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Abstract: Site characterization is an essential step in geotechnical design and analysis. Because the measurements of interested soil 

properties are limited and sparse, data fusion methods are commonly utilized to characterize a site in geotechnical engineering. 

Among kinds of data fusion methods, the cokriging method is a widely used geostatistical interpolation method. Cokriging can 

improve the performance of site characterization of interested soil properties by merging the measurements of correlated soil 

properties. The correlation between a primary variable and a secondary variable is represented by a cross-variogram model in 

cokriging. Traditionally, the cross-variogram can only be calculated when the measurements of the primary and secondary variables 

are co-located. However, the measurements of different kinds of geotechnical properties are commonly not co-located, which 

restricts the extensive utilization of cokriging. In this study, a Bayesian inference method is proposed to estimate the cross-variogram 

model when the measurements of the primary and secondary variables are not co-located. The proposed method is illustrated and 

validated by the dataset of the Ely site in Ely, Nevada. The results show that the Bayesian inference method can estimate the 

cross-variogram model when the measurements of the primary and secondary variables are not co-located. Moreover, the uncertainty 

of variogram models and cokriging estimation can also be measured by the proposed Bayesian inference method. 
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1. Introduction 
Site characterization is an indispensable step in 
geotechnical design and analysis, which can show the 
spatial distribution of geotechnical properties. 
Traditionally, a proper site characterization requires 
plenty of in situ or tested measurements at different 
locations. However, the number of geotechnical 
measurements is usually limited and sparse (Wang and 
Zhao 2017; Zhao and Wang 2018). Therefore, how to 
characterize a site adequately based on limited and sparse 
measurements in geotechnical engineering is an 
intractable problem. 

In a geotechnical engineering site, there are always 
some measurements of other soil properties, which are 
correlated with the interested soil property. The 
measurements of correlated soil properties can help 
improve the performance of site characterization of 
interested soil property by data fusion methods.  

Among a variety of data fusion methods, cokriging is 
a widely used geostatistical interpolation method in 
geotechnical engineering. Cokriging can improve the 
prediction of an interested soil property (primary variable) 
by merging measurements of correlated soil properties 
(secondary variable). The correlation between the primary 
variable and the secondary variable is expressed by the 
cross-variogram model. The variability of each variable is 
described by an auto-variogram model. The 
auto-variogram model and cross-variogram model are 
calculated based on the measurements of the primary 
variable and secondary variable in cokriging. Moreover, 
the cross-variogram can only be calculated from the 
co-located measurements of the primary variable and 
secondary variable (Papritz et al. 1993). In a geotechnical 

site investigation, however, the measurements of a soil 
property are usually obtained by destructive sampling. 
Therefore, there are seldom co-located measurements of 
the primary variable and secondary variable for most 
geotechnical conditions.  

In this study, a Bayesian inference method is firstly 
developed to estimate the cross-variogram when the 
measurements of the primary variable and secondary 
variable are not co-located. This paper firstly reviews the 
theory of cross-variogram. Then, the Bayesian inference 
method is introduced to estimate the cross-variogram 
model when the measurements of the primary variable 
and secondary variable are not co-located. Subsequently, 
a set of real elevation data is used to demonstrate this 
proposed Bayesian inference method. 

2. Proposed method  

2.1 Review of the cross-variogram 
In the cokriging method, the cross-variogram model is 
used to express the correlation between a primary 
variable and a secondary variable. If the primary variable 
and secondary variable are second-order stationary, the 
cross-variogram is defined as (Journel 1986; Pyrcz and 
Deutsch 2014):  

    12 1 1 2 2

1
( )= Z ( ) ( ) Z ( ) ( )

2
E Z Z − −h x + h x x + h x  (1) 

where γ12(h) is the cross-variogram of the primary 
variable Z1(x) and the secondary variable Z2(x); x is the 
spatial coordinates; h is the lag distance; E {} is the 
expectation symbol. The definition implies that the 
cross-variogram can only be calculated from the 
co-located measurements of the primary variable and 
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secondary variable. However, the measurements of 
correlated geotechnical properties are usually 
non-co-located, which restricts the estimation of the 
cross-variogram in geotechnical engineering.  

