu A, Boku N, Muro K, Chin K, Muto M, Yoshida S, Satake M, Ishikura S, Ogino T, Miyata Y, Seki S, Kaneko K, Nakamura A: Definitive chemoradiotherapy for T4 and/or M1 lymph node squamous cell carcinoma of the esophagus. J Clin Oncol 17:2915-2921,1999

29. Gillham CM, Reynolds J, Hollywood D: Predicting the response of localised oesophageal cancer to neo-adjuvant chemoradiation. World J Surg Oncol 5:97,2007

30. 編 イアン F.タノック, リチャード P.ヒル, ロバート G.ブリストウ, リー ハリントン, 訳 谷口 直之ら: がんのベーシックサイエンス第3版. メディカル・ サイエンス・インターナショナル,2006

31. Ward JF: The complexity of DNA damage: relevance to biological consequences.Int J Radiat Biol 66:427-432,1994

32. Hartwell LH, Kastan MB: Cell cycle control and cancer. Science

266:1821-1828,1994

Fei P, El-Deiry WS: P53 and radiation responses. Oncogene 22:5774-5783,2003
Cuddihy AR, Bristow RG: The p53 protein family and radiation sensitivity: Yes or no?. Cancer Metastasis Rev 23:237-257,2004

35. Joyce JA, Pollard JW: Microenvironmental regulation of metastasis. Nat Rev Cancer 9:239-252,2009

36. Shah MA, Ramanathan RK, Ilson DH, Levnor A, D'Adamo D, O'Reilly E, Tse A, Trocola R, Schwartz L, Capanu M, Schwartz GK, Kelsen DP: Multicenter phase II study of irinotecan, cisplatin, and bevacizumab in patients with metastatic gastric or gastroesophageal junction adenocarcinoma. J Clin Oncol 24:5201-5206,2006

37. Hanahan D, Weinberg RA: The hallmarks of cancer. Cell 100:57-70,2000

38. Lane DP: Cancer. A death in the life of p53. Nature 362:786-787,1993

39. Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D: p21 is a universal inhibitor of cyclin kinases. Nature 366:701-704,1993

40. el-Deiry WS, Harper JW, O'Connor PM, Velculescu VE, Canman CE, Jackman J, Pietenpol JA, Burrell M, Hill DE, Wang Y, et al: WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 54:1169-1174,1994

41. Johnstone RW, Ruefli AA, Lowe SW: Apoptosis: a link between cancer genetics and chemotherapy. Cell 108:153-164,2002

42. Sarbia M, Stahl M, Fink U, Willers R, Seeber S, Gabbert HE: Expression of apoptosis-regulating proteins and outcome of esophageal cancer patients treated by combined therapy modalities. Clin Cancer Res 4:2991-2997,1998

43. Takeuchi H, Ozawa S, Ando N, Kitagawa Y, Ueda M, Kitajima M: Cell-cycle regulators and the Ki-67 labeling index can predict the response to chemoradiotherapy and

the survival of patients with locally advanced squamous cell carcinoma of the esophagus. Ann Surg Oncol 10:792-800,2003

44. Makino T, Yamasaki M, Miyata H, Yoshioka S, Takiguchi S, Fujiwara Y, Nakajima K, Nishida T, Mori M, Doki Y: p53 Mutation status predicts pathological response to chemoradiotherapy in locally advanced esophageal cancer. Ann Surg Oncol 17:804-811,2010

45. Ishida M, Morita M, Saeki H, Ohga T, Sadanaga N, Watanabe M, Kakeji Y, Maehara Y: Expression of p53 and p21 and the clinical response for hyperthermochemoradiotherapy in patients with squamous cell carcinoma of the esophagus. Anticancer Res 27:3501-3506,2007

46. Ressiot E, Dahan L, Liprandi A, Giorgi R, Djourno XB, Padovani L, Alibert S, Ries P, Laquiere A, Laugier R, Thomas P, Seitz JF: Predictive factors of the response to chemoradiotherapy in esophageal cancer. Gastroenterol Clin Biol 32:567-577,2008

47. Malik SM, Nevin DT, Cohen S, Hunt JL, Palazzo JP: Assessment of immunohistochemistry for p16INK4 and high-risk HPV DNA by in situ hybridization in esophageal squamous cell carcinoma. Int J Surg Pathol 19:31-34,2011

48. Sarbia M, Stahl M, Fink U, Heep H, Dutkowski P, Willers R, Seeber S, Gabbert HE: Prognostic significance of cyclin D1 in esophageal squamous cell carcinoma patients treated with surgery alone or combined therapy modalities. Int J Cancer 84:86-91,1999

49. Research Committee on Malignancy of Esophageal Cancer, Japanese Society for Esophageal Diseases: Prognostic significance of CyclinD1 and E-Cadherin in patients with esophageal squamous cell carcinoma: multiinstitutional retrospective analysis. J Am Coll Surg 192:708-718,2001

