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Abstract: The wind pressure coefficient (Cp) is a dimensionless quantity which describes the relative pressure on the building 

surface caused by wind. It has important influence on wind resistance design of structure and evaluation of natural ventilation. Wind 

pressure coefficients on building surfaces are generally determined by full-scale building tests, wind tunnel tests, computational fluid 

dynamics (CFD) simulation and analytical models derived from experiments. The main purpose of this paper is to establish accurate 

and easy-to-use analytical models for predicting average Cp on the surfaces of low-rise buildings. Based on a nonparametric 

regression algorithm known as multivariate adaptive regression splines (MARS) and data obtained from wind tunnel tests, a MARS 

model was developed for wall of low-rise buildings. By comparing the results obtained from the MARS model and other analytical 

models, the advantages of MARS model over other approaches in predictive accuracy and better interpretability have been 

demonstrated.  
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1. Introduction 
Wind is a common natural phenomenon caused by air 
flow. The pressure on building surface caused by wind 
has an important influence on the force analysis of main 
structure and the wind resistance design of building 
envelopes. In addition, for building infiltration and 
ventilation, wind is also a dominant factor. Therefore, 
wind pressure is of great significance for establishment of 
analytical models about building structural analysis, 
environmental and energy consumption assessment. So 
far many analytical models have introduced wind 
pressure as an important input parameter, including 
building energy simulation (BES), airflow network 
(AFN), building component heat, air and moisture (HAM) 
transfer and so on. We usually use pressure coefficients 
(Cp) to characterize the wind pressure, and Cp are 
generally defined as: 
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in which P is the static pressure at a given point on the 
building facade, Pref is the static reference pressure, ρ is 
the air density and Vh is the wind speed at the reference 
height.  

In order to obtain the wind pressure coefficients of a 
building, we can use wind tunnel test, computational fluid 
dynamics (CFD) simulation, and even full-scale 
measurement. Cóstola (2009) has summarized these 
methods as the primary sources for obtaining wind 
pressure coefficients. The primary sources can provide 
accurate Cp data for specific buildings, but the whole 
testing or analysis process is cumbersome and expensive. 
Therefore, these methods are only used to deal with 
building with complicated shape or for the establishment 
of wind pressure coefficient databases. Wind pressure 
coefficients can also be obtained from databases or 
analytical models, which are summarized as secondary 
sources. As for low-rise building, analytical models are 

often the first choice for predicting the wind pressure 
coefficients, which can provide ideal results if 
appropriately developed, and some analytical models 
have been widely used in various related projects. 

The most commonly used analytical model was 
developed by Swami and Chandra (1988). They used 
step-wise regression analysis method to fit published 
studies about Cp and proposed equations for low-rise and 
high-rise buildings separately. The equation for low-rise 
buildings has been widely used in BES programs to 
predict surface average Cp, and it will be referred to as 
S&C equation in this paper. The S&C equation is mainly 
used to calculate Cp of rectangular low-rise buildings. By 
applying to Cp data from various sources, an acceptable 
correlation coefficient of 0.797 was obtained. With the 
improvement of test technique and measuring equipment, 
more precise pressure coefficients were obtained through 
advanced wind tunnel tests, which makes the S&C model 
have a need to be improved and upgraded accordingly.  

The Tokyo Polytechnic University (TPU) has 
established a large database of wind tunnel tests for 
conventional buildings, in which very detailed wind 
pressure coefficients were given for low-rise buildings. 
Based on the TPU database, Muehleisen and Patrizi (2013) 
proposed an equation (M&P equation) by curve fitting to 
predict the surface-averaged Cp for low-rise buildings. 
The M&P equation fit the TPU data with a 
goodness-of-fit R2 = 0.992, but there are still large errors 
over a wide range of wind directions (90°<θ<165°).  

Recently, using the artificial neural networks (ANN) 
mothed, Bre and Gimenez (2018) developed three 
analytical models to predict average Cp of low-rise 
buildings with different roof types, respectively. The 
analytical model for low-rise building with flat roof is 
named B&G FANN. These ANN models were trained 
and tested by TPU experimental database, and results 
from these models are in good agreement with the TPU 
database. However, the ANN model have complicated 
structure which comprises one or several layers of 
interconnected neurons, and neurons interact with each 
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other via weights and bias, so it is difficult for ANN 
model to form a simple and easy-to-use equation.  