When the primary variable and secondary variable are 
assumed to be second-order stationary, the 
cross-variogram can be expressed by the 
cross-covariance: 

 
12 12 12( ) (0) ( )C C = −h h   (2) 

where C12 (h) is the cross-covariance between the 
primary variable and secondary variable. 

For second order stationary correlated geotechnical 
variables, the joint probability density function (pdf) can 
be modeled as a joint Gaussian distribution. The 
covariance matrix in the joint pdf shows the correlation 
between the primary variable and the secondary variable. 
The parameters of the cross-covariance model used in the 
covariance matrix can be used to obtain the parameters of 
the cross-variogram model by Bayesian inference. In the 
next section, a Bayesian inference will be developed to 
estimate the cross-variogram directly from measurements 
when the measurements of the primary variable and 
secondary variable are not co-located.  

2.2 Bayesian inference for the cross-variogram 
Bayesian inference is a probabilistic approach that can 
update prior knowledge with measurements to estimate 
the posterior distribution of model parameters (Zhang et 
al. 2014; Zhang et al. 2018; Xu et al. 2020). One of the 
most critical parts of Bayesian inference is the likelihood 
function, which measures the goodness of fit of a model 
to measurement data. When random variables are 
Gaussian distribution and second order stationary, the 
likelihood function can be constructed by the joint 
probability distribution function of the measurements of 
correlated random variables. 

In this research, the corresponding logarithmic 
likelihood function of the parameters can be determined 
based on the measurements of primary and secondary 
variables: 

 
11 1

log[ ( | )] constant- log ( ) ( )
2 2

P −= − − −T
z θ C z μ C z μ  (3) 

where log [P (z | θ)] is the logarithmic likelihood function, 
z = [z1, z2] T, z1 and z2 are the vectors of measurements of 
primary and secondary variables, respectively. μ = [μ1, 
μ2], μ1 and μ2 are the mean values of primary and 
secondary variables, respectively. The covariance matrix 
C is defined as 
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where C11 is the covariance matrix between the 
measurements of the primary variable, C22 is the 
covariance matrix between the measurements of the 
secondary variable, C12 and C21 are the cross-covariance 
matrices between the measurements of the primary 
variable and secondary variable, C21

 = C12. θ is a vector 
containing the parameters of covariance and 
cross-covariance and the mean values of the primary and 

secondary variables. In this study, the Matérn model is 
adopted as the cross-variogram and cross-covariance 
model (Minasny and McBratney 2005). 

When the likelihood function is constructed, a set of 
prior information is assigned. Subsequently, the posterior 
information of covariance and cross-covariance 
parameters can be obtained by Markov chain Monte 
Carlo (MCMC) simulation. In this study, the differential 
evolution adaptive Metropolis (DREAM) algorithm 
proposed by Vrugt et al. (2008) is adopted. The DREAM 
algorithm is a multi-chain MCMC simulation algorithm. 
The Bayesian inference using MCMC simulation can 
generate plenty of stably convergent posterior parameter 
samples of the covariance and cross-covariance, which 
can be utilized to model the auto-variogram and 
cross-variogram models. Subsequently, the 
auto-variogram and cross-variogram models can be 
utilized to interpret at unsampled locations using the 
cokriging method. 

3. Real data example 
In this study, a 2D dataset derived from the published Ely 
dataset (Journel and Kyriakidis 2004; Remy et al. 2009) 
is used as an example. The Ely dataset contains two sets 
of data with 10, 000 co-located measurements, which can 
be utilized as the measurements of the primary variable 
and secondary variable, respectively. The two datasets 
were transformed from a digital elevation model of a 
study site near the town of Ely in eastern Nevada. This 
site is a squared area of approximately 300 m by 300 m. 