50. Kuwahara A, Yamamori M, Fujita M, Okuno T, Tamura T, Kadoyama K,

Okamura N, Nakamura T, Sakaeda T: TNFRSF1B A1466G genotype is predictive of clinical efficacy after treatment with a definitive 5-fluorouracil/cisplatin-based chemoradiotherapy in Japanese patients with esophageal squamous cell carcinoma. J Exp Clin Cancer Res 29:100,2010

51. Izzo JG, Correa AM, Wu TT, Malhotra U, Chao CK, Luthra R, Ensor J, Dekovich A, Liao Z, Hittelman WN, Aggarwal BB, Ajani JA: Pretherapy nuclear factor-kappaB status, chemoradiation resistance, and metastatic progression in esophageal carcinoma. Mol Cancer Ther 5:2844-2850,2006

52. Puhringer-Oppermann F, Sarbia M, Ott N, Brucher BL: The predictive value of genes of the TGF-beta1 pathway in multimodally treated squamous cell carcinoma of the esophagus. Int J Colorectal Dis 25:515-521,2010

53. Yamashita K, Mori M, Shiraishi T, Shibuta K, Sugimachi K: Clinical significance of matrix metalloproteinase-7 expression in esophageal carcinoma. Clin Cancer Res 6:1169-1174,2000

54. Takatori H, Natsugoe S, Okumura H, Matsumoto M, Ishigami S, Owaki T, Aikou T: Predictive value of COX-2 for the effect of chemoradiotherapy on esophageal squamous cell carcinoma. Oncol Rep 13:697-701,2005

55. Akutsu Y, Hanari N, Yusup G, Komatsu-Akimoto A, Ikeda N, Mori M, Yoneyama Y, Endo S, Miyazawa Y, Matsubara H: COX2 expression predicts resistance to chemoradiotherapy in esophageal squamous cell carcinoma. Ann Surg Oncol 18:2946-2951,2011

56. Gotoh M, Takiuchi H, Kawabe S, Ohta S, Kii T, Kuwakado S, Katsu K: Epidermal growth factor receptor is a possible predictor of sensitivity to chemoradiotherapy in the primary lesion of esophageal squamous cell carcinoma. Jpn J Clin Oncol 37:652-657,2007

57. Ogawa K, Chiba I, Morioka T, Shimoji H, Tamaki W, Takamatsu R, Nishimaki T, Yoshimi N, Murayama S: Clinical significance of HIF-1alpha expression in patients with esophageal cancer treated with concurrent chemoradiotherapy. Anticancer Res 31:2351-2359,2011

58. The American Joint Committee for Cancer: Staging and End Results Reporting1997 Staging System. 5th edition,1997

59. Krajewska M, Krajewski S, Epstein JI, Shabaik A, Sauvageot J, Song K, Kitada S, Reed JC: Immunohistochemical analysis of bcl-2, bax, bcl-X, and mcl-1 expression in prostate cancers. Am J Pathol 148:1567-1576,1996

60. Yamashita H, Nakagawa K, Tago M, Igaki H, Nakamura N, Shiraishi K, Sasano N, Ohtomo K: Radiation therapy combined with cis-diammine-glycolatoplatinum (nedaplatin) and 5-fluorouracil for Japanese stage II-IV esophageal cancer compared with cisplatin plus 5-fluorouracil regimen: a retrospective study. Dis Esophagus 19:15-19,2006

61. Kastan MB, Zhan Q, el-Deiry WS, Carrier F, Jacks T, Walsh WV, Plunkett BS, Vogelstein B, Fornace AJ Jr: A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71:587-597,1992

62. Ferreira CG, Tolis C, Giaccone G: p53 and chemosensitivity. Ann Oncol 10:1011-1021,1999

63. Yang B, Eshleman JR, Berger NA, Markowitz SD: Wild-type p53 protein potentiates cytotoxicity of therapeutic agents in human colon cancer cells. Clin Cancer Res 2:1649-1657,1996

64. Yang B, Stambrook PJ, Markowitz SD: Wild-type p53 demonstrates functional dominance in a human colon carcinoma cell line in which it induces reversible growth

arrest. Clin Cancer Res 2:1639-1647,1996

65. Keshelava N, Zuo JJ, Chen P, Waidyaratne SN, Luna MC, Gomer CJ, Triche TJ, Reynolds CP: Loss of p53 function confers high-level multidrug resistance in neuroblastoma cell lines. Cancer Res 61:6185-6193,2001

66. Reed JC: Apoptosis-based therapies. Nat Rev Drug Discov 1:111-121,2002

67. Brown JM, Wouters BG: Apoptosis, p53, and tumor cell sensitivity to anticancer agents. Cancer Res 59:1391-1399,1999

68. Sampath D, Plunkett W: Design of new anticancer therapies targeting cell cycle checkpoint pathways. Curr Opin Oncol 13:484-490,2001

69. Yamasaki M, Miyata H, Fujiwara Y, Takiguchi S, Nakajima K, Nishida T, Yasuda T, Matsuyama J, Mori M, Doki Y: p53 genotype predicts response to chemotherapy in patients with squamous cell carcinoma of the esophagus. Ann Surg Oncol 17:634-642,2010