This paper examines the application of multivariate 
adaptive regression splines (MARS) (Friedman 1991) to 
develop analytical model of the surface-average Cp of 
low-rise buildings. MARS can not only acquire complex 
data mapping in multi-variate data patterns, but also 
produce simpler and easy-to-interpret models. MARS has 
been applied in some engineering fields (Haghiabi 2017, 
Zhang et al. 2013, 2016, 2017, 2018). However, As far as 
I know, it has not been applied in the field of wind 
engineering and environmental engineering. In this paper, 
the details of MARS are introduced and a simple example 
is given to show the function approximation ability of this 
algorithm. Based on TPU database, the MARS model for 
the prediction of Cp of low-rise buildings has been 
developed. Comparisons between the current model and 
TPU experimental database and other previous analytical 
models have been made to illustrate the accuracy and 
effectiveness of the proposed MARS model. 

2. Methodology 

2.1 Multivariate adaptive regression splines(MARS) 
MARS is a data-driven statistical method proposed by 
Friedman (1991). It is mainly used to deal with complex 
multi-variate data and to fit the mathematical relationship 
between input variables and output variables. The training 
data set is divided into piecewise linear splines with 
different gradients on the basis of divide-and-conquer 
strategy. There is no need to make specific assumptions 
about the underlying, intrinsic functional relationship 
between input and output variables. In the process of 
fitting, MARS divide the data into multiple segments, and 
of which the end are named knots. One knot symbolizes 
the end of one data region and the beginning of another. 
The piecewise linear splines are known as basis functions 
(BFs), and they connected by knots smoothly together to 
result in an effective mathematical model that has the 
capability to capture both linear and nonlinear 
characteristics flexibly and accurately.  
The MARS model function f(X) is established by linear 
combination of the BFs and their interactions. The 
expression is as follows: 
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in which λm(X) is the basis function. Its concrete form 
may be a spline function, or the product of several spline 
functions. β are constant coefficients estimated by least 
squares method. 

MARS fits the function f by using BFs which mainly 
involved piecewise linear functions and piecewise cubic 
functions. Considering that piecewise linear functions are 
simple and has sufficient fitting accuracy for most 
problems, so, just take piecewise linear functions for 
example, its typical form is max(0, x−t), and a knot 
appears at the value t. The function max(.) denotes that 
the positive part of (.) is used, or it is assigned to zero. 
Formally, 
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In order to explain the fitting process and effect of 
MARS more clearly, piecewise linear spline functions are 
used to fit some random data. The fitting result is shown 
in Fig. 1. And the mathematical equation obtained from 
MARS is expressed as 

y = 20.344-4.042×BF1-2.5893×BF2+3.097×BF3-4.2006

×BF4+2.8776×BF5 
(4) 

in which BF1 = max(0,15.5-x), BF2 = max(0, x-12.5), 
BF3 = max(0,12.5-x), BF4 = max(0,5-x), BF5 = 
max(0,8-x). x = 5, 8, 12.5 and 15.5 are the locations of the 
knots. They divide the scope of variables into five 
intervals in which different linear relationships are 
distinguished. 

 

Figure 1. Knots and linear splines for a simple MARS example. 

The MARS modeling process is divided into two 
steps: forward selection and backward deletion. The 
whole modeling process is data-driven, so it is easy to 
operate and highly automated.  

In the forward phase, in order to make the model 
conform to Eq. (2), a forward selection program is first 
executed on the training data. An initial model with only 
intercept β0 is established, and the basis pair with the 
greatest reduction in training error is added. Then, 
considering the present model with M basis functions, 
another next pair will be added to the model in form 

1 2
ˆ ˆ( )max(0, ) ( )max(0, )M m j M m jX X t X t X        (5) 

and each β will be assessed by least square method. As a 
basis function added to the model space, the interactions 
between existing BFs in the model are also considered. 
Add BFs until the model gets a specified maximum 
number of terms, resulting in purposeful over-fitting of 
the model. 