 
(a) 50 measurements of the primary variable 

 

(b) 100 measurements of the secondary variable 

Figure 1. Locations of (a) 50 measurements of the primary 

variable and (b) 100 measurements of the secondary variable in 

the Ely site. 
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50 data points of the primary variable and 200 
non-co-located data points of the secondary variable, 
shown in Fig. 1, are chosen to investigate the ability of 
the Bayesian inference method in estimating the 
cross-variogram when measurements are not co-located.  

In this research, a set of uniform distribution is 
assigned as the prior information. The Bayesian inference 
method using MCMC simulation runs 10 different 
Markov Chains simultaneously in parallel. After 5000 
iterations, 50, 000 posterior samples of parameters are 
obtained. The last converged 10, 000 posterior samples 
are used to explore the variogram model. 

 

(a) auto-variogram of the primary variable 

 

(b) auto-variogram of the secondary variable 

 

(c) cross-variogram 

Figure 2. Estimated variogram of the Ely dataset: (a) 

auto-variogram of the primary variable; (b) auto-variogram of 

the secondary variable; (c) cross-variogram. 

Fig. 2 displays the posterior mean and 95% 
confidence intervals of the estimated variogram models 
from the Bayesian inference method. The Bayesian 
inference method can estimate not only the 
cross-variogram model but also the auto-variogram 
models of the primary and secondary variables 
simultaneously. The experimental auto-variograms are 
calculated from the method of moments and plotted in 

this graph to compare with the results of the Bayesian 
inference method. In this research, the experimental 
cross-variogram cannot be calculated because the 
measurements of the primary variable and secondary 
variable are not co-located. Therefore, the original 10,000 
co-located measurements of the primary variable and the 
secondary variable are used to calculate the experimental 
cross-variogram and evaluate the estimated 
cross-variogram from the Bayesian inference. 

Fig. 2 shows that the 95% confidence intervals of 
estimated auto-variogram and cross-variogram models 
encompass the experimental auto-variogram and 
cross-variogram models. The mean auto-variogram and 
cross-variogram models coincide with most of the 
experimental auto-variogram and cross-variogram values, 
especially when the lag distance is small. Therefore, the 
Bayesian inference method is appropriate to estimate the 
cross-variogram by measurements directly when the 
measurements of primary and secondary variables are not 
co-located. 

The Bayesian inference method proposed in this study 
can ensure that the covariance matrix in Eq. 3 is positive 
definite. Therefore, all posterior auto-variogram and 
cross-variogram models can be used in cokriging to 
produce amounts of cokriging predictions and associated 
cokriging variances accordingly. When the posterior 
variogram models are utilized to produce cokriging 
predictions at unsampled locations, the uncertainty of 
variogram parameters will propagate to the cokriging 
prediction. In this study, the last 100 converged posterior 
variogram models are applied to characterize this site by 
cokriging. Fig. 3 shows the mean cokriging interpretation 
and the mean cokriging variance. The graph of mean 
cokriging variance (Fig. 3b) shows that cokriging 
variance is large at those positions away from 
measurements. The 2.5th percentile of cokriging 
prediction (Fig. 3c) and 97.5th percentile of cokriging 
prediction (Fig. 3d) are also plotted to show the 
uncertainty of site characterization using the uncertain 
variogram models by cokriging method. 

 
(a) mean cokriging interpretation 
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(b) mean cokriging variance 

 
(c) 2.5th percentile of cokriging interpretation 

 

(d) 97.5th percentile of cokriging interpretation 

Figure 3. (a) Mean cokriging interpretation; (b) mean  

cokriging variance; (c) 2.5th percentile, and (d) 97.5th 

percentile  

of the cokriging interpretation. 

4. Conclusions 

In this study, a Bayesian inference method is developed 
to estimate the cross-variogram when the measurements 
of primary and secondary variables are not co-located. A 
set of real elevation data is used to demonstrate this 
proposed method. The results show that the proposed 
method can estimate an accurate cross-variogram model 
directly from non-co-located measurements. Furthermore, 
the uncertainty of the estimated variogram models and 
cokriging interpretation can also be measured by the 
Bayesian inference method. 
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