70. Nibu KI, Yanagisawa A, Nakamizo M, Hoki K, Nigauri T, Kawabata K, Kamata SE: Clinical role of p53 and p21WAF1/CIP1 in squamous cell carcinoma of the pyriform sinus. Acta Otolaryngol 118:432-437,1998

71. Michel P, Magois K, Robert V, Chiron A, Lepessot F, Bodenant C, Roque I, Seng SK, Frebourg T, Paillot B: Prognostic value of TP53 transcriptional activity on p21 and bax in patients with esophageal squamous cell carcinomas treated by definitive chemoradiotherapy. Int J Radiat Oncol Biol Phys 54:379-385,2002

72. Noda A, Ning Y, Venable SF, Pereira-Smith OM, Smith JR: Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp Cell Res 211:90-98,1994

73. Tsihlias J, Kapusta L, Slingerland J: The prognostic significance of altered 144
cyclin-dependent kinase inhibitors in human cancer. Annu Rev Med 50:401-423,1999

74. Zirbes TK, Baldus SE, Moenig SP, Nolden S, Kunze D, Shafizadeh ST, Schneider PM, Thiele J, Hoelscher AH, Dienes HP: Prognostic impact of p21/waf1/cip1 in colorectal cancer. Int J Cancer 89:14-18,2000

75. Barnes DM: Cyclin D1 in mammary carcinoma. J Pathol 181:267-269,1997

76. Harari PM, Huang SM: Radiation response modification following molecular inhibition of epidermal growth factor receptor signaling. Semin Radiat Oncol 11:281-289,2001

77. Harari PM, Huang SM: Head and neck cancer as a clinical model for molecular targeting of therapy: combining EGFR blockade with radiation. Int J Radiat Oncol Biol Phys 49:427-433,2001

78. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, Baselga J, Norton L: Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783-792,2001

79. Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, Lordick F, Ohtsu A, Omuro Y, Satoh T, Aprile G, Kulikov E, Hill J, Lehle M, Ruschoff J, Kang YK: Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376:687-697,2010

80. Mimura K, Kono K, Hanawa M, Mitsui F, Sugai H, Miyagawa N, Ooi A, Fujii H: Frequencies of HER-2/neu expression and gene amplification in patients with oesophageal squamous cell carcinoma. Br J Cancer 92:1253-1260,2005

81. 三村耕作ほか: 食道扁平上皮癌における HER2 を標的とした分子標的治療. 145 Biotherapy. 25(5): 791-797,2011

82. 松本俊治: 癌遺伝子過剰発現にもとづく食道扁平上皮癌化学・放射線療法の感受性予測と個別化治療への応用. 順天堂医学 53(4)m 576-580,2007

83. Hirohashi S: Inactivation of the E-cadherin-mediated cell adhesion system in human cancers. Am J Pathol 153:333-339,1998

84. Peifer M: Beta-catenin as oncogene: the smoking gun. Science 275:1752-1753,1997

85. Polette M, Nawrocki-Raby B, Gilles C, Clavel C, Birembaut P: Tumour invasion and matrix metalloproteinases. Crit Rev Oncol Hematol 49:179-186,2004

86. Yamamoto H, Iku S, Itoh F, Tang X, Hosokawa M, Imai K: Association of trypsin expression with recurrence and poor prognosis in human esophageal squamous cell carcinoma. Cancer 91:1324-1331,2001

87. Moustakas A, Heldin CH: Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci 98:1512-1520,2007

88. Thiery JP, Acloque H, Huang RY, Nieto MA: Epithelial-mesenchymal transitions in development and disease. Cell 139:871-890,2009

89. Agarwal R, D'Souza T, Morin PJ: Claudin-3 and claudin-4 expression in ovarian epithelial cells enhances invasion and is associated with increased matrix metalloproteinase-2 activity. Cancer Res 65:7378-7385,2005

90. Dhawan P, Singh AB, Deane NG, No Y, Shiou SR, Schmidt C, Neff J, Washington MK, Beauchamp RD: Claudin-1 regulates cellular transformation and metastatic behavior in colon cancer. J Clin Invest 115:1765-1776,2005

91. Harada H, Inoue M, Itasaka S, Hirota K, Morinibu A, Shinomiya K, Zeng L, Ou G,

Zhu Y, Yoshimura M, McKenna WG, Muschel RJ, Hiraoka M: Cancer cells that survive radiation therapy acquire HIF-1 activity and translocate towards tumour blood vessels. Nat Commun 3:783,2012

92. Niibe Y, Watanabe J, Tsunoda S, Arai M, Arai T, Kawaguchi M, Matsuo K, Jobo T, Ono S, Numata A, Unno N, Hayakawa K: Concomitant expression of HER2 and HIF-1alpha is a predictor of poor prognosis in uterine cervical carcinoma treated with concurrent chemoradiotherapy: prospective analysis (KGROG0501). Eur J Gynaecol Oncol 31:491-496,2010