After the forward phase, the backward deletion will 
be performed to reduce the number of terms. The purpose 
of backward pruning is to find an approximate ideal 
model by deleting irrelevant variables. In order to get the 
final optimal model, backward pass deletes the basis 
function that contributes the least to the target model until 
the best sub-model is found. Model subsets are compared 
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using Generalized Cross Validation (GCV) with lower 
computational cost. As a goodness-of-fit test, GCV 
equation punishes a lot of BFs and plays an important 
role in reducing the chance of over-fitting. Eq. (6) 
presents the calculation formula of GCV for training data 
with N observations.  
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in which M is the number of BFs, N is the number of 
observations, d is the penalty parameter, and f(xi) 
represents the estimated values of the MARS model. The 
denominator indicates the change in variance as the 
complexity of the model increases. The numerator 
represents the mean squared error of the model evaluated 
in training data, which is punished by denominator. It 
should be noted that (M − 1)/2 denotes the quantity of 
function knots. Therefore, the GCV penalizes both the 
number of basis functions of as well as the number of 
knots. By default, the penalizing parameter d is set to 
value of 3.0. Each deletion step will prune a basis 
function, and the deletion step will be repeated until an 
optimal model is finally obtained. 

After determining the final ideal MARS model, by 
combining all BFs containing one variable with another 
BFs containing pairwise interactions, a procedure named 
variance decomposition analysis (ANOVA) (Friedman 
1991) can be utilized to evaluate contributions from input 
variables as well as BFs. 

2.2 Database 
Tokyo Polytechnic University recently established the 
TPU database on the basis of wind tunnel tests. It 
contains a variety of buildings, including high-rise 
buildings, low-rise buildings, and the effect of sheltering 
has been considered. The TPU database provides the 
times series of Cp, graphs of surfaced-averaged Cp, and 
contours of local Cp of wind directions from 0° to 90° per 
15°. For rectangular floor-plan buildings, considering the 
geometric symmetry, the wind directions can easily be 
extended to 180°. Compared with other databases, TPU 
database uses more advanced instrumentations, and 
provides a plenty of data with a relatively smaller system 
error. Therefore, it may be considered as the most 
accurate database so far. In view of above advantages, in 
this paper, we decided to use TPU database to develop the 
MARS model. 

 
Figure 2. Building geometry identifying the building surfaces 

1-5, the building dimensions D, B, H, and the wind angle θ. 

Fig. 2 shows the geometry of the low-rise building 
utilized in this study. The TPU database used for MARS 
modeling comprises of surface-averaged Cp with 
D/B=1/2.5, 1/1.5, 1/1, 1.5/1, 2.5/1 for θ from 0° to 180° 
in 15° increments. Table 1 lists a summary of the input 
variables, outputs and parameter statistics. In this paper, 
200 data sets (about 77% of the overall data set) were 
randomly selected as the training patterns in the 260 data 
sets, and the remaining 60 were used for testing 
purposes. 

Table 1. Summary of input variables and outputs. 

Inputs and outputs Parameters 

Inputs D/B, θ 

Outputs Cp  

Cp range -0.8277~ 0.6925 

No. of training data 200 

No. of testing data 60 

 

2.3 Evaluation metrics 
In the Cp analyzed using MARS in the section 3, the 
same data were also analyzed using other analytical 
models. Table 2 shows the various evaluation metrics 
utilized for prediction comparison of these models. 

Table 2. Summary of performance measures. 

Measure Calculation 
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Mean square error (MSE) 
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y  is the mean of the target values of yi; Y  is the mean 

of the predicted Yi; N denotes the number of data points 

in the used set, training set, testing set or the overall set. 

3. Results and discussion 
The prediction model of wind pressure coefficients for 
low-rise building is established by using MARS method. 
The details of MARS model are shown in Eq. (7) and 
Table 3. Fig. 3 shows the comparison between the 
predicted results and measured data. It can be seen that 
the fitting is excellent: R2=0.994, r=0.997, MSE=0.001, 
MAE=0.026 (Training data), R2=0.984, r=0.992, 
MSE=0.004, MAE=0.045 (Testing data). Obviously, the 
MARS model can capture the complex relationship 
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between Cp and the influential initial parameters, and it 
can be a useful tool for wind pressure prediction on 
building surfaces. 

Cp = -0.696+0.0162×BF1-0.00758×BF2-0.0081×BF3 

+0.00893×BF4+0.00184×BF5-0.00831×BF6 

-0.0251×BF7-0.00167×BF8+0.0254×BF9 

+0.0136×BF10-0.0193×BF11+0.00759×BF12 

-0.00637×BF13-0.00276×BF14-0.00322×BF15 

-0.00502×BF16+0.00459×BF17+0.0101×BF18 

+0.384×BF19+0.00411×BF20-0.0199×BF21 

+0.00784×BF22-0.00295×BF23-0.00207×BF24 

+0.0104×BF25-0.0156×BF26+0.267×BF27 

(7) 

Table 3. BFs and corresponding equations of MARS model. 

BF Equation BF Equation 

BF1   max(0,105-x3) BF15   BF12 × max(0,0.5-x1) 

BF2   max(0, x3-30) BF16   BF2 × max(0, x2-1.5) 

BF3   BF2 × max(0, x1-0.75) BF17   BF2 × max(0,1.5-x2) 

BF4   BF2 × max(0,0.75-x1) BF18   max(0, x2-1) × max(0, x3-75) 

BF5   BF1 × max(0, x2-1.5) BF19   max(0,1-x2) × max(0,0.5-x1) 

BF6   max(0, x3-105) × max(0, x2-1) BF20   max(0, x3-90) × max(0, x2-0.67) 

BF7   max(0, x3-105) × max(0,1-x2) BF21   max(0, x3-90) × max(0,0.67-x2) 

BF8   max(0, x2-1) × max(0,90-x3) BF22   BF10 × max(0,0.67-x2) 

BF9   max(0,1-x2) × max(0, x3-120) BF23   max(0,60-x3) 

BF10   max(0, x3-45) BF24   max(0, x2-1) × max(0, x3-150) 

BF11   max(0,45-x3) BF25   max(0, x3-90) × max(0, x1-0.5) 

BF12   max(0,90-x3) BF26   max(0, x3-90) × max(0,0.5-x1) 

BF13   max(0, x3-15) BF27   max(0, x1-0.5) 

BF14   BF12 × max(0, x1-0.5)   

 

 

Figure 3. Comparison between measured targets and MARS 

predicted Cp 

Wind pressure coefficients from the TPU data, 
MARS model, S&C equation, M&P equation and B&G 
FANN model are shown in Fig. 4 for the wall with D/B 
as a function of θ. As mentioned in the previous 
literatures (Muehleisen et al. 2013, Bre et al. 2018), the 
S&C equation could not fit the TPU data well for D/B 

≠ 1. M&P equation and B&G FANN model achieve 
relatively good results for these cases, but in some wind 
angle range, the accuracy is still not ideal enough. As we 
can see, the MARS model has the best fitting results with 
TPU experimental data for almost any D/B and θ. 

 

  

(a) D/B=0.4 (b) D/B=0.67 

  

(c) D/B=1.0 (d) D/B=1.5 

 

(e) D/B=2.5 

Figure 4. Building with side ratio D/B: TPU measurements vs. 

predictions of MARS model, the S&C and the M&P equations 

and the B&G FANN model of the surface-averaged pressure 

coefficient Cp with respect to the wind attack angle θ. 

All performance measures of MARS model, the S&C 
equation, the M&P equation and the B&G FANN model 
are listed in Table 4. It can be observed that the MARS 
model could predict the Cp better than other methods. 

Table 4. Comparison of performance measures. 

Method R2 r MSE MAE 

MARS 0.9919 0.9959 0.0017 0.0306 

S&C 0.8837 0.9415 0.0244 0.1114 

M&P 0.9750 0.9874 0.0053 0.0536 

B&G 0.9297 0.9682 0.0148 0.0907 
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4. Conclusions 
The main purpose of this paper is to explore the 
application of multivariate adaptive regression splines 
algorithm in the prediction of Cp on low-rise building 
surfaces. Based on this algorithm, a new analytical model 
was proposed which can accurately predict the 
surface-average Cp on wall of low-rise buildings. Firstly, 
the MARS algorithm was introduced in detail, and the 
accuracy of the algorithm was verified by a simple 
example. Then, based on the TPU database, MARS 
algorithm was used to establish the analytical model of 
the surface-average Cp on wall of low-rise buildings with 
side ratios of D/B=1/2.5, 1/1.5, 1/1, 1.5/1, 2.5/1 over a 
range of wind direction from 0° to 180°. Previous popular 
S&C equation and M&P equation are simple in form, but 
their prediction accuracy is relatively low. The 
application of ANN model given by B&G is difficult to 
use for people without relevant knowledge background. 
Compared with the previous analytical models, MARS 
model have higher prediction accuracy and good 
interpretability, and they are easy to implement in hand, 
spreadsheet, and other calculation software. 
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